// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING && !UPRV_INCOMPLETE_CPP11_SUPPORT
#include "number_stringbuilder.h"
#include "unicode/utf16.h"
#include "uvectr32.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
namespace {
// A version of uprv_memcpy that checks for length 0.
// By default, uprv_memcpy requires a length of at least 1.
inline void uprv_memcpy2(void* dest, const void* src, size_t len) {
if (len > 0) {
uprv_memcpy(dest, src, len);
}
}
// A version of uprv_memmove that checks for length 0.
// By default, uprv_memmove requires a length of at least 1.
inline void uprv_memmove2(void* dest, const void* src, size_t len) {
if (len > 0) {
uprv_memmove(dest, src, len);
}
}
} // namespace
NumberStringBuilder::NumberStringBuilder() = default;
NumberStringBuilder::~NumberStringBuilder() {
if (fUsingHeap) {
uprv_free(fChars.heap.ptr);
uprv_free(fFields.heap.ptr);
}
}
NumberStringBuilder::NumberStringBuilder(const NumberStringBuilder &other) {
*this = other;
}
NumberStringBuilder &NumberStringBuilder::operator=(const NumberStringBuilder &other) {
// Check for self-assignment
if (this == &other) {
return *this;
}
// Continue with deallocation and copying
if (fUsingHeap) {
uprv_free(fChars.heap.ptr);
uprv_free(fFields.heap.ptr);
fUsingHeap = false;
}
int32_t capacity = other.getCapacity();
if (capacity > DEFAULT_CAPACITY) {
// FIXME: uprv_malloc
// C++ note: malloc appears in two places: here and in prepareForInsertHelper.
auto newChars = static_cast<char16_t *> (uprv_malloc(sizeof(char16_t) * capacity));
auto newFields = static_cast<Field *>(uprv_malloc(sizeof(Field) * capacity));
if (newChars == nullptr || newFields == nullptr) {
// UErrorCode is not available; fail silently.
uprv_free(newChars);
uprv_free(newFields);
*this = NumberStringBuilder(); // can't fail
return *this;
}
fUsingHeap = true;
fChars.heap.capacity = capacity;
fChars.heap.ptr = newChars;
fFields.heap.capacity = capacity;
fFields.heap.ptr = newFields;
}
uprv_memcpy2(getCharPtr(), other.getCharPtr(), sizeof(char16_t) * capacity);
uprv_memcpy2(getFieldPtr(), other.getFieldPtr(), sizeof(Field) * capacity);
fZero = other.fZero;
fLength = other.fLength;
return *this;
}
int32_t NumberStringBuilder::length() const {
return fLength;
}
int32_t NumberStringBuilder::codePointCount() const {
return u_countChar32(getCharPtr() + fZero, fLength);
}
UChar32 NumberStringBuilder::getFirstCodePoint() const {
if (fLength == 0) {
return -1;
}
UChar32 cp;
U16_GET(getCharPtr() + fZero, 0, 0, fLength, cp);
return cp;
}
UChar32 NumberStringBuilder::getLastCodePoint() const {
if (fLength == 0) {
return -1;
}
int32_t offset = fLength;
U16_BACK_1(getCharPtr() + fZero, 0, offset);
UChar32 cp;
U16_GET(getCharPtr() + fZero, 0, offset, fLength, cp);
return cp;
}
UChar32 NumberStringBuilder::codePointAt(int32_t index) const {
UChar32 cp;
U16_GET(getCharPtr() + fZero, 0, index, fLength, cp);
return cp;
}
UChar32 NumberStringBuilder::codePointBefore(int32_t index) const {
int32_t offset = index;
U16_BACK_1(getCharPtr() + fZero, 0, offset);
UChar32 cp;
U16_GET(getCharPtr() + fZero, 0, offset, fLength, cp);
return cp;
}
NumberStringBuilder &NumberStringBuilder::clear() {
// TODO: Reset the heap here?
fZero = getCapacity() / 2;
fLength = 0;
return *this;
}
int32_t NumberStringBuilder::appendCodePoint(UChar32 codePoint, Field field, UErrorCode &status) {
return insertCodePoint(fLength, codePoint, field, status);
}
int32_t
NumberStringBuilder::insertCodePoint(int32_t index, UChar32 codePoint, Field field, UErrorCode &status) {
int32_t count = U16_LENGTH(codePoint);
int32_t position = prepareForInsert(index, count, status);
if (U_FAILURE(status)) {
return count;
}
if (count == 1) {
getCharPtr()[position] = (char16_t) codePoint;
getFieldPtr()[position] = field;
} else {
getCharPtr()[position] = U16_LEAD(codePoint);
getCharPtr()[position + 1] = U16_TRAIL(codePoint);
getFieldPtr()[position] = getFieldPtr()[position + 1] = field;
}
return count;
}
int32_t NumberStringBuilder::append(const UnicodeString &unistr, Field field, UErrorCode &status) {
return insert(fLength, unistr, field, status);
}
int32_t NumberStringBuilder::insert(int32_t index, const UnicodeString &unistr, Field field,
UErrorCode &status) {
if (unistr.length() == 0) {
// Nothing to insert.
return 0;
} else if (unistr.length() == 1) {
// Fast path: insert using insertCodePoint.
return insertCodePoint(index, unistr.charAt(0), field, status);
} else {
return insert(index, unistr, 0, unistr.length(), field, status);
}
}
int32_t
NumberStringBuilder::insert(int32_t index, const UnicodeString &unistr, int32_t start, int32_t end,
Field field, UErrorCode &status) {
int32_t count = end - start;
int32_t position = prepareForInsert(index, count, status);
if (U_FAILURE(status)) {
return count;
}
for (int32_t i = 0; i < count; i++) {
getCharPtr()[position + i] = unistr.charAt(start + i);
getFieldPtr()[position + i] = field;
}
return count;
}
int32_t NumberStringBuilder::append(const NumberStringBuilder &other, UErrorCode &status) {
return insert(fLength, other, status);
}
int32_t
NumberStringBuilder::insert(int32_t index, const NumberStringBuilder &other, UErrorCode &status) {
if (this == &other) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
int32_t count = other.fLength;
if (count == 0) {
// Nothing to insert.
return 0;
}
int32_t position = prepareForInsert(index, count, status);
if (U_FAILURE(status)) {
return count;
}
for (int32_t i = 0; i < count; i++) {
getCharPtr()[position + i] = other.charAt(i);
getFieldPtr()[position + i] = other.fieldAt(i);
}
return count;
}
int32_t NumberStringBuilder::prepareForInsert(int32_t index, int32_t count, UErrorCode &status) {
if (index == 0 && fZero - count >= 0) {
// Append to start
fZero -= count;
fLength += count;
return fZero;
} else if (index == fLength && fZero + fLength + count < getCapacity()) {
// Append to end
fLength += count;
return fZero + fLength - count;
} else {
// Move chars around and/or allocate more space
return prepareForInsertHelper(index, count, status);
}
}
int32_t NumberStringBuilder::prepareForInsertHelper(int32_t index, int32_t count, UErrorCode &status) {
int32_t oldCapacity = getCapacity();
int32_t oldZero = fZero;
char16_t *oldChars = getCharPtr();
Field *oldFields = getFieldPtr();
if (fLength + count > oldCapacity) {
int32_t newCapacity = (fLength + count) * 2;
int32_t newZero = newCapacity / 2 - (fLength + count) / 2;
// C++ note: malloc appears in two places: here and in the assignment operator.
auto newChars = static_cast<char16_t *> (uprv_malloc(sizeof(char16_t) * newCapacity));
auto newFields = static_cast<Field *>(uprv_malloc(sizeof(Field) * newCapacity));
if (newChars == nullptr || newFields == nullptr) {
uprv_free(newChars);
uprv_free(newFields);
status = U_MEMORY_ALLOCATION_ERROR;
return -1;
}
// First copy the prefix and then the suffix, leaving room for the new chars that the
// caller wants to insert.
// C++ note: memcpy is OK because the src and dest do not overlap.
uprv_memcpy2(newChars + newZero, oldChars + oldZero, sizeof(char16_t) * index);
uprv_memcpy2(newChars + newZero + index + count,
oldChars + oldZero + index,
sizeof(char16_t) * (fLength - index));
uprv_memcpy2(newFields + newZero, oldFields + oldZero, sizeof(Field) * index);
uprv_memcpy2(newFields + newZero + index + count,
oldFields + oldZero + index,
sizeof(Field) * (fLength - index));
if (fUsingHeap) {
uprv_free(oldChars);
uprv_free(oldFields);
}
fUsingHeap = true;
fChars.heap.ptr = newChars;
fChars.heap.capacity = newCapacity;
fFields.heap.ptr = newFields;
fFields.heap.capacity = newCapacity;
fZero = newZero;
fLength += count;
} else {
int32_t newZero = oldCapacity / 2 - (fLength + count) / 2;
// C++ note: memmove is required because src and dest may overlap.
// First copy the entire string to the location of the prefix, and then move the suffix
// to make room for the new chars that the caller wants to insert.
uprv_memmove2(oldChars + newZero, oldChars + oldZero, sizeof(char16_t) * fLength);
uprv_memmove2(oldChars + newZero + index + count,
oldChars + newZero + index,
sizeof(char16_t) * (fLength - index));
uprv_memmove2(oldFields + newZero, oldFields + oldZero, sizeof(Field) * fLength);
uprv_memmove2(oldFields + newZero + index + count,
oldFields + newZero + index,
sizeof(Field) * (fLength - index));
fZero = newZero;
fLength += count;
}
return fZero + index;
}
UnicodeString NumberStringBuilder::toUnicodeString() const {
return UnicodeString(getCharPtr() + fZero, fLength);
}
UnicodeString NumberStringBuilder::toDebugString() const {
UnicodeString sb;
sb.append(u"<NumberStringBuilder [", -1);
sb.append(toUnicodeString());
sb.append(u"] [", -1);
for (int i = 0; i < fLength; i++) {
if (fieldAt(i) == UNUM_FIELD_COUNT) {
sb.append(u'n');
} else {
char16_t c;
switch (fieldAt(i)) {
case UNUM_SIGN_FIELD:
c = u'-';
break;
case UNUM_INTEGER_FIELD:
c = u'i';
break;
case UNUM_FRACTION_FIELD:
c = u'f';
break;
case UNUM_EXPONENT_FIELD:
c = u'e';
break;
case UNUM_EXPONENT_SIGN_FIELD:
c = u'+';
break;
case UNUM_EXPONENT_SYMBOL_FIELD:
c = u'E';
break;
case UNUM_DECIMAL_SEPARATOR_FIELD:
c = u'.';
break;
case UNUM_GROUPING_SEPARATOR_FIELD:
c = u',';
break;
case UNUM_PERCENT_FIELD:
c = u'%';
break;
case UNUM_PERMILL_FIELD:
c = u'‰';
break;
case UNUM_CURRENCY_FIELD:
c = u'$';
break;
default:
c = u'?';
break;
}
sb.append(c);
}
}
sb.append(u"]>", -1);
return sb;
}
const char16_t *NumberStringBuilder::chars() const {
return getCharPtr() + fZero;
}
bool NumberStringBuilder::contentEquals(const NumberStringBuilder &other) const {
if (fLength != other.fLength) {
return false;
}
for (int32_t i = 0; i < fLength; i++) {
if (charAt(i) != other.charAt(i) || fieldAt(i) != other.fieldAt(i)) {
return false;
}
}
return true;
}
void NumberStringBuilder::populateFieldPosition(FieldPosition &fp, int32_t offset, UErrorCode &status) const {
int32_t rawField = fp.getField();
if (rawField == FieldPosition::DONT_CARE) {
return;
}
if (rawField < 0 || rawField >= UNUM_FIELD_COUNT) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
auto field = static_cast<Field>(rawField);
bool seenStart = false;
int32_t fractionStart = -1;
for (int i = fZero; i <= fZero + fLength; i++) {
Field _field = UNUM_FIELD_COUNT;
if (i < fZero + fLength) {
_field = getFieldPtr()[i];
}
if (seenStart && field != _field) {
// Special case: GROUPING_SEPARATOR counts as an INTEGER.
if (field == UNUM_INTEGER_FIELD && _field == UNUM_GROUPING_SEPARATOR_FIELD) {
continue;
}
fp.setEndIndex(i - fZero + offset);
break;
} else if (!seenStart && field == _field) {
fp.setBeginIndex(i - fZero + offset);
seenStart = true;
}
if (_field == UNUM_INTEGER_FIELD || _field == UNUM_DECIMAL_SEPARATOR_FIELD) {
fractionStart = i - fZero + 1;
}
}
// Backwards compatibility: FRACTION needs to start after INTEGER if empty
if (field == UNUM_FRACTION_FIELD && !seenStart) {
fp.setBeginIndex(fractionStart + offset);
fp.setEndIndex(fractionStart + offset);
}
}
void NumberStringBuilder::populateFieldPositionIterator(FieldPositionIterator &fpi, UErrorCode &status) const {
// TODO: Set an initial capacity on uvec?
LocalPointer <UVector32> uvec(new UVector32(status));
if (U_FAILURE(status)) {
return;
}
Field current = UNUM_FIELD_COUNT;
int32_t currentStart = -1;
for (int32_t i = 0; i < fLength; i++) {
Field field = fieldAt(i);
if (current == UNUM_INTEGER_FIELD && field == UNUM_GROUPING_SEPARATOR_FIELD) {
// Special case: GROUPING_SEPARATOR counts as an INTEGER.
// Add the field, followed by the start index, followed by the end index to uvec.
uvec->addElement(UNUM_GROUPING_SEPARATOR_FIELD, status);
uvec->addElement(i, status);
uvec->addElement(i + 1, status);
} else if (current != field) {
if (current != UNUM_FIELD_COUNT) {
// Add the field, followed by the start index, followed by the end index to uvec.
uvec->addElement(current, status);
uvec->addElement(currentStart, status);
uvec->addElement(i, status);
}
current = field;
currentStart = i;
}
if (U_FAILURE(status)) {
return;
}
}
if (current != UNUM_FIELD_COUNT) {
// Add the field, followed by the start index, followed by the end index to uvec.
uvec->addElement(current, status);
uvec->addElement(currentStart, status);
uvec->addElement(fLength, status);
}
// Give uvec to the FieldPositionIterator, which adopts it.
fpi.setData(uvec.orphan(), status);
}
#endif /* #if !UCONFIG_NO_FORMATTING */