// Example command line to build on Android ARM64:
/*
~/android/toolchains/r15c-aarch64/bin/aarch64-linux-android-clang++ \
test/benchmark_all_sizes.cc -o /tmp/b -O3 --std=c++11 -fPIE -static \
-DBENCHMARK_QUICK -DBENCHMARK_8bit
*/
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <ctime>
#include <iostream>
#include <map>
#include <random>
#include <set>
#include "../public/gemmlowp.h"
#if defined GEMMLOWP_ANDROID && defined GEMMLOWP_ARM_32
// Compilation workaround
namespace std {
using ::round;
}
#endif
// Minimum duration of each benchmark measurement. Also, duration
// of sleep time between each two consecutive benchmark measurements to
// prevent over-heating.
const double kBenchmarkSecs = 0.1;
// Sleep time before each benchmark.
const int kCooldownBeforeBenchmarkSecs = 0;
// Number of benchmark passes.
const int kPasses = 4;
#ifdef BENCHMARK_NUM_THREADS
const int kNumThreads = BENCHMARK_NUM_THREADS;
#else
const int kNumThreads = 1;
#endif
namespace gemmlowp {
// gemmlowp itself doesn't have a Matrix class, only a MatrixMap class,
// since it only maps existing data. In tests though, we need to
// create our own matrices.
template <typename tScalar, MapOrder tOrder>
class Matrix : public MatrixMap<tScalar, tOrder> {
public:
typedef MatrixMap<tScalar, tOrder> Map;
typedef MatrixMap<const tScalar, tOrder> ConstMap;
typedef typename Map::Scalar Scalar;
static const MapOrder Order = tOrder;
using Map::cols_;
using Map::data_;
using Map::kOrder;
using Map::rows_;
using Map::stride_;
public:
Matrix() : Map(nullptr, 0, 0, 0) {}
Matrix(int rows, int cols) : Map(nullptr, 0, 0, 0) { Resize(rows, cols); }
Matrix(const Matrix& other) : Map(nullptr, 0, 0, 0) { *this = other; }
Matrix& operator=(const Matrix& other) {
Resize(other.rows_, other.cols_);
std::memcpy(data_, other.data_, size() * sizeof(Scalar));
return *this;
}
friend bool operator==(const Matrix& a, const Matrix& b) {
return a.rows_ == b.rows_ && a.cols_ == b.cols_ &&
!std::memcmp(a.data_, b.data_, a.size());
}
void Resize(int rows, int cols) {
rows_ = rows;
cols_ = cols;
stride_ = kOrder == MapOrder::ColMajor ? rows : cols;
storage.resize(size());
data_ = storage.data();
}
int size() const { return rows_ * cols_; }
Map& map() { return *static_cast<Map*>(this); }
ConstMap const_map() const { return ConstMap(data_, rows_, cols_, stride_); }
protected:
std::vector<Scalar> storage;
};
template <typename MatrixType>
void MakeZero(MatrixType* m) {
for (int c = 0; c < m->cols(); c++) {
for (int r = 0; r < m->rows(); r++) {
(*m)(r, c) = 128;
}
}
}
} // end namespace gemmlowp
template <typename BitDepthParams>
float benchmark_8bit(int rows, int depth, int cols) {
using namespace gemmlowp;
typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> ResultType;
LhsType lhs;
RhsType rhs;
ResultType result;
lhs.Resize(rows, depth);
rhs.Resize(depth, cols);
result.Resize(rows, cols);
MakeZero(&lhs);
MakeZero(&rhs);
MakeZero(&result);
typedef std::tuple<OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint,
OutputStageSaturatingCastToUint8>
Pipeline;
gemmlowp::OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint
quantize_down_stage;
quantize_down_stage.result_offset_after_shift = 128;
quantize_down_stage.result_fixedpoint_multiplier = 1234567890;
quantize_down_stage.result_shift = 16;
gemmlowp::OutputStageSaturatingCastToUint8 saturating_cast_stage;
const auto output_pipeline =
std::make_tuple(quantize_down_stage, saturating_cast_stage);
GemmContext gemm_context;
gemm_context.set_max_num_threads(kNumThreads);
gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::uint8_t, BitDepthParams>(
&gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
-128, output_pipeline);
double time_start = real_time_in_seconds();
double t = time_start;
int iters = 0;
int iters_at_a_time = 1;
while (t - time_start < kBenchmarkSecs) {
for (int i = 0; i < iters_at_a_time; i++) {
gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::uint8_t,
BitDepthParams>(
&gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
-128, output_pipeline);
iters++;
}
iters_at_a_time *= 2;
t = real_time_in_seconds();
}
return (t - time_start) / iters;
}
template <typename BitDepthParams>
float benchmark_8bit_to_32bit(int rows, int depth, int cols) {
using namespace gemmlowp;
typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType;
typedef Matrix<std::int32_t, MapOrder::ColMajor> ResultType;
LhsType lhs;
RhsType rhs;
ResultType result;
lhs.Resize(rows, depth);
rhs.Resize(depth, cols);
result.Resize(rows, cols);
MakeZero(&lhs);
MakeZero(&rhs);
MakeZero(&result);
typedef std::tuple<> EmptyPipeline;
GemmContext gemm_context;
gemm_context.set_max_num_threads(kNumThreads);
gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::int32_t, BitDepthParams>(
&gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
-128, EmptyPipeline());
double time_start = real_time_in_seconds();
double t = time_start;
int iters = 0;
int iters_at_a_time = 1;
while (t - time_start < kBenchmarkSecs) {
for (int i = 0; i < iters_at_a_time; i++) {
gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::int32_t,
BitDepthParams>(
&gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
-128, EmptyPipeline());
iters++;
}
iters_at_a_time *= 2;
t = real_time_in_seconds();
}
return (t - time_start) / iters;
}
struct Shape {
int rows;
int depth;
int cols;
};
bool operator==(const Shape& s1, const Shape& s2) {
return s1.rows == s2.rows && s1.depth == s2.depth && s1.cols == s2.cols;
}
bool operator<(const Shape& shape1, const Shape& shape2) {
return shape1.depth < shape2.depth ||
(shape1.depth == shape2.depth &&
(shape1.rows < shape2.rows ||
(shape1.rows == shape2.rows && shape1.cols < shape2.cols)));
};
#ifdef _WIN32
#define sleep(t) Sleep(t)
#endif
float benchmark(const Shape& shape) {
if (kCooldownBeforeBenchmarkSecs) {
sleep(kCooldownBeforeBenchmarkSecs);
}
#if defined BENCHMARK_8bit
// Benchmark the fast 8bit path, using L8R8WithLhsNonzeroBitDepthParams.
// This is the recommended thing to default to: it's what most applications
// want to use, as it's the fastest.
// The contract is that LHS must take values in [1, 255], while RHS can take
// any value in [0, 255].
return benchmark_8bit<gemmlowp::L8R8WithLhsNonzeroBitDepthParams>(
shape.rows, shape.depth, shape.cols);
#elif defined BENCHMARK_8bit_wide
// Variant benchmarking the slower (mostly legacy) DefaultL8R8BitDepthParams.
// The only contract difference is that both LHS and RHS can take values in
// [0, 255].
return benchmark_8bit<gemmlowp::DefaultL8R8BitDepthParams>(
shape.rows, shape.depth, shape.cols);
#elif defined BENCHMARK_8bit_to_32bit
// Variant of BENCHMARK_8bit where the user asks for getting raw int32
// accumulators, instead of a 8bit-downscaled result.
return benchmark_8bit_to_32bit<gemmlowp::L8R8WithLhsNonzeroBitDepthParams>(
shape.rows, shape.depth, shape.cols);
#elif defined BENCHMARK_8bit_to_32bit_wide
// Variant of BENCHMARK_8bit_wide where the user asks for getting raw int32
// accumulators, instead of a 8bit-downscaled result.
return benchmark_8bit_to_32bit<gemmlowp::DefaultL8R8BitDepthParams>(
shape.rows, shape.depth, shape.cols);
#elif defined BENCHMARK_float
return benchmark_float(shape.rows, shape.depth, shape.cols);
#else
#error What arithmetic path should we benchmark? (Suggestion: #define BENCHMARK_8bit)
#endif
}
std::set<int> all_sizes() {
std::set<int> sizes;
for (int i = 1; i <= 2048; i *= 2) {
sizes.insert(i);
}
for (double x = 8; x <= 2048; x *= std::sqrt(2.)) {
sizes.insert(static_cast<int>(std::round(x)));
}
for (double x = 16; x <= 512; x *= std::pow(2., 1. / 4.)) {
sizes.insert(static_cast<int>(std::round(x)));
}
return sizes;
}
std::mt19937& RandomEngine() {
static std::mt19937 engine;
return engine;
}
std::vector<Shape> all_shapes_in_random_order() {
std::vector<Shape> shapes;
const std::set<int> sizes = all_sizes();
#if defined BENCHMARK_ROWS
// Benchmark one specific shape
Shape shape;
shape.rows = BENCHMARK_ROWS;
shape.depth = BENCHMARK_DEPTH;
shape.cols = BENCHMARK_COLS;
shapes.push_back(shape);
#elif defined BENCHMARK_QUICK
// Benchmark an assortment of cubic shapes
for (int size : sizes) {
Shape shape;
shape.rows = size;
shape.depth = size;
shape.cols = size;
shapes.push_back(shape);
}
#elif defined BENCHMARK_EXHAUSTIVE
// Benchmark all sorts of shapes
for (int rows : sizes) {
for (int depth : sizes) {
for (int cols : sizes) {
Shape shape;
shape.rows = rows;
shape.depth = depth;
shape.cols = cols;
shapes.push_back(shape);
}
}
}
#else
#error What shapes should we benchmark? (Suggestion: #define BENCHMARK_QUICK)
#endif
std::shuffle(std::begin(shapes), std::end(shapes), RandomEngine());
return shapes;
}
void run_benchmarks(std::map<Shape, float>* results) {
std::vector<Shape> shapes;
for (int pass = 0; pass < kPasses; pass++) {
const std::vector<Shape> pass_shapes = all_shapes_in_random_order();
shapes.insert(std::end(shapes), std::begin(pass_shapes),
std::end(pass_shapes));
}
const double time_start = gemmlowp::real_time_in_seconds();
for (std::size_t i = 0; i < shapes.size(); i++) {
const double ratio = static_cast<double>(i) / shapes.size();
const double elapsed = gemmlowp::real_time_in_seconds() - time_start;
const double elapsed_hours = elapsed / 3600.;
const double eta_hours = elapsed_hours * (1. - ratio) / ratio;
fprintf(stderr,
"Benchmarking: %.2f%% done, Elapsed: %.2f hours, ETA: %.2f "
"hours... \r",
100. * ratio, elapsed_hours, eta_hours);
fflush(stderr);
const Shape& shape = shapes[i];
float latency = benchmark(shape);
if (results->count(shape)) {
(*results)[shape] = std::min(latency, (*results)[shape]);
} else {
(*results)[shape] = latency;
}
}
fprintf(stderr, "\n");
}
int main() {
std::map<Shape, float> results;
run_benchmarks(&results);
printf("Using %d thread(s)\n", kNumThreads);
printf("depth,rows,cols,latency(s),Gop/s\n");
for (const auto& result : results) {
const Shape& shape = result.first;
printf("%d,%d,%d,%.4g,%.4g\n", shape.depth, shape.rows, shape.cols,
result.second,
2e-9 * shape.depth * shape.rows * shape.cols / result.second);
}
}