"""Zip primitive used by the GEMM function.
Takes 1 to 3 rows of data and interleaves them in 8 byte chunks. Pads to
multiply of 8 length with zeros. Calculates row sums and appends those at the
end.
"""
import neon_emitter
class Error(Exception):
"""Module level error."""
class ConfigurationError(Error):
"""Unsupported configuration."""
class ZipLane(object):
def __init__(self, input_address, load, aggregator):
self.input_address = input_address
self.load = load
self.aggregator = aggregator
def GenerateZipLanes(emitter, registers, zip_lanes, input_address, stride):
"""Prepares read lanes for the zip operation.
Args:
emitter: ARM/NEON emitter.
registers: ARM/NEON registers state.
zip_lanes: number of lanes to prepare.
input_address: register that contains the input address for the first lane.
stride: memory stride for lane inputs.
Returns:
Array of ZipLane objects.
"""
lanes = []
last_address_register = input_address
for i in range(0, zip_lanes):
if not i:
lanes.append(ZipLane(input_address, registers.DoubleRegister(),
registers.QuadRegister(2)))
else:
address_register = registers.GeneralRegister()
lanes.append(ZipLane(address_register, registers.DoubleRegister(),
registers.QuadRegister(2)))
emitter.EmitAdd(address_register, last_address_register, stride)
last_address_register = address_register
return lanes
def BuildName(zip_lanes, leftovers, aligned):
name = 'zip_%dx8' % zip_lanes
if leftovers:
name += '_%d' % leftovers
if aligned:
name += '_aligned'
return name
def GenerateClearAggregators(emitter, lanes):
for lane in lanes:
emitter.EmitVMov('i16', lane.aggregator, emitter.ImmediateConstant(0))
def GenerateLoadAggregateStore(emitter, lanes, output_address, alignment):
"""Emit inner loop code for reading N lanes and interweaving them."""
emitter.EmitNewline()
emitter.EmitComment('Load Aggregate Store.')
for lane in lanes:
emitter.EmitVLoad(
'1.8', lane.load,
emitter.DereferenceIncrement(lane.input_address, alignment))
store_registers = []
for lane in lanes:
emitter.EmitVAddw('u8', lane.aggregator, lane.aggregator, lane.load)
store_registers.append(lane.load)
emitter.EmitVStoreA('1.8', store_registers,
emitter.DereferenceIncrement(output_address, 64))
def GenerateLeftoverLoadAggregateStore(emitter, leftovers, lanes,
output_address):
"""Handle leftovers when count is not a multiply of 8."""
emitter.EmitNewline()
emitter.EmitComment('Leftover Load Aggregate Store.')
# Clear load registers.
for lane in lanes:
emitter.EmitVMov('i8', lane.load, emitter.ImmediateConstant(0))
if leftovers == 1:
# Load 8 bits.
for lane in lanes:
emitter.EmitVLoad('1.8', emitter.Lane(lane.load, 0),
emitter.Dereference(lane.input_address, None))
elif leftovers == 2:
# Load 16 bits.
for lane in lanes:
emitter.EmitVLoad('1.16', emitter.Lane(lane.load, 0),
emitter.Dereference(lane.input_address, None))
elif leftovers == 3:
# Load 16 bits.
for lane in lanes:
emitter.EmitVLoad('1.16', emitter.Lane(lane.load, 0),
emitter.DereferenceIncrement(lane.input_address, None))
# Load 8 bits.
for lane in lanes:
emitter.EmitVLoad('1.8', emitter.Lane(lane.load, 2),
emitter.Dereference(lane.input_address, None))
elif leftovers == 4:
# Load 32 bits.
for lane in lanes:
emitter.EmitVLoad('1.32', emitter.Lane(lane.load, 0),
emitter.Dereference(lane.input_address, None))
elif leftovers == 5:
# Load 32 bits..
for lane in lanes:
emitter.EmitVLoad('1.32', emitter.Lane(lane.load, 0),
emitter.DereferenceIncrement(lane.input_address, None))
# Load 8 bits.
for lane in lanes:
emitter.EmitVLoad('1.8', emitter.Lane(lane.load, 4),
emitter.Dereference(lane.input_address, None))
elif leftovers == 6:
# Load 32 bits..
for lane in lanes:
emitter.EmitVLoad('1.32', emitter.Lane(lane.load, 0),
emitter.DereferenceIncrement(lane.input_address, None))
# Load 16 bits.
for lane in lanes:
emitter.EmitVLoad('1.16', emitter.Lane(lane.load, 2),
emitter.Dereference(lane.input_address, None))
elif leftovers == 7:
# Load 32 bits..
for lane in lanes:
emitter.EmitVLoad('1.32', emitter.Lane(lane.load, 0),
emitter.DereferenceIncrement(lane.input_address, None))
# Load 16 bits.
for lane in lanes:
emitter.EmitVLoad('1.16', emitter.Lane(lane.load, 2),
emitter.DereferenceIncrement(lane.input_address, None))
# Load 8 bits.
for lane in lanes:
emitter.EmitVLoad('1.8', emitter.Lane(lane.load, 6),
emitter.Dereference(lane.input_address, None))
else:
raise ConfigurationError('Unsupported leftover num: %d' % leftovers)
# Aggregate.
store_registers = []
for lane in lanes:
emitter.EmitVAddw('u8', lane.aggregator, lane.aggregator, lane.load)
store_registers.append(lane.load)
# Store.
emitter.EmitVStoreA('1.8', store_registers,
emitter.DereferenceIncrement(output_address, 64))
def GenerateAggregatorReduction(emitter, registers, lanes, output_address,
multiplicative_offset, additive_offset):
"""Reduce 4 lane sum aggregators to 1 value and store the sums."""
emitter.EmitNewline()
emitter.EmitComment('Aggregator Reduction.')
multiplier = registers.DoubleRegister()
emitter.EmitVMov('32', emitter.Lane(multiplier, 0), multiplicative_offset)
offset = registers.QuadRegister()
emitter.EmitVDup('32', offset, additive_offset)
lane_temps = []
for lane in lanes:
emitter.EmitVPaddl('u16', lane.aggregator, lane.aggregator)
for lane in lanes:
lane_temp = registers.DoubleRegister()
lane_temps.append(lane_temp)
emitter.EmitVPadd('u32', lane_temp, registers.Low(lane.aggregator),
registers.High(lane.aggregator))
temp = registers.QuadRegister()
low = registers.Low(temp)
high = registers.High(temp)
if len(lanes) == 1:
emitter.EmitVPadd('u32', low, lane_temps[0], lane_temps[0])
elif len(lanes) == 2:
emitter.EmitVPadd('u32', low, lane_temps[0], lane_temps[1])
elif len(lanes) == 3:
emitter.EmitVPadd('u32', low, lane_temps[0], lane_temps[1])
emitter.EmitVPadd('u32', high, lane_temps[2], lane_temps[2])
elif len(lanes) == 4:
emitter.EmitVPadd('u32', low, lane_temps[0], lane_temps[1])
emitter.EmitVPadd('u32', high, lane_temps[2], lane_temps[3])
else:
raise ConfigurationError('Unexpected number of aggregators to reduce: %d' %
len(lanes))
emitter.EmitVMul('i32', temp, temp, emitter.Lane(multiplier, 0))
emitter.EmitVAdd('i32', temp, temp, offset)
if len(lanes) == 1:
emitter.EmitVStore('1.32', emitter.Lane(low, 0),
emitter.Dereference(output_address, None))
elif len(lanes) == 2:
emitter.EmitVStore('1.32', low, emitter.Dereference(output_address, 64))
elif len(lanes) == 3:
emitter.EmitVStore('1.32', low,
emitter.DereferenceIncrement(output_address, 64))
emitter.EmitVStore('1.32', emitter.Lane(high, 0),
emitter.Dereference(output_address, None))
elif len(lanes) == 4:
emitter.EmitVStoreA('1.32', [low, high],
emitter.DereferenceIncrement(output_address, 64))
def GenerateZipNx8(emitter, zip_lanes, leftovers, aligned):
"""Emit the zip function for a given number of rows and row size leftovers."""
if leftovers < 0 or leftovers > 7:
raise ConfigurationError('Leftovers should be between 0 and 7 inclusive.')
if zip_lanes < 1 or zip_lanes > 4:
raise ConfigurationError('Zip_lanes should should be 1, 2, 3 or 4.')
name = BuildName(zip_lanes, leftovers, aligned)
emitter.EmitFunctionBeginA(
name, [['const std::uint8_t*', 'source'], ['std::int32_t', 'count'],
['std::int32_t', 'stride'], ['std::uint8_t*', 'destination'],
['std::int32_t', 'multiplicative_offset'],
['std::int32_t', 'additive_offset']], 'void')
emitter.EmitAssert('count %% 8 == %d' % leftovers)
emitter.EmitAssert('count <= 2048')
emitter.EmitAssert('count >= 8')
emitter.EmitAssert('reinterpret_cast<std::uintptr_t>(destination) % 8 == 0')
if aligned:
emitter.EmitAssert('reinterpret_cast<std::uintptr_t>(source) % 8 == 0')
if zip_lanes > 1:
emitter.EmitAssert('stride % 8 == 0')
emitter.EmitAsmBegin()
registers = neon_emitter.NeonRegisters()
count = registers.MapParameter('count')
output_address = registers.MapParameter('destination')
lanes = GenerateZipLanes(emitter, registers, zip_lanes,
registers.MapParameter('source'),
registers.MapParameter('stride'))
if leftovers:
emitter.EmitSub(count, count, emitter.ImmediateConstant(leftovers))
GenerateClearAggregators(emitter, lanes)
emitter.EmitNewline()
emitter.EmitNumericalLabel(1)
emitter.EmitSubs(count, count, emitter.ImmediateConstant(8))
GenerateLoadAggregateStore(emitter, lanes, output_address, 64 if aligned else
None)
emitter.EmitNewline()
emitter.EmitBneBack(1)
if leftovers:
GenerateLeftoverLoadAggregateStore(emitter, leftovers, lanes,
output_address)
GenerateAggregatorReduction(emitter, registers, lanes, output_address,
registers.MapParameter('multiplicative_offset'),
registers.MapParameter('additive_offset'))
emitter.EmitAsmEnd(registers.MappedParameters(), [],
registers.Clobbers() + ['cc', 'memory'])
emitter.EmitFunctionEnd()
def GenerateFunctions(emitter):
for aligned in [True, False]:
for lanes in range(1, 5):
for leftovers in range(0, 8):
GenerateZipNx8(emitter, lanes, leftovers, aligned)
emitter.EmitNewline()