// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// single_thread_gemm.h: Single-threaded GEMM implementation.
// This is a good place to start reading code, as it shows the overall
// structure of a GEMM and is much simpler than multi_thread_gemm.h.
#ifndef GEMMLOWP_INTERNAL_SINGLE_THREAD_GEMM_H_
#define GEMMLOWP_INTERNAL_SINGLE_THREAD_GEMM_H_
#include <cassert>
#include "../public/map.h"
#include "allocator.h"
#include "compute.h"
#include "kernel.h"
#include "pack.h"
#include "unpack.h"
#ifdef GEMMLOWP_PROFILING_SIZES
#ifndef GEMMLOWP_PROFILING
#error GEMMLOWP_PROFILING_SIZES without GEMMLOWP_PROFILING
#endif
#include <string>
#include <unordered_map>
#endif
namespace gemmlowp {
class SingleThreadGemmContext {
public:
Allocator* allocator() { return &allocator_; }
void set_l1_bytes_to_use(int n) { l1_bytes_to_use_ = n; }
void set_l2_bytes_to_use(int n) { l2_bytes_to_use_ = n; }
void set_l2_rhs_factor(float n) { l2_rhs_factor_ = n; }
int l1_bytes_to_use() const { return l1_bytes_to_use_; }
int l2_bytes_to_use() const { return l2_bytes_to_use_; }
float l2_rhs_factor() const { return l2_rhs_factor_; }
protected:
Allocator allocator_;
// The cache configurationt to use.
int l1_bytes_to_use_ = kDefaultL1CacheSize;
int l2_bytes_to_use_ = kDefaultL2CacheSize;
float l2_rhs_factor_ = kDefaultL2RhsFactor;
};
template <typename KernelFormat, typename InputScalar, typename OutputScalar,
typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder,
MapOrder ResultOrder, typename LhsOffset, typename RhsOffset,
typename OutputPipelineType>
void SingleThreadGemm(SingleThreadGemmContext* context,
const KernelBase& kernel,
const MatrixMap<const InputScalar, LhsOrder>& lhs,
const MatrixMap<const InputScalar, RhsOrder>& rhs,
MatrixMap<OutputScalar, ResultOrder>* result,
const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
const OutputPipelineType& output_pipeline) {
ScopedProfilingLabel label("gemmlowp::SingleThreadGemm");
assert(lhs.cols() == rhs.rows());
int rows = result->rows();
int cols = result->cols();
int depth = lhs.cols();
// zero sizes should have been caught earlier and early-returned.
assert(rows > 0);
assert(cols > 0);
assert(depth > 0);
// The case of rows<cols should have been caught earlier and transposed.
assert(rows >= cols);
Allocator* allocator = context->allocator();
BlockParams block_params;
block_params.Init<KernelFormat>(
rows, cols, depth, 1, context->l1_bytes_to_use(),
context->l2_bytes_to_use(), context->l2_rhs_factor());
#ifdef GEMMLOWP_PROFILING_SIZES
// Using a static map of label strings. Not reentrant at all!
static std::unordered_map<std::uint64_t, std::string> labels_map;
std::uint64_t sizes_hash = static_cast<std::uint64_t>(rows) ^
(static_cast<std::uint64_t>(depth) << 16) ^
(static_cast<std::uint64_t>(cols) << 32);
if (!labels_map.count(sizes_hash)) {
char label[256];
snprintf(label, sizeof(label),
"(rows = %d, depth = %d, cols = %d, l2_rows = %d, l2_depth = %d, "
"l2_cols = %d, l1_rows = %d, l1_depth = %d, l1_cols = %d)",
rows, depth, cols, block_params.l2_rows, block_params.l2_depth,
block_params.l2_cols, block_params.l1_rows, block_params.l1_depth,
block_params.l1_cols);
labels_map[sizes_hash] = label;
}
ScopedProfilingLabel size_label(labels_map[sizes_hash].c_str());
#endif
PackedSideBlock<typename KernelFormat::Lhs> packed_lhs(Side::Lhs, allocator,
block_params);
PackedSideBlock<typename KernelFormat::Rhs> packed_rhs(Side::Rhs, allocator,
block_params);
PackedResult packed_result(allocator, block_params);
allocator->Commit();
const bool pack_rhs_once = block_params.l2_cols >= cols;
if (pack_rhs_once) {
PackRhs(&packed_rhs, rhs);
}
for (int r = 0; r < rows; r += block_params.l2_rows) {
int rs = std::min(block_params.l2_rows, rows - r);
PackLhs(&packed_lhs, lhs.block(r, 0, rs, depth));
for (int c = 0; c < cols; c += block_params.l2_cols) {
int cs = std::min(block_params.l2_cols, cols - c);
if (!pack_rhs_once) {
PackRhs(&packed_rhs, rhs.block(0, c, depth, cs));
}
Compute(kernel, block_params, &packed_result, packed_lhs, packed_rhs,
depth);
UnpackResult<KernelFormat>(
result, MatrixBlockBounds(r, c, rs, cs), packed_result, depth,
packed_lhs.sums_of_each_slice(), packed_rhs.sums_of_each_slice(),
lhs_offset.block(r, rs), rhs_offset.block(c, cs), output_pipeline);
}
}
allocator->Decommit();
}
} // namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_SINGLE_THREAD_GEMM_H_