/*
* Read a file and write the contents to stdout. If a given read takes
* longer than 'max_us' time, then we schedule a new thread to handle
* the next read. This avoids the coordinated omission problem, where
* one request appears to take a long time, but in reality a lot of
* requests would have been slow, but we don't notice since new submissions
* are not being issued if just 1 is held up.
*
* One test case:
*
* $ time (./read-to-pipe-async -f randfile.gz | gzip -dc > outfile; sync)
*
* This will read randfile.gz and log the latencies of doing so, while
* piping the output to gzip to decompress it. Any latencies over max_us
* are logged when they happen, and latency buckets are displayed at the
* end of the run
*
* gcc -Wall -g -O2 -o read-to-pipe-async read-to-pipe-async.c -lpthread
*
* Copyright (C) 2016 Jens Axboe
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <inttypes.h>
#include <string.h>
#include <pthread.h>
#include <errno.h>
#include <assert.h>
#include "../flist.h"
static int bs = 4096;
static int max_us = 10000;
static char *file;
static int separate_writer = 1;
#define PLAT_BITS 8
#define PLAT_VAL (1 << PLAT_BITS)
#define PLAT_GROUP_NR 19
#define PLAT_NR (PLAT_GROUP_NR * PLAT_VAL)
#define PLAT_LIST_MAX 20
struct stats {
unsigned int plat[PLAT_NR];
unsigned int nr_samples;
unsigned int max;
unsigned int min;
unsigned int over;
};
static double plist[PLAT_LIST_MAX] = { 50.0, 75.0, 90.0, 95.0, 99.0, 99.5, 99.9, 99.99, 99.999, 99.9999, };
struct thread_data {
int exit;
int done;
pthread_mutex_t lock;
pthread_cond_t cond;
pthread_mutex_t done_lock;
pthread_cond_t done_cond;
pthread_t thread;
};
struct writer_thread {
struct flist_head list;
struct flist_head done_list;
struct stats s;
struct thread_data thread;
};
struct reader_thread {
struct flist_head list;
struct flist_head done_list;
int started;
int busy;
int write_seq;
struct stats s;
struct thread_data thread;
};
struct work_item {
struct flist_head list;
void *buf;
size_t buf_size;
off_t off;
int fd;
int seq;
struct writer_thread *writer;
struct reader_thread *reader;
pthread_mutex_t lock;
pthread_cond_t cond;
pthread_t thread;
};
static struct reader_thread reader_thread;
static struct writer_thread writer_thread;
uint64_t utime_since(const struct timeval *s, const struct timeval *e)
{
long sec, usec;
uint64_t ret;
sec = e->tv_sec - s->tv_sec;
usec = e->tv_usec - s->tv_usec;
if (sec > 0 && usec < 0) {
sec--;
usec += 1000000;
}
if (sec < 0 || (sec == 0 && usec < 0))
return 0;
ret = sec * 1000000ULL + usec;
return ret;
}
static struct work_item *find_seq(struct writer_thread *w, unsigned int seq)
{
struct work_item *work;
struct flist_head *entry;
if (flist_empty(&w->list))
return NULL;
flist_for_each(entry, &w->list) {
work = flist_entry(entry, struct work_item, list);
if (work->seq == seq)
return work;
}
return NULL;
}
static unsigned int plat_val_to_idx(unsigned int val)
{
unsigned int msb, error_bits, base, offset;
/* Find MSB starting from bit 0 */
if (val == 0)
msb = 0;
else
msb = sizeof(val)*8 - __builtin_clz(val) - 1;
/*
* MSB <= (PLAT_BITS-1), cannot be rounded off. Use
* all bits of the sample as index
*/
if (msb <= PLAT_BITS)
return val;
/* Compute the number of error bits to discard*/
error_bits = msb - PLAT_BITS;
/* Compute the number of buckets before the group */
base = (error_bits + 1) << PLAT_BITS;
/*
* Discard the error bits and apply the mask to find the
* index for the buckets in the group
*/
offset = (PLAT_VAL - 1) & (val >> error_bits);
/* Make sure the index does not exceed (array size - 1) */
return (base + offset) < (PLAT_NR - 1) ?
(base + offset) : (PLAT_NR - 1);
}
/*
* Convert the given index of the bucket array to the value
* represented by the bucket
*/
static unsigned int plat_idx_to_val(unsigned int idx)
{
unsigned int error_bits, k, base;
assert(idx < PLAT_NR);
/* MSB <= (PLAT_BITS-1), cannot be rounded off. Use
* all bits of the sample as index */
if (idx < (PLAT_VAL << 1))
return idx;
/* Find the group and compute the minimum value of that group */
error_bits = (idx >> PLAT_BITS) - 1;
base = 1 << (error_bits + PLAT_BITS);
/* Find its bucket number of the group */
k = idx % PLAT_VAL;
/* Return the mean of the range of the bucket */
return base + ((k + 0.5) * (1 << error_bits));
}
static void add_lat(struct stats *s, unsigned int us, const char *name)
{
int lat_index = 0;
if (us > s->max)
s->max = us;
if (us < s->min)
s->min = us;
if (us > max_us) {
fprintf(stderr, "%s latency=%u usec\n", name, us);
s->over++;
}
lat_index = plat_val_to_idx(us);
__sync_fetch_and_add(&s->plat[lat_index], 1);
__sync_fetch_and_add(&s->nr_samples, 1);
}
static int write_work(struct work_item *work)
{
struct timeval s, e;
ssize_t ret;
gettimeofday(&s, NULL);
ret = write(STDOUT_FILENO, work->buf, work->buf_size);
gettimeofday(&e, NULL);
assert(ret == work->buf_size);
add_lat(&work->writer->s, utime_since(&s, &e), "write");
return work->seq + 1;
}
static void thread_exiting(struct thread_data *thread)
{
__sync_fetch_and_add(&thread->done, 1);
pthread_cond_signal(&thread->done_cond);
}
static void *writer_fn(void *data)
{
struct writer_thread *wt = data;
struct work_item *work;
unsigned int seq = 1;
work = NULL;
while (!wt->thread.exit || !flist_empty(&wt->list)) {
pthread_mutex_lock(&wt->thread.lock);
if (work) {
flist_add_tail(&work->list, &wt->done_list);
work = NULL;
}
work = find_seq(wt, seq);
if (work)
flist_del_init(&work->list);
else
pthread_cond_wait(&wt->thread.cond, &wt->thread.lock);
pthread_mutex_unlock(&wt->thread.lock);
if (work)
seq = write_work(work);
}
thread_exiting(&wt->thread);
return NULL;
}
static void reader_work(struct work_item *work)
{
struct timeval s, e;
ssize_t ret;
size_t left;
void *buf;
off_t off;
gettimeofday(&s, NULL);
left = work->buf_size;
buf = work->buf;
off = work->off;
while (left) {
ret = pread(work->fd, buf, left, off);
if (!ret) {
fprintf(stderr, "zero read\n");
break;
} else if (ret < 0) {
fprintf(stderr, "errno=%d\n", errno);
break;
}
left -= ret;
off += ret;
buf += ret;
}
gettimeofday(&e, NULL);
add_lat(&work->reader->s, utime_since(&s, &e), "read");
pthread_cond_signal(&work->cond);
if (separate_writer) {
pthread_mutex_lock(&work->writer->thread.lock);
flist_add_tail(&work->list, &work->writer->list);
pthread_mutex_unlock(&work->writer->thread.lock);
pthread_cond_signal(&work->writer->thread.cond);
} else {
struct reader_thread *rt = work->reader;
struct work_item *next = NULL;
struct flist_head *entry;
/*
* Write current work if it matches in sequence.
*/
if (work->seq == rt->write_seq)
goto write_it;
pthread_mutex_lock(&rt->thread.lock);
flist_add_tail(&work->list, &rt->done_list);
/*
* See if the next work item is here, if so, write it
*/
work = NULL;
flist_for_each(entry, &rt->done_list) {
next = flist_entry(entry, struct work_item, list);
if (next->seq == rt->write_seq) {
work = next;
flist_del(&work->list);
break;
}
}
pthread_mutex_unlock(&rt->thread.lock);
if (work) {
write_it:
write_work(work);
__sync_fetch_and_add(&rt->write_seq, 1);
}
}
}
static void *reader_one_off(void *data)
{
reader_work(data);
return NULL;
}
static void *reader_fn(void *data)
{
struct reader_thread *rt = data;
struct work_item *work;
while (!rt->thread.exit || !flist_empty(&rt->list)) {
work = NULL;
pthread_mutex_lock(&rt->thread.lock);
if (!flist_empty(&rt->list)) {
work = flist_first_entry(&rt->list, struct work_item, list);
flist_del_init(&work->list);
} else
pthread_cond_wait(&rt->thread.cond, &rt->thread.lock);
pthread_mutex_unlock(&rt->thread.lock);
if (work) {
__sync_fetch_and_add(&rt->busy, 1);
reader_work(work);
__sync_fetch_and_sub(&rt->busy, 1);
}
}
thread_exiting(&rt->thread);
return NULL;
}
static void queue_work(struct reader_thread *rt, struct work_item *work)
{
if (!rt->started) {
pthread_mutex_lock(&rt->thread.lock);
flist_add_tail(&work->list, &rt->list);
pthread_mutex_unlock(&rt->thread.lock);
rt->started = 1;
pthread_create(&rt->thread.thread, NULL, reader_fn, rt);
} else if (!rt->busy && !pthread_mutex_trylock(&rt->thread.lock)) {
flist_add_tail(&work->list, &rt->list);
pthread_mutex_unlock(&rt->thread.lock);
pthread_cond_signal(&rt->thread.cond);
} else {
int ret = pthread_create(&work->thread, NULL, reader_one_off, work);
if (ret)
fprintf(stderr, "pthread_create=%d\n", ret);
else
pthread_detach(work->thread);
}
}
static unsigned int calc_percentiles(unsigned int *io_u_plat, unsigned long nr,
unsigned int **output)
{
unsigned long sum = 0;
unsigned int len, i, j = 0;
unsigned int oval_len = 0;
unsigned int *ovals = NULL;
int is_last;
len = 0;
while (len < PLAT_LIST_MAX && plist[len] != 0.0)
len++;
if (!len)
return 0;
/*
* Calculate bucket values, note down max and min values
*/
is_last = 0;
for (i = 0; i < PLAT_NR && !is_last; i++) {
sum += io_u_plat[i];
while (sum >= (plist[j] / 100.0 * nr)) {
assert(plist[j] <= 100.0);
if (j == oval_len) {
oval_len += 100;
ovals = realloc(ovals, oval_len * sizeof(unsigned int));
}
ovals[j] = plat_idx_to_val(i);
is_last = (j == len - 1);
if (is_last)
break;
j++;
}
}
*output = ovals;
return len;
}
static void show_latencies(struct stats *s, const char *msg)
{
unsigned int *ovals = NULL;
unsigned int len, i;
len = calc_percentiles(s->plat, s->nr_samples, &ovals);
if (len) {
fprintf(stderr, "Latency percentiles (usec) (%s)\n", msg);
for (i = 0; i < len; i++)
fprintf(stderr, "\t%2.4fth: %u\n", plist[i], ovals[i]);
}
if (ovals)
free(ovals);
fprintf(stderr, "\tOver=%u, min=%u, max=%u\n", s->over, s->min, s->max);
}
static void init_thread(struct thread_data *thread)
{
pthread_cond_init(&thread->cond, NULL);
pthread_cond_init(&thread->done_cond, NULL);
pthread_mutex_init(&thread->lock, NULL);
pthread_mutex_init(&thread->done_lock, NULL);
thread->exit = 0;
}
static void exit_thread(struct thread_data *thread,
void fn(struct writer_thread *),
struct writer_thread *wt)
{
__sync_fetch_and_add(&thread->exit, 1);
pthread_cond_signal(&thread->cond);
while (!thread->done) {
pthread_mutex_lock(&thread->done_lock);
if (fn) {
struct timeval tv;
struct timespec ts;
gettimeofday(&tv, NULL);
ts.tv_sec = tv.tv_sec + 1;
ts.tv_nsec = tv.tv_usec * 1000ULL;
pthread_cond_timedwait(&thread->done_cond, &thread->done_lock, &ts);
fn(wt);
} else
pthread_cond_wait(&thread->done_cond, &thread->done_lock);
pthread_mutex_unlock(&thread->done_lock);
}
}
static int usage(char *argv[])
{
fprintf(stderr, "%s: [-b blocksize] [-t max usec] [-w separate writer] -f file\n", argv[0]);
return 1;
}
static int parse_options(int argc, char *argv[])
{
int c;
while ((c = getopt(argc, argv, "f:b:t:w:")) != -1) {
switch (c) {
case 'f':
file = strdup(optarg);
break;
case 'b':
bs = atoi(optarg);
break;
case 't':
max_us = atoi(optarg);
break;
case 'w':
separate_writer = atoi(optarg);
if (!separate_writer)
fprintf(stderr, "inline writing is broken\n");
break;
case '?':
default:
return usage(argv);
}
}
if (!file)
return usage(argv);
return 0;
}
static void prune_done_entries(struct writer_thread *wt)
{
FLIST_HEAD(list);
if (flist_empty(&wt->done_list))
return;
if (pthread_mutex_trylock(&wt->thread.lock))
return;
if (!flist_empty(&wt->done_list))
flist_splice_init(&wt->done_list, &list);
pthread_mutex_unlock(&wt->thread.lock);
while (!flist_empty(&list)) {
struct work_item *work;
work = flist_first_entry(&list, struct work_item, list);
flist_del(&work->list);
pthread_cond_destroy(&work->cond);
pthread_mutex_destroy(&work->lock);
free(work->buf);
free(work);
}
}
int main(int argc, char *argv[])
{
struct timeval s, re, we;
struct reader_thread *rt;
struct writer_thread *wt;
unsigned long rate;
struct stat sb;
size_t bytes;
off_t off;
int fd, seq;
if (parse_options(argc, argv))
return 1;
fd = open(file, O_RDONLY);
if (fd < 0) {
perror("open");
return 2;
}
if (fstat(fd, &sb) < 0) {
perror("stat");
return 3;
}
wt = &writer_thread;
init_thread(&wt->thread);
INIT_FLIST_HEAD(&wt->list);
INIT_FLIST_HEAD(&wt->done_list);
wt->s.max = 0;
wt->s.min = -1U;
pthread_create(&wt->thread.thread, NULL, writer_fn, wt);
rt = &reader_thread;
init_thread(&rt->thread);
INIT_FLIST_HEAD(&rt->list);
INIT_FLIST_HEAD(&rt->done_list);
rt->s.max = 0;
rt->s.min = -1U;
rt->write_seq = 1;
off = 0;
seq = 0;
bytes = 0;
gettimeofday(&s, NULL);
while (sb.st_size) {
struct work_item *work;
size_t this_len;
struct timespec ts;
struct timeval tv;
prune_done_entries(wt);
this_len = sb.st_size;
if (this_len > bs)
this_len = bs;
work = calloc(1, sizeof(*work));
work->buf = malloc(this_len);
work->buf_size = this_len;
work->off = off;
work->fd = fd;
work->seq = ++seq;
work->writer = wt;
work->reader = rt;
pthread_cond_init(&work->cond, NULL);
pthread_mutex_init(&work->lock, NULL);
queue_work(rt, work);
gettimeofday(&tv, NULL);
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000ULL;
ts.tv_nsec += max_us * 1000ULL;
if (ts.tv_nsec >= 1000000000ULL) {
ts.tv_nsec -= 1000000000ULL;
ts.tv_sec++;
}
pthread_mutex_lock(&work->lock);
pthread_cond_timedwait(&work->cond, &work->lock, &ts);
pthread_mutex_unlock(&work->lock);
off += this_len;
sb.st_size -= this_len;
bytes += this_len;
}
exit_thread(&rt->thread, NULL, NULL);
gettimeofday(&re, NULL);
exit_thread(&wt->thread, prune_done_entries, wt);
gettimeofday(&we, NULL);
show_latencies(&rt->s, "READERS");
show_latencies(&wt->s, "WRITERS");
bytes /= 1024;
rate = (bytes * 1000UL * 1000UL) / utime_since(&s, &re);
fprintf(stderr, "Read rate (KiB/sec) : %lu\n", rate);
rate = (bytes * 1000UL * 1000UL) / utime_since(&s, &we);
fprintf(stderr, "Write rate (KiB/sec): %lu\n", rate);
close(fd);
return 0;
}