/*-------------------------------------------------------------------------
* drawElements Quality Program Random Shader Generator
* ----------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Expressions.
*//*--------------------------------------------------------------------*/
#include "rsgExpression.hpp"
#include "rsgVariableManager.hpp"
#include "rsgBinaryOps.hpp"
#include "rsgBuiltinFunctions.hpp"
#include "rsgUtils.hpp"
#include "deMath.h"
using std::vector;
namespace rsg
{
namespace
{
class IsReadableEntry
{
public:
typedef ValueEntryIterator<IsReadableEntry> Iterator;
IsReadableEntry (deUint32 exprFlags)
: m_exprFlags(exprFlags)
{
}
bool operator() (const ValueEntry* entry) const
{
if ((m_exprFlags & CONST_EXPR) && (entry->getVariable()->getStorage() != Variable::STORAGE_CONST))
return false;
return true;
}
private:
deUint32 m_exprFlags;
};
class IsReadableIntersectingEntry : public IsReadableEntry
{
public:
typedef ValueEntryIterator<IsReadableIntersectingEntry> Iterator;
IsReadableIntersectingEntry (ConstValueRangeAccess valueRange, deUint32 exprFlags)
: IsReadableEntry (exprFlags)
, m_valueRange (valueRange)
{
}
bool operator() (const ValueEntry* entry) const
{
if (!IsReadableEntry::operator()(entry))
return false;
if (entry->getValueRange().getType() != m_valueRange.getType())
return false;
if (!entry->getValueRange().intersects(m_valueRange))
return false;
return true;
}
private:
ConstValueRangeAccess m_valueRange;
};
class IsWritableIntersectingEntry : public IsWritableEntry
{
public:
typedef ValueEntryIterator<IsWritableIntersectingEntry> Iterator;
IsWritableIntersectingEntry (ConstValueRangeAccess valueRange)
: m_valueRange(valueRange)
{
}
bool operator() (const ValueEntry* entry) const
{
return IsWritableEntry::operator()(entry) &&
entry->getVariable()->getType() == m_valueRange.getType() &&
entry->getValueRange().intersects(m_valueRange);
}
private:
ConstValueRangeAccess m_valueRange;
};
class IsWritableSupersetEntry : public IsWritableEntry
{
public:
typedef ValueEntryIterator<IsWritableSupersetEntry> Iterator;
IsWritableSupersetEntry (ConstValueRangeAccess valueRange)
: m_valueRange(valueRange)
{
}
bool operator() (const ValueEntry* entry) const
{
return IsWritableEntry()(entry) &&
entry->getVariable()->getType() == m_valueRange.getType() &&
entry->getValueRange().isSupersetOf(m_valueRange);
}
private:
ConstValueRangeAccess m_valueRange;
};
class IsSamplerEntry
{
public:
typedef ValueEntryIterator<IsSamplerEntry> Iterator;
IsSamplerEntry (VariableType::Type type)
: m_type(type)
{
DE_ASSERT(m_type == VariableType::TYPE_SAMPLER_2D || m_type == VariableType::TYPE_SAMPLER_CUBE);
}
bool operator() (const ValueEntry* entry) const
{
if (entry->getVariable()->getType() == VariableType(m_type, 1))
{
DE_ASSERT(entry->getVariable()->getStorage() == Variable::STORAGE_UNIFORM);
return true;
}
else
return false;
}
private:
VariableType::Type m_type;
};
inline bool getWeightedBool (de::Random& random, float trueWeight)
{
DE_ASSERT(de::inRange<float>(trueWeight, 0.0f, 1.0f));
return (random.getFloat() < trueWeight);
}
void computeRandomValueRangeForInfElements (GeneratorState& state, ValueRangeAccess valueRange)
{
const VariableType& type = valueRange.getType();
de::Random& rnd = state.getRandom();
switch (type.getBaseType())
{
case VariableType::TYPE_BOOL:
// No need to handle bool as it will be false, true
break;
case VariableType::TYPE_INT:
for (int ndx = 0; ndx < type.getNumElements(); ndx++)
{
if (valueRange.getMin().component(ndx).asScalar() != Scalar::min<int>() ||
valueRange.getMax().component(ndx).asScalar() != Scalar::max<int>())
continue;
const int minIntVal = -16;
const int maxIntVal = 16;
const int maxRangeLen = maxIntVal - minIntVal;
int rangeLen = rnd.getInt(0, maxRangeLen);
int minVal = minIntVal + rnd.getInt(0, maxRangeLen-rangeLen);
int maxVal = minVal + rangeLen;
valueRange.getMin().component(ndx).asInt() = minVal;
valueRange.getMax().component(ndx).asInt() = maxVal;
}
break;
case VariableType::TYPE_FLOAT:
for (int ndx = 0; ndx < type.getNumElements(); ndx++)
{
if (valueRange.getMin().component(ndx).asScalar() != Scalar::min<float>() ||
valueRange.getMax().component(ndx).asScalar() != Scalar::max<float>())
continue;
const float step = 0.1f;
const int maxSteps = 320;
const float minFloatVal = -16.0f;
int rangeLen = rnd.getInt(0, maxSteps);
int minStep = rnd.getInt(0, maxSteps-rangeLen);
float minVal = minFloatVal + step*(float)minStep;
float maxVal = minVal + step*(float)rangeLen;
valueRange.getMin().component(ndx).asFloat() = minVal;
valueRange.getMax().component(ndx).asFloat() = maxVal;
}
break;
default:
DE_ASSERT(DE_FALSE);
throw Exception("computeRandomValueRangeForInfElements(): unsupported type");
}
}
void setInfiniteRange (ValueRangeAccess valueRange)
{
const VariableType& type = valueRange.getType();
switch (type.getBaseType())
{
case VariableType::TYPE_BOOL:
for (int ndx = 0; ndx < type.getNumElements(); ndx++)
{
valueRange.getMin().component(ndx) = Scalar::min<bool>();
valueRange.getMax().component(ndx) = Scalar::max<bool>();
}
break;
case VariableType::TYPE_INT:
for (int ndx = 0; ndx < type.getNumElements(); ndx++)
{
valueRange.getMin().component(ndx) = Scalar::min<int>();
valueRange.getMax().component(ndx) = Scalar::max<int>();
}
break;
case VariableType::TYPE_FLOAT:
for (int ndx = 0; ndx < type.getNumElements(); ndx++)
{
valueRange.getMin().component(ndx) = Scalar::min<float>();
valueRange.getMax().component(ndx) = Scalar::max<float>();
}
break;
default:
DE_ASSERT(DE_FALSE);
throw Exception("setInfiniteRange(): unsupported type");
}
}
bool canAllocateVariable (const GeneratorState& state, const VariableType& type)
{
DE_ASSERT(!type.isVoid());
if (state.getExpressionFlags() & NO_VAR_ALLOCATION)
return false;
if (state.getVariableManager().getNumAllocatedScalars() + type.getScalarSize() > state.getShaderParameters().maxCombinedVariableScalars)
return false;
return true;
}
template <class T> float getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange) { return T::getWeight(state, valueRange); }
template <class T> Expression* create (GeneratorState& state, ConstValueRangeAccess valueRange) { return new T(state, valueRange); }
struct ExpressionSpec
{
float (*getWeight) (const GeneratorState& state, ConstValueRangeAccess valueRange);
Expression* (*create) (GeneratorState& state, ConstValueRangeAccess valueRange);
};
static const ExpressionSpec s_expressionSpecs[] =
{
{ getWeight<FloatLiteral>, create<FloatLiteral> },
{ getWeight<IntLiteral>, create<IntLiteral> },
{ getWeight<BoolLiteral>, create<BoolLiteral> },
{ getWeight<ConstructorOp>, create<ConstructorOp> },
{ getWeight<AssignOp>, create<AssignOp> },
{ getWeight<VariableRead>, create<VariableRead> },
{ getWeight<MulOp>, create<MulOp> },
{ getWeight<AddOp>, create<AddOp> },
{ getWeight<SubOp>, create<SubOp> },
{ getWeight<LessThanOp>, create<LessThanOp> },
{ getWeight<LessOrEqualOp>, create<LessOrEqualOp> },
{ getWeight<GreaterThanOp>, create<GreaterThanOp> },
{ getWeight<GreaterOrEqualOp>, create<GreaterOrEqualOp> },
{ getWeight<EqualOp>, create<EqualOp> },
{ getWeight<NotEqualOp>, create<NotEqualOp> },
{ getWeight<SwizzleOp>, create<SwizzleOp> },
{ getWeight<SinOp>, create<SinOp> },
{ getWeight<CosOp>, create<CosOp> },
{ getWeight<TanOp>, create<TanOp> },
{ getWeight<AsinOp>, create<AsinOp> },
{ getWeight<AcosOp>, create<AcosOp> },
{ getWeight<AtanOp>, create<AtanOp> },
{ getWeight<ExpOp>, create<ExpOp> },
{ getWeight<LogOp>, create<LogOp> },
{ getWeight<Exp2Op>, create<Exp2Op> },
{ getWeight<Log2Op>, create<Log2Op> },
{ getWeight<SqrtOp>, create<SqrtOp> },
{ getWeight<InvSqrtOp>, create<InvSqrtOp> },
{ getWeight<ParenOp>, create<ParenOp> },
{ getWeight<TexLookup>, create<TexLookup> }
};
static const ExpressionSpec s_lvalueSpecs[] =
{
{ getWeight<VariableWrite>, create<VariableWrite> }
};
#if !defined(DE_MAX)
# define DE_MAX(a, b) ((b) > (a) ? (b) : (a))
#endif
enum
{
MAX_EXPRESSION_SPECS = (int)DE_MAX(DE_LENGTH_OF_ARRAY(s_expressionSpecs), DE_LENGTH_OF_ARRAY(s_lvalueSpecs))
};
const ExpressionSpec* chooseExpression (GeneratorState& state, const ExpressionSpec* specs, int numSpecs, ConstValueRangeAccess valueRange)
{
float weights[MAX_EXPRESSION_SPECS];
DE_ASSERT(numSpecs <= (int)DE_LENGTH_OF_ARRAY(weights));
// Compute weights
for (int ndx = 0; ndx < numSpecs; ndx++)
weights[ndx] = specs[ndx].getWeight(state, valueRange);
// Choose
return &state.getRandom().chooseWeighted<const ExpressionSpec&>(specs, specs+numSpecs, weights);
}
} // anonymous
Expression::~Expression (void)
{
}
Expression* Expression::createRandom (GeneratorState& state, ConstValueRangeAccess valueRange)
{
return chooseExpression(state, s_expressionSpecs, (int)DE_LENGTH_OF_ARRAY(s_expressionSpecs), valueRange)->create(state, valueRange);
}
Expression* Expression::createRandomLValue (GeneratorState& state, ConstValueRangeAccess valueRange)
{
return chooseExpression(state, s_lvalueSpecs, (int)DE_LENGTH_OF_ARRAY(s_lvalueSpecs), valueRange)->create(state, valueRange);
}
FloatLiteral::FloatLiteral (GeneratorState& state, ConstValueRangeAccess valueRange)
: m_value(VariableType::getScalarType(VariableType::TYPE_FLOAT))
{
float minVal = -10.0f;
float maxVal = +10.0f;
float step = 0.25f;
if (valueRange.getType() == VariableType(VariableType::TYPE_FLOAT, 1))
{
minVal = valueRange.getMin().component(0).asFloat();
maxVal = valueRange.getMax().component(0).asFloat();
if (Scalar::min<float>() == minVal)
minVal = -10.0f;
if (Scalar::max<float>() == maxVal)
maxVal = +10.0f;
}
int numSteps = (int)((maxVal-minVal)/step) + 1;
const float value = deFloatClamp(minVal + step*(float)state.getRandom().getInt(0, numSteps), minVal, maxVal);
ExecValueAccess access = m_value.getValue(VariableType::getScalarType(VariableType::TYPE_FLOAT));
for (int ndx = 0; ndx < EXEC_VEC_WIDTH; ndx++)
access.asFloat(ndx) = value;
}
float FloatLiteral::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
DE_UNREF(state);
const VariableType& type = valueRange.getType();
if (type == VariableType(VariableType::TYPE_FLOAT, 1))
{
float minVal = valueRange.getMin().asFloat();
float maxVal = valueRange.getMax().asFloat();
if (Scalar::min<float>() == minVal && Scalar::max<float>() == maxVal)
return 0.1f;
// Weight based on value range length
float rangeLength = maxVal - minVal;
DE_ASSERT(rangeLength >= 0.0f);
return deFloatMax(0.1f, 1.0f - rangeLength);
}
else if (type.isVoid())
return unusedValueWeight;
else
return 0.0f;
}
void FloatLiteral::tokenize (GeneratorState& state, TokenStream& str) const
{
DE_UNREF(state);
str << Token(m_value.getValue(VariableType::getScalarType(VariableType::TYPE_FLOAT)).asFloat(0));
}
IntLiteral::IntLiteral (GeneratorState& state, ConstValueRangeAccess valueRange)
: m_value(VariableType::getScalarType(VariableType::TYPE_INT))
{
int minVal = -16;
int maxVal = +16;
if (valueRange.getType() == VariableType(VariableType::TYPE_INT, 1))
{
minVal = valueRange.getMin().component(0).asInt();
maxVal = valueRange.getMax().component(0).asInt();
if (Scalar::min<int>() == minVal)
minVal = -16;
if (Scalar::max<int>() == maxVal)
maxVal = 16;
}
int value = state.getRandom().getInt(minVal, maxVal);
ExecValueAccess access = m_value.getValue(VariableType::getScalarType(VariableType::TYPE_INT));
for (int ndx = 0; ndx < EXEC_VEC_WIDTH; ndx++)
access.asInt(ndx) = value;
}
float IntLiteral::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
DE_UNREF(state);
const VariableType& type = valueRange.getType();
if (type == VariableType(VariableType::TYPE_INT, 1))
{
int minVal = valueRange.getMin().asInt();
int maxVal = valueRange.getMax().asInt();
if (Scalar::min<int>() == minVal && Scalar::max<int>() == maxVal)
return 0.1f;
int rangeLength = maxVal - minVal;
DE_ASSERT(rangeLength >= 0);
return deFloatMax(0.1f, 1.0f - (float)rangeLength/4.0f);
}
else if (type.isVoid())
return unusedValueWeight;
else
return 0.0f;
}
void IntLiteral::tokenize (GeneratorState& state, TokenStream& str) const
{
DE_UNREF(state);
str << Token(m_value.getValue(VariableType::getScalarType(VariableType::TYPE_INT)).asInt(0));
}
BoolLiteral::BoolLiteral (GeneratorState& state, ConstValueRangeAccess valueRange)
: m_value(VariableType::getScalarType(VariableType::TYPE_BOOL))
{
int minVal = 0;
int maxVal = 1;
if (valueRange.getType() == VariableType(VariableType::TYPE_BOOL, 1))
{
minVal = valueRange.getMin().component(0).asBool() ? 1 : 0;
maxVal = valueRange.getMax().component(0).asBool() ? 1 : 0;
}
bool value = state.getRandom().getInt(minVal, maxVal) == 1;
ExecValueAccess access = m_value.getValue(VariableType::getScalarType(VariableType::TYPE_BOOL));
for (int ndx = 0; ndx < EXEC_VEC_WIDTH; ndx++)
access.asBool(ndx) = value;
}
float BoolLiteral::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
DE_UNREF(state);
const VariableType& type = valueRange.getType();
if (type == VariableType(VariableType::TYPE_BOOL, 1))
return 0.5f;
else if (type.isVoid())
return unusedValueWeight;
else
return 0.0f;
}
void BoolLiteral::tokenize (GeneratorState& state, TokenStream& str) const
{
DE_UNREF(state);
str << Token(m_value.getValue(VariableType::getScalarType(VariableType::TYPE_BOOL)).asBool(0));
}
namespace
{
// \note int-bool and float-bool conversions handled in a special way.
template <typename SrcType, typename DstType>
inline DstType convert (SrcType src)
{
if (Scalar::min<SrcType>() == src)
return Scalar::min<DstType>().template as<DstType>();
else if (Scalar::max<SrcType>() == src)
return Scalar::max<DstType>().template as<DstType>();
else
return DstType(src);
}
// According to GLSL ES spec.
template <> inline bool convert<float, bool> (float src) { return src != 0.0f; }
template <> inline bool convert<int, bool> (int src) { return src != 0; }
template <> inline bool convert<bool, bool> (bool src) { return src; }
template <> inline float convert<bool, float> (bool src) { return src ? 1.0f : 0.0f; }
template <> inline int convert<bool, int> (bool src) { return src ? 1 : 0; }
template <> inline int convert<float, int> (float src)
{
if (Scalar::min<float>() == src)
return Scalar::min<int>().as<int>();
else if (Scalar::max<float>() == src)
return Scalar::max<int>().as<int>();
else if (src > 0.0f)
return (int)deFloatFloor(src);
else
return (int)deFloatCeil(src);
}
template <typename SrcType, typename DstType>
inline void convertValueRange (SrcType srcMin, SrcType srcMax, DstType& dstMin, DstType& dstMax)
{
dstMin = convert<SrcType, DstType>(srcMin);
dstMax = convert<SrcType, DstType>(srcMax);
}
template <>
inline void convertValueRange<float, int> (float srcMin, float srcMax, int& dstMin, int& dstMax)
{
if (Scalar::min<float>() == srcMin)
dstMin = Scalar::min<int>().as<int>();
else
dstMin = (int)deFloatCeil(srcMin);
if (Scalar::max<float>() == srcMax)
dstMax = Scalar::max<int>().as<int>();
else
dstMax = (int)deFloatFloor(srcMax);
}
template <>
inline void convertValueRange<float, bool> (float srcMin, float srcMax, bool& dstMin, bool& dstMax)
{
dstMin = srcMin > 0.0f;
dstMax = srcMax > 0.0f;
}
// \todo [pyry] More special cases?
// Returns whether it is possible to convert some SrcType value range to given DstType valueRange
template <typename SrcType, typename DstType>
bool isConversionOk (DstType min, DstType max)
{
SrcType sMin, sMax;
convertValueRange(min, max, sMin, sMax);
return sMin <= sMax &&
de::inRange(convert<SrcType, DstType>(sMin), min, max) &&
de::inRange(convert<SrcType, DstType>(sMax), min, max);
}
// Work-around for non-deterministic float behavior
template <> bool isConversionOk<float, float> (float, float) { return true; }
// \todo [2011-03-26 pyry] Provide this in ValueAccess?
template <typename T> T getValueAccessValue (ConstValueAccess access);
template<> inline float getValueAccessValue<float> (ConstValueAccess access) { return access.asFloat(); }
template<> inline int getValueAccessValue<int> (ConstValueAccess access) { return access.asInt(); }
template<> inline bool getValueAccessValue<bool> (ConstValueAccess access) { return access.asBool(); }
template <typename T> T& getValueAccessValue (ValueAccess access);
template<> inline float& getValueAccessValue<float> (ValueAccess access) { return access.asFloat(); }
template<> inline int& getValueAccessValue<int> (ValueAccess access) { return access.asInt(); }
template<> inline bool& getValueAccessValue<bool> (ValueAccess access) { return access.asBool(); }
template <typename SrcType, typename DstType>
bool isConversionOk (ConstValueRangeAccess valueRange)
{
return isConversionOk<SrcType>(getValueAccessValue<DstType>(valueRange.getMin()), getValueAccessValue<DstType>(valueRange.getMax()));
}
template <typename SrcType, typename DstType>
void convertValueRangeTempl (ConstValueRangeAccess src, ValueRangeAccess dst)
{
DstType dMin, dMax;
convertValueRange(getValueAccessValue<SrcType>(src.getMin()), getValueAccessValue<SrcType>(src.getMax()), dMin, dMax);
getValueAccessValue<DstType>(dst.getMin()) = dMin;
getValueAccessValue<DstType>(dst.getMax()) = dMax;
}
template <typename SrcType, typename DstType>
void convertExecValueTempl (ExecConstValueAccess src, ExecValueAccess dst)
{
for (int ndx = 0; ndx < EXEC_VEC_WIDTH; ndx++)
dst.as<DstType>(ndx) = convert<SrcType, DstType>(src.as<SrcType>(ndx));
}
typedef bool (*IsConversionOkFunc) (ConstValueRangeAccess);
typedef void (*ConvertValueRangeFunc) (ConstValueRangeAccess, ValueRangeAccess);
typedef void (*ConvertExecValueFunc) (ExecConstValueAccess, ExecValueAccess);
inline int getBaseTypeConvNdx (VariableType::Type type)
{
switch (type)
{
case VariableType::TYPE_FLOAT: return 0;
case VariableType::TYPE_INT: return 1;
case VariableType::TYPE_BOOL: return 2;
default: return -1;
}
}
bool isConversionOk (VariableType::Type srcType, VariableType::Type dstType, ConstValueRangeAccess valueRange)
{
// [src][dst]
static const IsConversionOkFunc convTable[3][3] =
{
{ isConversionOk<float, float>, isConversionOk<float, int>, isConversionOk<float, bool> },
{ isConversionOk<int, float>, isConversionOk<int, int>, isConversionOk<int, bool> },
{ isConversionOk<bool, float>, isConversionOk<bool, int>, isConversionOk<bool, bool> }
};
return convTable[getBaseTypeConvNdx(srcType)][getBaseTypeConvNdx(dstType)](valueRange);
}
void convertValueRange (ConstValueRangeAccess src, ValueRangeAccess dst)
{
// [src][dst]
static const ConvertValueRangeFunc convTable[3][3] =
{
{ convertValueRangeTempl<float, float>, convertValueRangeTempl<float, int>, convertValueRangeTempl<float, bool> },
{ convertValueRangeTempl<int, float>, convertValueRangeTempl<int, int>, convertValueRangeTempl<int, bool> },
{ convertValueRangeTempl<bool, float>, convertValueRangeTempl<bool, int>, convertValueRangeTempl<bool, bool> }
};
convTable[getBaseTypeConvNdx(src.getType().getBaseType())][getBaseTypeConvNdx(dst.getType().getBaseType())](src, dst);
}
void convertExecValue (ExecConstValueAccess src, ExecValueAccess dst)
{
// [src][dst]
static const ConvertExecValueFunc convTable[3][3] =
{
{ convertExecValueTempl<float, float>, convertExecValueTempl<float, int>, convertExecValueTempl<float, bool> },
{ convertExecValueTempl<int, float>, convertExecValueTempl<int, int>, convertExecValueTempl<int, bool> },
{ convertExecValueTempl<bool, float>, convertExecValueTempl<bool, int>, convertExecValueTempl<bool, bool> }
};
convTable[getBaseTypeConvNdx(src.getType().getBaseType())][getBaseTypeConvNdx(dst.getType().getBaseType())](src, dst);
}
} // anonymous
ConstructorOp::ConstructorOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: m_valueRange(valueRange)
{
if (valueRange.getType().isVoid())
{
// Use random range
const int maxScalars = 4; // We don't have to be able to assign this value to anywhere
m_valueRange = ValueRange(computeRandomType(state, maxScalars));
computeRandomValueRange(state, m_valueRange.asAccess());
}
// \todo [2011-03-26 pyry] Vector conversions
// int remainingDepth = state.getShaderParameters().maxExpressionDepth - state.getExpressionDepth();
const VariableType& type = m_valueRange.getType();
VariableType::Type baseType = type.getBaseType();
int numScalars = type.getNumElements();
int curScalarNdx = 0;
// \todo [2011-03-26 pyry] Separate op for struct constructors!
DE_ASSERT(type.isFloatOrVec() || type.isIntOrVec() || type.isBoolOrVec());
bool scalarConversions = state.getProgramParameters().useScalarConversions;
while (curScalarNdx < numScalars)
{
ConstValueRangeAccess comp = m_valueRange.asAccess().component(curScalarNdx);
if (scalarConversions)
{
int numInTypes = 0;
VariableType::Type inTypes[3];
if (isConversionOk(VariableType::TYPE_FLOAT, baseType, comp)) inTypes[numInTypes++] = VariableType::TYPE_FLOAT;
if (isConversionOk(VariableType::TYPE_INT, baseType, comp)) inTypes[numInTypes++] = VariableType::TYPE_INT;
if (isConversionOk(VariableType::TYPE_BOOL, baseType, comp)) inTypes[numInTypes++] = VariableType::TYPE_BOOL;
DE_ASSERT(numInTypes > 0); // At least nop conversion should be ok
// Choose random
VariableType::Type inType = state.getRandom().choose<VariableType::Type>(&inTypes[0], &inTypes[0] + numInTypes);
// Compute converted value range
ValueRange inValueRange(VariableType(inType, 1));
convertValueRange(comp, inValueRange);
m_inputValueRanges.push_back(inValueRange);
curScalarNdx += 1;
}
else
{
m_inputValueRanges.push_back(ValueRange(comp));
curScalarNdx += 1;
}
}
}
ConstructorOp::~ConstructorOp (void)
{
for (vector<Expression*>::iterator i = m_inputExpressions.begin(); i != m_inputExpressions.end(); i++)
delete *i;
}
Expression* ConstructorOp::createNextChild (GeneratorState& state)
{
int numChildren = (int)m_inputExpressions.size();
Expression* child = DE_NULL;
// \note Created in reverse order!
if (numChildren < (int)m_inputValueRanges.size())
{
const ValueRange& inValueRange = m_inputValueRanges[m_inputValueRanges.size()-1-numChildren];
child = Expression::createRandom(state, inValueRange);
try
{
m_inputExpressions.push_back(child);
}
catch (const std::exception&)
{
delete child;
throw;
}
}
return child;
}
float ConstructorOp::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (valueRange.getType().isVoid())
return unusedValueWeight;
if (!valueRange.getType().isFloatOrVec() && !valueRange.getType().isIntOrVec() && !valueRange.getType().isBoolOrVec())
return 0.0f;
if (state.getExpressionDepth() + getTypeConstructorDepth(valueRange.getType()) > state.getShaderParameters().maxExpressionDepth)
return 0.0f;
return 1.0f;
}
void ConstructorOp::tokenize (GeneratorState& state, TokenStream& str) const
{
const VariableType& type = m_valueRange.getType();
DE_ASSERT(type.getPrecision() == VariableType::PRECISION_NONE);
type.tokenizeShortType(str);
str << Token::LEFT_PAREN;
for (vector<Expression*>::const_reverse_iterator i = m_inputExpressions.rbegin(); i != m_inputExpressions.rend(); i++)
{
if (i != m_inputExpressions.rbegin())
str << Token::COMMA;
(*i)->tokenize(state, str);
}
str << Token::RIGHT_PAREN;
}
void ConstructorOp::evaluate (ExecutionContext& evalCtx)
{
// Evaluate children
for (vector<Expression*>::reverse_iterator i = m_inputExpressions.rbegin(); i != m_inputExpressions.rend(); i++)
(*i)->evaluate(evalCtx);
// Compute value
const VariableType& type = m_valueRange.getType();
m_value.setStorage(type);
ExecValueAccess dst = m_value.getValue(type);
int curScalarNdx = 0;
for (vector<Expression*>::reverse_iterator i = m_inputExpressions.rbegin(); i != m_inputExpressions.rend(); i++)
{
ExecConstValueAccess src = (*i)->getValue();
for (int elemNdx = 0; elemNdx < src.getType().getNumElements(); elemNdx++)
convertExecValue(src.component(elemNdx), dst.component(curScalarNdx++));
}
}
AssignOp::AssignOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: m_valueRange (valueRange)
, m_lvalueExpr (DE_NULL)
, m_rvalueExpr (DE_NULL)
{
if (m_valueRange.getType().isVoid())
{
// Compute random value range
int maxScalars = state.getShaderParameters().maxCombinedVariableScalars - state.getVariableManager().getNumAllocatedScalars();
bool useRandomRange = !state.getVariableManager().hasEntry<IsWritableEntry>() || ((maxScalars > 0) && getWeightedBool(state.getRandom(), 0.1f));
if (useRandomRange)
{
DE_ASSERT(maxScalars > 0);
m_valueRange = ValueRange(computeRandomType(state, maxScalars));
computeRandomValueRange(state, m_valueRange.asAccess());
}
else
{
// Use value range from random entry
// \todo [2011-02-28 pyry] Give lower weight to entries without range? Choose subtype range?
const ValueEntry* entry = state.getRandom().choose<const ValueEntry*>(state.getVariableManager().getBegin<IsWritableEntry>(), state.getVariableManager().getEnd<IsWritableEntry>());
m_valueRange = ValueRange(entry->getValueRange());
computeRandomValueRangeForInfElements(state, m_valueRange.asAccess());
DE_ASSERT(state.getVariableManager().hasEntry(IsWritableIntersectingEntry(m_valueRange.asAccess())));
}
}
IsWritableIntersectingEntry::Iterator first = state.getVariableManager().getBegin(IsWritableIntersectingEntry(m_valueRange.asAccess()));
IsWritableIntersectingEntry::Iterator end = state.getVariableManager().getEnd(IsWritableIntersectingEntry(m_valueRange.asAccess()));
bool possiblyCreateVar = canAllocateVariable(state, m_valueRange.getType()) &&
(first == end || getWeightedBool(state.getRandom(), 0.5f));
if (!possiblyCreateVar)
{
// Find all possible valueranges matching given type and intersecting with valuerange
// \todo [pyry] Actually collect all ValueRanges, currently operates only on whole variables
DE_ASSERT(first != end);
// Try to select one closest to given range but bigger (eg. superset)
bool supersetExists = false;
for (IsWritableIntersectingEntry::Iterator i = first; i != end; i++)
{
if ((*i)->getValueRange().isSupersetOf(m_valueRange.asAccess()))
{
supersetExists = true;
break;
}
}
if (!supersetExists)
{
// Select some other range and compute intersection
// \todo [2011-02-03 pyry] Use some heuristics to select the range?
ConstValueRangeAccess selectedRange = state.getRandom().choose<const ValueEntry*>(first, end)->getValueRange();
ValueRange::computeIntersection(m_valueRange.asAccess(), m_valueRange.asAccess(), selectedRange);
}
}
}
AssignOp::~AssignOp (void)
{
delete m_lvalueExpr;
delete m_rvalueExpr;
}
float AssignOp::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (!valueRange.getType().isVoid() &&
!canAllocateVariable(state, valueRange.getType()) &&
!state.getVariableManager().hasEntry(IsWritableIntersectingEntry(valueRange)))
return 0.0f; // Would require creating a new variable
if (!valueRange.getType().isVoid() && state.getExpressionDepth() + getTypeConstructorDepth(valueRange.getType()) + 1 >= state.getShaderParameters().maxExpressionDepth)
return 0.0f;
if (valueRange.getType().isVoid() &&
!state.getVariableManager().hasEntry<IsWritableEntry>() &&
state.getVariableManager().getNumAllocatedScalars() >= state.getShaderParameters().maxCombinedVariableScalars)
return 0.0f; // Can not allocate a new entry
if (state.getExpressionDepth() == 0)
return 4.0f;
else
return 0.0f; // \todo [pyry] Fix assign ops
}
Expression* AssignOp::createNextChild (GeneratorState& state)
{
if (m_lvalueExpr == DE_NULL)
{
// Construct lvalue
// \todo [2011-03-14 pyry] Proper l-value generation:
// - pure L-value part is generated first
// - variable valuerange is made unbound
// - R-value is generated
// - R-values in L-value are generated
m_lvalueExpr = Expression::createRandomLValue(state, m_valueRange.asAccess());
return m_lvalueExpr;
}
else if (m_rvalueExpr == DE_NULL)
{
// Construct value expr
m_rvalueExpr = Expression::createRandom(state, m_valueRange.asAccess());
return m_rvalueExpr;
}
else
return DE_NULL;
}
void AssignOp::tokenize (GeneratorState& state, TokenStream& str) const
{
m_lvalueExpr->tokenize(state, str);
str << Token::EQUAL;
m_rvalueExpr->tokenize(state, str);
}
void AssignOp::evaluate (ExecutionContext& evalCtx)
{
// Evaluate l-value
m_lvalueExpr->evaluate(evalCtx);
// Evaluate value
m_rvalueExpr->evaluate(evalCtx);
m_value.setStorage(m_valueRange.getType());
m_value.getValue(m_valueRange.getType()) = m_rvalueExpr->getValue().value();
// Assign
assignMasked(m_lvalueExpr->getLValue(), m_value.getValue(m_valueRange.getType()), evalCtx.getExecutionMask());
}
namespace
{
inline bool isShaderInOutSupportedType (const VariableType& type)
{
// \todo [2011-03-11 pyry] Float arrays, structs?
return type.getBaseType() == VariableType::TYPE_FLOAT;
}
Variable* allocateNewVariable (GeneratorState& state, ConstValueRangeAccess valueRange)
{
Variable* variable = state.getVariableManager().allocate(valueRange.getType());
// Update value range
state.getVariableManager().setValue(variable, valueRange);
// Random storage \todo [pyry] Check that scalar count in uniform/input classes is not exceeded
static const Variable::Storage storages[] =
{
Variable::STORAGE_CONST,
Variable::STORAGE_UNIFORM,
Variable::STORAGE_LOCAL,
Variable::STORAGE_SHADER_IN
};
float weights[DE_LENGTH_OF_ARRAY(storages)];
// Dynamic vs. constant weight.
float dynWeight = computeDynamicRangeWeight(valueRange);
int numScalars = valueRange.getType().getScalarSize();
bool uniformOk = state.getVariableManager().getNumAllocatedUniformScalars() + numScalars <= state.getShaderParameters().maxUniformScalars;
bool shaderInOk = isShaderInOutSupportedType(valueRange.getType()) &&
(state.getVariableManager().getNumAllocatedShaderInVariables() + NUM_RESERVED_SHADER_INPUTS < state.getShaderParameters().maxInputVariables);
weights[0] = de::max(1.0f-dynWeight, 0.1f);
weights[1] = uniformOk ? dynWeight*0.5f : 0.0f;
weights[2] = dynWeight;
weights[3] = shaderInOk ? dynWeight*2.0f : 0.0f;
state.getVariableManager().setStorage(variable, state.getRandom().chooseWeighted<Variable::Storage>(&storages[0], &storages[DE_LENGTH_OF_ARRAY(storages)], &weights[0]));
return variable;
}
inline float combineWeight (float curCombinedWeight, float partialWeight)
{
return curCombinedWeight * partialWeight;
}
float computeEntryReadWeight (ConstValueRangeAccess entryValueRange, ConstValueRangeAccess readValueRange)
{
const VariableType& type = entryValueRange.getType();
DE_ASSERT(type == readValueRange.getType());
float weight = 1.0f;
switch (type.getBaseType())
{
case VariableType::TYPE_FLOAT:
{
for (int elemNdx = 0; elemNdx < type.getNumElements(); elemNdx++)
{
float entryMin = entryValueRange.component(elemNdx).getMin().asFloat();
float entryMax = entryValueRange.component(elemNdx).getMax().asFloat();
float readMin = readValueRange.component(elemNdx).getMin().asFloat();
float readMax = readValueRange.component(elemNdx).getMax().asFloat();
// Check for -inf..inf ranges - they don't bring down the weight.
if (Scalar::min<float>() == entryMin && Scalar::max<float>() == entryMax)
continue;
// Intersection to entry value range length ratio.
float intersectionMin = deFloatMax(entryMin, readMin);
float intersectionMax = deFloatMin(entryMax, readMax);
float entryRangeLen = entryMax - entryMin;
float readRangeLen = readMax - readMin;
float intersectionLen = intersectionMax - intersectionMin;
float entryRatio = (entryRangeLen > 0.0f) ? (intersectionLen / entryRangeLen) : 1.0f;
float readRatio = (readRangeLen > 0.0f) ? (intersectionLen / readRangeLen) : 1.0f;
float elementWeight = 0.5f*readRatio + 0.5f*entryRatio;
weight = combineWeight(weight, elementWeight);
}
break;
}
case VariableType::TYPE_INT:
{
for (int elemNdx = 0; elemNdx < type.getNumElements(); elemNdx++)
{
int entryMin = entryValueRange.component(elemNdx).getMin().asInt();
int entryMax = entryValueRange.component(elemNdx).getMax().asInt();
int readMin = readValueRange.component(elemNdx).getMin().asInt();
int readMax = readValueRange.component(elemNdx).getMax().asInt();
// Check for -inf..inf ranges - they don't bring down the weight.
if (Scalar::min<int>() == entryMin && Scalar::max<int>() == entryMax)
continue;
// Intersection to entry value range length ratio.
int intersectionMin = deMax32(entryMin, readMin);
int intersectionMax = deMin32(entryMax, readMax);
deInt64 entryRangeLen = (deInt64)entryMax - (deInt64)entryMin;
deInt64 readRangeLen = (deInt64)readMax - (deInt64)readMin;
deInt64 intersectionLen = (deInt64)intersectionMax - (deInt64)intersectionMin;
float entryRatio = (entryRangeLen > 0) ? ((float)intersectionLen / (float)entryRangeLen) : 1.0f;
float readRatio = (readRangeLen > 0) ? ((float)intersectionLen / (float)readRangeLen) : 1.0f;
float elementWeight = 0.5f*readRatio + 0.5f*entryRatio;
weight = combineWeight(weight, elementWeight);
}
break;
}
case VariableType::TYPE_BOOL:
{
// \todo
break;
}
case VariableType::TYPE_ARRAY:
case VariableType::TYPE_STRUCT:
default:
TCU_FAIL("Unsupported type");
}
return deFloatMax(weight, 0.01f);
}
} // anonymous
VariableRead::VariableRead (GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (valueRange.getType().isVoid())
{
IsReadableEntry filter = IsReadableEntry(state.getExpressionFlags());
int maxScalars = state.getShaderParameters().maxCombinedVariableScalars - state.getVariableManager().getNumAllocatedScalars();
bool useRandomRange = !state.getVariableManager().hasEntry(filter) || ((maxScalars > 0) && getWeightedBool(state.getRandom(), 0.5f));
if (useRandomRange)
{
// Allocate a new variable
DE_ASSERT(maxScalars > 0);
ValueRange newVarRange(computeRandomType(state, maxScalars));
computeRandomValueRange(state, newVarRange.asAccess());
m_variable = allocateNewVariable(state, newVarRange.asAccess());
}
else
{
// Use random entry \todo [pyry] Handle -inf..inf ranges?
m_variable = state.getRandom().choose<const ValueEntry*>(state.getVariableManager().getBegin(filter), state.getVariableManager().getEnd(filter))->getVariable();
}
}
else
{
// Find variable that has value range that intersects with given range
IsReadableIntersectingEntry::Iterator first = state.getVariableManager().getBegin(IsReadableIntersectingEntry(valueRange, state.getExpressionFlags()));
IsReadableIntersectingEntry::Iterator end = state.getVariableManager().getEnd(IsReadableIntersectingEntry(valueRange, state.getExpressionFlags()));
const float createOnReadWeight = 0.5f;
bool createVar = canAllocateVariable(state, valueRange.getType()) && (first == end || getWeightedBool(state.getRandom(), createOnReadWeight));
if (createVar)
{
m_variable = allocateNewVariable(state, valueRange);
}
else
{
// Copy value entries for computing weights.
std::vector<const ValueEntry*> availableVars;
std::vector<float> weights;
std::copy(first, end, std::inserter(availableVars, availableVars.begin()));
// Compute weights.
weights.resize(availableVars.size());
for (int ndx = 0; ndx < (int)availableVars.size(); ndx++)
weights[ndx] = computeEntryReadWeight(availableVars[ndx]->getValueRange(), valueRange);
// Select.
const ValueEntry* entry = state.getRandom().chooseWeighted<const ValueEntry*>(availableVars.begin(), availableVars.end(), weights.begin());
m_variable = entry->getVariable();
// Compute intersection
ValueRange intersection(m_variable->getType());
ValueRange::computeIntersection(intersection, entry->getValueRange(), valueRange);
state.getVariableManager().setValue(m_variable, intersection.asAccess());
}
}
}
VariableRead::VariableRead (const Variable* variable)
{
m_variable = variable;
}
float VariableRead::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (valueRange.getType().isVoid())
{
if (state.getVariableManager().hasEntry(IsReadableEntry(state.getExpressionFlags())) ||
state.getVariableManager().getNumAllocatedScalars() < state.getShaderParameters().maxCombinedVariableScalars)
return unusedValueWeight;
else
return 0.0f;
}
if (!canAllocateVariable(state, valueRange.getType()) &&
!state.getVariableManager().hasEntry(IsReadableIntersectingEntry(valueRange, state.getExpressionFlags())))
return 0.0f;
else
return 1.0f;
}
VariableWrite::VariableWrite (GeneratorState& state, ConstValueRangeAccess valueRange)
{
DE_ASSERT(!valueRange.getType().isVoid());
// Find variable with range that is superset of given range
IsWritableSupersetEntry::Iterator first = state.getVariableManager().getBegin(IsWritableSupersetEntry(valueRange));
IsWritableSupersetEntry::Iterator end = state.getVariableManager().getEnd(IsWritableSupersetEntry(valueRange));
const float createOnAssignWeight = 0.1f; // Will essentially create an unused variable
bool createVar = canAllocateVariable(state, valueRange.getType()) && (first == end || getWeightedBool(state.getRandom(), createOnAssignWeight));
if (createVar)
{
m_variable = state.getVariableManager().allocate(valueRange.getType());
// \note Storage will be LOCAL
}
else
{
// Choose random
DE_ASSERT(first != end);
const ValueEntry* entry = state.getRandom().choose<const ValueEntry*>(first, end);
m_variable = entry->getVariable();
}
DE_ASSERT(m_variable);
// Reset value range.
const ValueEntry* parentEntry = state.getVariableManager().getParentValue(m_variable);
if (parentEntry)
{
// Use parent value range.
state.getVariableManager().setValue(m_variable, parentEntry->getValueRange());
}
else
{
// Use infinite range.
ValueRange infRange(m_variable->getType());
setInfiniteRange(infRange);
state.getVariableManager().setValue(m_variable, infRange.asAccess());
}
}
float VariableWrite::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (!canAllocateVariable(state, valueRange.getType()) &&
!state.getVariableManager().hasEntry(IsWritableSupersetEntry(valueRange)))
return 0.0f;
else
return 1.0f;
}
void VariableAccess::evaluate (ExecutionContext& evalCtx)
{
m_valueAccess = evalCtx.getValue(m_variable);
}
ParenOp::ParenOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: m_valueRange (valueRange)
, m_child (DE_NULL)
{
DE_UNREF(state);
}
ParenOp::~ParenOp (void)
{
delete m_child;
}
Expression* ParenOp::createNextChild (GeneratorState& state)
{
if (m_child == DE_NULL)
{
m_child = Expression::createRandom(state, m_valueRange.asAccess());
return m_child;
}
else
return DE_NULL;
}
void ParenOp::tokenize (GeneratorState& state, TokenStream& str) const
{
str << Token::LEFT_PAREN;
m_child->tokenize(state, str);
str << Token::RIGHT_PAREN;
}
float ParenOp::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (valueRange.getType().isVoid())
return state.getExpressionDepth() + 2 <= state.getShaderParameters().maxExpressionDepth ? unusedValueWeight : 0.0f;
else
{
int requiredDepth = 1 + getConservativeValueExprDepth(state, valueRange);
return state.getExpressionDepth() + requiredDepth <= state.getShaderParameters().maxExpressionDepth ? 1.0f : 0.0f;
}
}
const int swizzlePrecedence = 2;
SwizzleOp::SwizzleOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: m_outValueRange (valueRange)
, m_numInputElements (0)
, m_child (DE_NULL)
{
DE_ASSERT(!m_outValueRange.getType().isVoid()); // \todo [2011-06-13 pyry] Void support
DE_ASSERT(m_outValueRange.getType().isFloatOrVec() ||
m_outValueRange.getType().isIntOrVec() ||
m_outValueRange.getType().isBoolOrVec());
m_value.setStorage(m_outValueRange.getType());
int numOutputElements = m_outValueRange.getType().getNumElements();
// \note Swizzle works for vector types only.
// \todo [2011-06-13 pyry] Use components multiple times.
m_numInputElements = state.getRandom().getInt(deMax32(numOutputElements, 2), 4);
std::set<int> availableElements;
for (int ndx = 0; ndx < m_numInputElements; ndx++)
availableElements.insert(ndx);
// Randomize swizzle.
for (int elemNdx = 0; elemNdx < (int)DE_LENGTH_OF_ARRAY(m_swizzle); elemNdx++)
{
if (elemNdx < numOutputElements)
{
int inElemNdx = state.getRandom().choose<int>(availableElements.begin(), availableElements.end());
availableElements.erase(inElemNdx);
m_swizzle[elemNdx] = (deUint8)inElemNdx;
}
else
m_swizzle[elemNdx] = 0;
}
}
SwizzleOp::~SwizzleOp (void)
{
delete m_child;
}
Expression* SwizzleOp::createNextChild (GeneratorState& state)
{
if (m_child)
return DE_NULL;
// Compute input value range.
VariableType inVarType = VariableType(m_outValueRange.getType().getBaseType(), m_numInputElements);
ValueRange inValueRange = ValueRange(inVarType);
// Initialize all inputs to -inf..inf
setInfiniteRange(inValueRange);
// Compute intersections.
int numOutputElements = m_outValueRange.getType().getNumElements();
for (int outElemNdx = 0; outElemNdx < numOutputElements; outElemNdx++)
{
int inElemNdx = m_swizzle[outElemNdx];
ValueRange::computeIntersection(inValueRange.asAccess().component(inElemNdx), inValueRange.asAccess().component(inElemNdx), m_outValueRange.asAccess().component(outElemNdx));
}
// Create child.
state.pushPrecedence(swizzlePrecedence);
m_child = Expression::createRandom(state, inValueRange.asAccess());
state.popPrecedence();
return m_child;
}
void SwizzleOp::tokenize (GeneratorState& state, TokenStream& str) const
{
const char* rgbaSet[] = { "r", "g", "b", "a" };
const char* xyzwSet[] = { "x", "y", "z", "w" };
const char* stpqSet[] = { "s", "t", "p", "q" };
const char** swizzleSet = DE_NULL;
switch (state.getRandom().getInt(0, 2))
{
case 0: swizzleSet = rgbaSet; break;
case 1: swizzleSet = xyzwSet; break;
case 2: swizzleSet = stpqSet; break;
default: DE_ASSERT(DE_FALSE);
}
std::string swizzleStr;
for (int elemNdx = 0; elemNdx < m_outValueRange.getType().getNumElements(); elemNdx++)
swizzleStr += swizzleSet[m_swizzle[elemNdx]];
m_child->tokenize(state, str);
str << Token::DOT << Token(swizzleStr.c_str());
}
float SwizzleOp::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (!state.getProgramParameters().useSwizzle)
return 0.0f;
if (state.getPrecedence() < swizzlePrecedence)
return 0.0f;
if (!valueRange.getType().isFloatOrVec() &&
!valueRange.getType().isIntOrVec() &&
!valueRange.getType().isBoolOrVec())
return 0.0f;
int availableLevels = state.getShaderParameters().maxExpressionDepth - state.getExpressionDepth();
// Swizzle + Constructor + Values
if (availableLevels < 3)
return 0.0f;
return 1.0f;
}
void SwizzleOp::evaluate (ExecutionContext& execCtx)
{
m_child->evaluate(execCtx);
ExecConstValueAccess inValue = m_child->getValue();
ExecValueAccess outValue = m_value.getValue(m_outValueRange.getType());
for (int outElemNdx = 0; outElemNdx < outValue.getType().getNumElements(); outElemNdx++)
{
int inElemNdx = m_swizzle[outElemNdx];
outValue.component(outElemNdx) = inValue.component(inElemNdx).value();
}
}
static int countSamplers (const VariableManager& varManager, VariableType::Type samplerType)
{
int numSamplers = 0;
IsSamplerEntry::Iterator i = varManager.getBegin(IsSamplerEntry(samplerType));
IsSamplerEntry::Iterator end = varManager.getEnd(IsSamplerEntry(samplerType));
for (; i != end; i++)
numSamplers += 1;
return numSamplers;
}
TexLookup::TexLookup (GeneratorState& state, ConstValueRangeAccess valueRange)
: m_type (TYPE_LAST)
, m_coordExpr (DE_NULL)
, m_lodBiasExpr (DE_NULL)
, m_valueType (VariableType::TYPE_FLOAT, 4)
, m_value (m_valueType)
{
DE_ASSERT(valueRange.getType() == VariableType(VariableType::TYPE_FLOAT, 4));
DE_UNREF(valueRange); // Texture output value range is constant.
// Select type.
vector<Type> typeCandidates;
if (state.getShaderParameters().useTexture2D)
{
typeCandidates.push_back(TYPE_TEXTURE2D);
typeCandidates.push_back(TYPE_TEXTURE2D_LOD);
typeCandidates.push_back(TYPE_TEXTURE2D_PROJ);
typeCandidates.push_back(TYPE_TEXTURE2D_PROJ_LOD);
}
if (state.getShaderParameters().useTextureCube)
{
typeCandidates.push_back(TYPE_TEXTURECUBE);
typeCandidates.push_back(TYPE_TEXTURECUBE_LOD);
}
m_type = state.getRandom().choose<Type>(typeCandidates.begin(), typeCandidates.end());
// Select or allocate sampler.
VariableType::Type samplerType = VariableType::TYPE_LAST;
switch (m_type)
{
case TYPE_TEXTURE2D:
case TYPE_TEXTURE2D_LOD:
case TYPE_TEXTURE2D_PROJ:
case TYPE_TEXTURE2D_PROJ_LOD:
samplerType = VariableType::TYPE_SAMPLER_2D;
break;
case TYPE_TEXTURECUBE:
case TYPE_TEXTURECUBE_LOD:
samplerType = VariableType::TYPE_SAMPLER_CUBE;
break;
default:
DE_ASSERT(DE_FALSE);
}
int sampler2DCount = countSamplers(state.getVariableManager(), VariableType::TYPE_SAMPLER_2D);
int samplerCubeCount = countSamplers(state.getVariableManager(), VariableType::TYPE_SAMPLER_CUBE);
bool canAllocSampler = sampler2DCount + samplerCubeCount < state.getShaderParameters().maxSamplers;
bool hasSampler = samplerType == VariableType::TYPE_SAMPLER_2D ? (sampler2DCount > 0) : (samplerCubeCount > 0);
bool allocSampler = !hasSampler || (canAllocSampler && state.getRandom().getBool());
if (allocSampler)
{
Variable* sampler = state.getVariableManager().allocate(VariableType(samplerType, 1));
state.getVariableManager().setStorage(sampler, Variable::STORAGE_UNIFORM); // Samplers are always uniforms.
m_sampler = sampler;
}
else
m_sampler = state.getRandom().choose<const ValueEntry*>(state.getVariableManager().getBegin(IsSamplerEntry(samplerType)),
state.getVariableManager().getEnd(IsSamplerEntry(samplerType)))->getVariable();
}
TexLookup::~TexLookup (void)
{
delete m_coordExpr;
delete m_lodBiasExpr;
}
Expression* TexLookup::createNextChild (GeneratorState& state)
{
bool hasLodBias = m_type == TYPE_TEXTURE2D_LOD ||
m_type == TYPE_TEXTURE2D_PROJ_LOD ||
m_type == TYPE_TEXTURECUBE_LOD;
if (hasLodBias && !m_lodBiasExpr)
{
ValueRange lodRange(VariableType(VariableType::TYPE_FLOAT, 1));
setInfiniteRange(lodRange); // Any value is valid.
m_lodBiasExpr = Expression::createRandom(state, lodRange.asAccess());
return m_lodBiasExpr;
}
if (!m_coordExpr)
{
if (m_type == TYPE_TEXTURECUBE || m_type == TYPE_TEXTURECUBE_LOD)
{
// Make sure major axis selection can be done.
int majorAxisNdx = state.getRandom().getInt(0, 2);
ValueRange coordRange(VariableType(VariableType::TYPE_FLOAT, 3));
for (int ndx = 0; ndx < 3; ndx++)
{
if (ndx == majorAxisNdx)
{
bool neg = state.getRandom().getBool();
coordRange.getMin().component(ndx) = neg ? -4.0f : 2.25f;
coordRange.getMax().component(ndx) = neg ? -2.25f : 4.0f;
}
else
{
coordRange.getMin().component(ndx) = -2.0f;
coordRange.getMax().component(ndx) = 2.0f;
}
}
m_coordExpr = Expression::createRandom(state, coordRange.asAccess());
}
else
{
bool isProj = m_type == TYPE_TEXTURE2D_PROJ || m_type == TYPE_TEXTURE2D_PROJ_LOD;
int coordScalarSize = isProj ? 3 : 2;
ValueRange coordRange(VariableType(VariableType::TYPE_FLOAT, coordScalarSize));
setInfiniteRange(coordRange); // Initialize base range with -inf..inf
if (isProj)
{
// w coordinate must be something sane, and not 0.
bool neg = state.getRandom().getBool();
coordRange.getMin().component(2) = neg ? -4.0f : 0.25f;
coordRange.getMax().component(2) = neg ? -0.25f : 4.0f;
}
m_coordExpr = Expression::createRandom(state, coordRange.asAccess());
}
DE_ASSERT(m_coordExpr);
return m_coordExpr;
}
return DE_NULL; // Done.
}
void TexLookup::tokenize (GeneratorState& state, TokenStream& str) const
{
bool isVertex = state.getShader().getType() == Shader::TYPE_VERTEX;
if (state.getProgramParameters().version == VERSION_300)
{
switch (m_type)
{
case TYPE_TEXTURE2D: str << "texture"; break;
case TYPE_TEXTURE2D_LOD: str << (isVertex ? "textureLod" : "texture"); break;
case TYPE_TEXTURE2D_PROJ: str << "textureProj"; break;
case TYPE_TEXTURE2D_PROJ_LOD: str << (isVertex ? "textureProjLod" : "textureProj"); break;
case TYPE_TEXTURECUBE: str << "texture"; break;
case TYPE_TEXTURECUBE_LOD: str << (isVertex ? "textureLod" : "texture"); break;
default:
DE_ASSERT(DE_FALSE);
}
}
else
{
switch (m_type)
{
case TYPE_TEXTURE2D: str << "texture2D"; break;
case TYPE_TEXTURE2D_LOD: str << (isVertex ? "texture2DLod" : "texture2D"); break;
case TYPE_TEXTURE2D_PROJ: str << "texture2DProj"; break;
case TYPE_TEXTURE2D_PROJ_LOD: str << (isVertex ? "texture2DProjLod" : "texture2DProj"); break;
case TYPE_TEXTURECUBE: str << "textureCube"; break;
case TYPE_TEXTURECUBE_LOD: str << (isVertex ? "textureCubeLod" : "textureCube"); break;
default:
DE_ASSERT(DE_FALSE);
}
}
str << Token::LEFT_PAREN;
str << m_sampler->getName();
str << Token::COMMA;
m_coordExpr->tokenize(state, str);
if (m_lodBiasExpr)
{
str << Token::COMMA;
m_lodBiasExpr->tokenize(state, str);
}
str << Token::RIGHT_PAREN;
}
float TexLookup::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (state.getShaderParameters().texLookupBaseWeight <= 0.0f)
return 0.0f;
int availableLevels = state.getShaderParameters().maxExpressionDepth - state.getExpressionDepth();
// Lookup + Constructor + Values
if (availableLevels < 3)
return 0.0f;
if (state.getExpressionFlags() & (CONST_EXPR|NO_VAR_ALLOCATION))
return 0.0f;
if (valueRange.getType() != VariableType(VariableType::TYPE_FLOAT, 4))
return 0.0f;
ValueRange texOutputRange(VariableType(VariableType::TYPE_FLOAT, 4));
for (int ndx = 0; ndx < 4; ndx++)
{
texOutputRange.getMin().component(ndx) = 0.0f;
texOutputRange.getMax().component(ndx) = 1.0f;
}
if (!valueRange.isSupersetOf(texOutputRange.asAccess()))
return 0.0f;
return state.getShaderParameters().texLookupBaseWeight;
}
void TexLookup::evaluate (ExecutionContext& execCtx)
{
// Evaluate coord and bias.
m_coordExpr->evaluate(execCtx);
if (m_lodBiasExpr)
m_lodBiasExpr->evaluate(execCtx);
ExecConstValueAccess coords = m_coordExpr->getValue();
ExecValueAccess dst = m_value.getValue(m_valueType);
switch (m_type)
{
case TYPE_TEXTURE2D:
{
const Sampler2D& tex = execCtx.getSampler2D(m_sampler);
for (int i = 0; i < EXEC_VEC_WIDTH; i++)
{
float s = coords.component(0).asFloat(i);
float t = coords.component(1).asFloat(i);
tcu::Vec4 p = tex.sample(s, t, 0.0f);
for (int comp = 0; comp < 4; comp++)
dst.component(comp).asFloat(i) = p[comp];
}
break;
}
case TYPE_TEXTURE2D_LOD:
{
ExecConstValueAccess lod = m_lodBiasExpr->getValue();
const Sampler2D& tex = execCtx.getSampler2D(m_sampler);
for (int i = 0; i < EXEC_VEC_WIDTH; i++)
{
float s = coords.component(0).asFloat(i);
float t = coords.component(1).asFloat(i);
float l = lod.component(0).asFloat(i);
tcu::Vec4 p = tex.sample(s, t, l);
for (int comp = 0; comp < 4; comp++)
dst.component(comp).asFloat(i) = p[comp];
}
break;
}
case TYPE_TEXTURE2D_PROJ:
{
const Sampler2D& tex = execCtx.getSampler2D(m_sampler);
for (int i = 0; i < EXEC_VEC_WIDTH; i++)
{
float s = coords.component(0).asFloat(i);
float t = coords.component(1).asFloat(i);
float w = coords.component(2).asFloat(i);
tcu::Vec4 p = tex.sample(s/w, t/w, 0.0f);
for (int comp = 0; comp < 4; comp++)
dst.component(comp).asFloat(i) = p[comp];
}
break;
}
case TYPE_TEXTURE2D_PROJ_LOD:
{
ExecConstValueAccess lod = m_lodBiasExpr->getValue();
const Sampler2D& tex = execCtx.getSampler2D(m_sampler);
for (int i = 0; i < EXEC_VEC_WIDTH; i++)
{
float s = coords.component(0).asFloat(i);
float t = coords.component(1).asFloat(i);
float w = coords.component(2).asFloat(i);
float l = lod.component(0).asFloat(i);
tcu::Vec4 p = tex.sample(s/w, t/w, l);
for (int comp = 0; comp < 4; comp++)
dst.component(comp).asFloat(i) = p[comp];
}
break;
}
case TYPE_TEXTURECUBE:
{
const SamplerCube& tex = execCtx.getSamplerCube(m_sampler);
for (int i = 0; i < EXEC_VEC_WIDTH; i++)
{
float s = coords.component(0).asFloat(i);
float t = coords.component(1).asFloat(i);
float r = coords.component(2).asFloat(i);
tcu::Vec4 p = tex.sample(s, t, r, 0.0f);
for (int comp = 0; comp < 4; comp++)
dst.component(comp).asFloat(i) = p[comp];
}
break;
}
case TYPE_TEXTURECUBE_LOD:
{
ExecConstValueAccess lod = m_lodBiasExpr->getValue();
const SamplerCube& tex = execCtx.getSamplerCube(m_sampler);
for (int i = 0; i < EXEC_VEC_WIDTH; i++)
{
float s = coords.component(0).asFloat(i);
float t = coords.component(1).asFloat(i);
float r = coords.component(2).asFloat(i);
float l = lod.component(0).asFloat(i);
tcu::Vec4 p = tex.sample(s, t, r, l);
for (int comp = 0; comp < 4; comp++)
dst.component(comp).asFloat(i) = p[comp];
}
break;
}
default:
DE_ASSERT(DE_FALSE);
}
}
} // rsg