/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Rasterization verifier utils.
*//*--------------------------------------------------------------------*/
#include "tcuRasterizationVerifier.hpp"
#include "tcuVector.hpp"
#include "tcuSurface.hpp"
#include "tcuTestLog.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuFloat.hpp"
#include "deMath.h"
#include "rrRasterizer.hpp"
#include <limits>
namespace tcu
{
namespace
{
bool lineLineIntersect (const tcu::Vector<deInt64, 2>& line0Beg, const tcu::Vector<deInt64, 2>& line0End, const tcu::Vector<deInt64, 2>& line1Beg, const tcu::Vector<deInt64, 2>& line1End)
{
typedef tcu::Vector<deInt64, 2> I64Vec2;
// Lines do not intersect if the other line's endpoints are on the same side
// otherwise, the do intersect
// Test line 0
{
const I64Vec2 line = line0End - line0Beg;
const I64Vec2 v0 = line1Beg - line0Beg;
const I64Vec2 v1 = line1End - line0Beg;
const deInt64 crossProduct0 = (line.x() * v0.y() - line.y() * v0.x());
const deInt64 crossProduct1 = (line.x() * v1.y() - line.y() * v1.x());
// check signs
if ((crossProduct0 < 0 && crossProduct1 < 0) ||
(crossProduct0 > 0 && crossProduct1 > 0))
return false;
}
// Test line 1
{
const I64Vec2 line = line1End - line1Beg;
const I64Vec2 v0 = line0Beg - line1Beg;
const I64Vec2 v1 = line0End - line1Beg;
const deInt64 crossProduct0 = (line.x() * v0.y() - line.y() * v0.x());
const deInt64 crossProduct1 = (line.x() * v1.y() - line.y() * v1.x());
// check signs
if ((crossProduct0 < 0 && crossProduct1 < 0) ||
(crossProduct0 > 0 && crossProduct1 > 0))
return false;
}
return true;
}
bool isTriangleClockwise (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2)
{
const tcu::Vec2 u (p1.x() / p1.w() - p0.x() / p0.w(), p1.y() / p1.w() - p0.y() / p0.w());
const tcu::Vec2 v (p2.x() / p2.w() - p0.x() / p0.w(), p2.y() / p2.w() - p0.y() / p0.w());
const float crossProduct = (u.x() * v.y() - u.y() * v.x());
return crossProduct > 0.0f;
}
bool compareColors (const tcu::RGBA& colorA, const tcu::RGBA& colorB, int redBits, int greenBits, int blueBits)
{
const int thresholdRed = 1 << (8 - redBits);
const int thresholdGreen = 1 << (8 - greenBits);
const int thresholdBlue = 1 << (8 - blueBits);
return deAbs32(colorA.getRed() - colorB.getRed()) <= thresholdRed &&
deAbs32(colorA.getGreen() - colorB.getGreen()) <= thresholdGreen &&
deAbs32(colorA.getBlue() - colorB.getBlue()) <= thresholdBlue;
}
bool pixelNearLineSegment (const tcu::IVec2& pixel, const tcu::Vec2& p0, const tcu::Vec2& p1)
{
const tcu::Vec2 pixelCenterPosition = tcu::Vec2((float)pixel.x() + 0.5f, (float)pixel.y() + 0.5f);
// "Near" = Distance from the line to the pixel is less than 2 * pixel_max_radius. (pixel_max_radius = sqrt(2) / 2)
const float maxPixelDistance = 1.414f;
const float maxPixelDistanceSquared = 2.0f;
// Near the line
{
const tcu::Vec2 line = p1 - p0;
const tcu::Vec2 v = pixelCenterPosition - p0;
const float crossProduct = (line.x() * v.y() - line.y() * v.x());
// distance to line: (line x v) / |line|
// |(line x v) / |line|| > maxPixelDistance
// ==> (line x v)^2 / |line|^2 > maxPixelDistance^2
// ==> (line x v)^2 > maxPixelDistance^2 * |line|^2
if (crossProduct * crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(line))
return false;
}
// Between the endpoints
{
// distance from line endpoint 1 to pixel is less than line length + maxPixelDistance
const float maxDistance = tcu::length(p1 - p0) + maxPixelDistance;
if (tcu::length(pixelCenterPosition - p0) > maxDistance)
return false;
if (tcu::length(pixelCenterPosition - p1) > maxDistance)
return false;
}
return true;
}
bool pixelOnlyOnASharedEdge (const tcu::IVec2& pixel, const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
{
if (triangle.sharedEdge[0] || triangle.sharedEdge[1] || triangle.sharedEdge[2])
{
const tcu::Vec2 triangleNormalizedDeviceSpace[3] =
{
tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
};
const tcu::Vec2 triangleScreenSpace[3] =
{
(triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
(triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
(triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
};
const bool pixelOnEdge0 = pixelNearLineSegment(pixel, triangleScreenSpace[0], triangleScreenSpace[1]);
const bool pixelOnEdge1 = pixelNearLineSegment(pixel, triangleScreenSpace[1], triangleScreenSpace[2]);
const bool pixelOnEdge2 = pixelNearLineSegment(pixel, triangleScreenSpace[2], triangleScreenSpace[0]);
// If the pixel is on a multiple edges return false
if (pixelOnEdge0 && !pixelOnEdge1 && !pixelOnEdge2)
return triangle.sharedEdge[0];
if (!pixelOnEdge0 && pixelOnEdge1 && !pixelOnEdge2)
return triangle.sharedEdge[1];
if (!pixelOnEdge0 && !pixelOnEdge1 && pixelOnEdge2)
return triangle.sharedEdge[2];
}
return false;
}
float triangleArea (const tcu::Vec2& s0, const tcu::Vec2& s1, const tcu::Vec2& s2)
{
const tcu::Vec2 u (s1.x() - s0.x(), s1.y() - s0.y());
const tcu::Vec2 v (s2.x() - s0.x(), s2.y() - s0.y());
const float crossProduct = (u.x() * v.y() - u.y() * v.x());
return crossProduct / 2.0f;
}
tcu::IVec4 getTriangleAABB (const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
{
const tcu::Vec2 normalizedDeviceSpace[3] =
{
tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
};
const tcu::Vec2 screenSpace[3] =
{
(normalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
(normalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
(normalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
};
tcu::IVec4 aabb;
aabb.x() = (int)deFloatFloor(de::min(de::min(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
aabb.y() = (int)deFloatFloor(de::min(de::min(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
aabb.z() = (int)deFloatCeil (de::max(de::max(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
aabb.w() = (int)deFloatCeil (de::max(de::max(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
return aabb;
}
float getExponentEpsilonFromULP (int valueExponent, deUint32 ulp)
{
DE_ASSERT(ulp < (1u<<10));
// assume mediump precision, using ulp as ulps in a 10 bit mantissa
return tcu::Float32::construct(+1, valueExponent, (1u<<23) + (ulp << (23 - 10))).asFloat() - tcu::Float32::construct(+1, valueExponent, (1u<<23)).asFloat();
}
float getValueEpsilonFromULP (float value, deUint32 ulp)
{
DE_ASSERT(value != std::numeric_limits<float>::infinity() && value != -std::numeric_limits<float>::infinity());
const int exponent = tcu::Float32(value).exponent();
return getExponentEpsilonFromULP(exponent, ulp);
}
float getMaxValueWithinError (float value, deUint32 ulp)
{
if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
return value;
return value + getValueEpsilonFromULP(value, ulp);
}
float getMinValueWithinError (float value, deUint32 ulp)
{
if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
return value;
return value - getValueEpsilonFromULP(value, ulp);
}
float getMinFlushToZero (float value)
{
// flush to zero if that decreases the value
// assume mediump precision
if (value > 0.0f && value < tcu::Float32::construct(+1, -14, 1u<<23).asFloat())
return 0.0f;
return value;
}
float getMaxFlushToZero (float value)
{
// flush to zero if that increases the value
// assume mediump precision
if (value < 0.0f && value > tcu::Float32::construct(-1, -14, 1u<<23).asFloat())
return 0.0f;
return value;
}
tcu::IVec3 convertRGB8ToNativeFormat (const tcu::RGBA& color, const RasterizationArguments& args)
{
tcu::IVec3 pixelNativeColor;
for (int channelNdx = 0; channelNdx < 3; ++channelNdx)
{
const int channelBitCount = (channelNdx == 0) ? (args.redBits) : (channelNdx == 1) ? (args.greenBits) : (args.blueBits);
const int channelPixelValue = (channelNdx == 0) ? (color.getRed()) : (channelNdx == 1) ? (color.getGreen()) : (color.getBlue());
if (channelBitCount <= 8)
pixelNativeColor[channelNdx] = channelPixelValue >> (8 - channelBitCount);
else if (channelBitCount == 8)
pixelNativeColor[channelNdx] = channelPixelValue;
else
{
// just in case someone comes up with 8+ bits framebuffers pixel formats. But as
// we can only read in rgba8, we have to guess the trailing bits. Guessing 0.
pixelNativeColor[channelNdx] = channelPixelValue << (channelBitCount - 8);
}
}
return pixelNativeColor;
}
/*--------------------------------------------------------------------*//*!
* Returns the maximum value of x / y, where x c [minDividend, maxDividend]
* and y c [minDivisor, maxDivisor]
*//*--------------------------------------------------------------------*/
float maximalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
{
DE_ASSERT(minDividend <= maxDividend);
DE_ASSERT(minDivisor <= maxDivisor);
// special cases
if (minDividend == 0.0f && maxDividend == 0.0f)
return 0.0f;
if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
return std::numeric_limits<float>::infinity();
return de::max(de::max(minDividend / minDivisor, minDividend / maxDivisor), de::max(maxDividend / minDivisor, maxDividend / maxDivisor));
}
/*--------------------------------------------------------------------*//*!
* Returns the minimum value of x / y, where x c [minDividend, maxDividend]
* and y c [minDivisor, maxDivisor]
*//*--------------------------------------------------------------------*/
float minimalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
{
DE_ASSERT(minDividend <= maxDividend);
DE_ASSERT(minDivisor <= maxDivisor);
// special cases
if (minDividend == 0.0f && maxDividend == 0.0f)
return 0.0f;
if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
return -std::numeric_limits<float>::infinity();
return de::min(de::min(minDividend / minDivisor, minDividend / maxDivisor), de::min(maxDividend / minDivisor, maxDividend / maxDivisor));
}
static bool isLineXMajor (const tcu::Vec2& lineScreenSpaceP0, const tcu::Vec2& lineScreenSpaceP1)
{
return de::abs(lineScreenSpaceP1.x() - lineScreenSpaceP0.x()) >= de::abs(lineScreenSpaceP1.y() - lineScreenSpaceP0.y());
}
static bool isPackedSSLineXMajor (const tcu::Vec4& packedLine)
{
const tcu::Vec2 lineScreenSpaceP0 = packedLine.swizzle(0, 1);
const tcu::Vec2 lineScreenSpaceP1 = packedLine.swizzle(2, 3);
return isLineXMajor(lineScreenSpaceP0, lineScreenSpaceP1);
}
struct InterpolationRange
{
tcu::Vec3 max;
tcu::Vec3 min;
};
struct LineInterpolationRange
{
tcu::Vec2 max;
tcu::Vec2 min;
};
InterpolationRange calcTriangleInterpolationWeights (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::Vec2& ndpixel)
{
const int roundError = 1;
const int barycentricError = 3;
const int divError = 8;
const tcu::Vec2 nd0 = p0.swizzle(0, 1) / p0.w();
const tcu::Vec2 nd1 = p1.swizzle(0, 1) / p1.w();
const tcu::Vec2 nd2 = p2.swizzle(0, 1) / p2.w();
const float ka = triangleArea(ndpixel, nd1, nd2);
const float kb = triangleArea(ndpixel, nd2, nd0);
const float kc = triangleArea(ndpixel, nd0, nd1);
const float kaMax = getMaxFlushToZero(getMaxValueWithinError(ka, barycentricError));
const float kbMax = getMaxFlushToZero(getMaxValueWithinError(kb, barycentricError));
const float kcMax = getMaxFlushToZero(getMaxValueWithinError(kc, barycentricError));
const float kaMin = getMinFlushToZero(getMinValueWithinError(ka, barycentricError));
const float kbMin = getMinFlushToZero(getMinValueWithinError(kb, barycentricError));
const float kcMin = getMinFlushToZero(getMinValueWithinError(kc, barycentricError));
DE_ASSERT(kaMin <= kaMax);
DE_ASSERT(kbMin <= kbMax);
DE_ASSERT(kcMin <= kcMax);
// calculate weights: vec3(ka / p0.w, kb / p1.w, kc / p2.w) / (ka / p0.w + kb / p1.w + kc / p2.w)
const float maxPreDivisionValues[3] =
{
getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kaMax / p0.w()), divError)),
getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kbMax / p1.w()), divError)),
getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kcMax / p2.w()), divError)),
};
const float minPreDivisionValues[3] =
{
getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kaMin / p0.w()), divError)),
getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kbMin / p1.w()), divError)),
getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kcMin / p2.w()), divError)),
};
DE_ASSERT(minPreDivisionValues[0] <= maxPreDivisionValues[0]);
DE_ASSERT(minPreDivisionValues[1] <= maxPreDivisionValues[1]);
DE_ASSERT(minPreDivisionValues[2] <= maxPreDivisionValues[2]);
const float maxDivisor = getMaxFlushToZero(getMaxValueWithinError(maxPreDivisionValues[0] + maxPreDivisionValues[1] + maxPreDivisionValues[2], 2*roundError));
const float minDivisor = getMinFlushToZero(getMinValueWithinError(minPreDivisionValues[0] + minPreDivisionValues[1] + minPreDivisionValues[2], 2*roundError));
DE_ASSERT(minDivisor <= maxDivisor);
InterpolationRange returnValue;
returnValue.max.x() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
returnValue.max.y() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
returnValue.max.z() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
returnValue.min.x() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
returnValue.min.y() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
returnValue.min.z() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
DE_ASSERT(returnValue.min.z() <= returnValue.max.z());
return returnValue;
}
LineInterpolationRange calcLineInterpolationWeights (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::Vec2& pr)
{
const int roundError = 1;
const int divError = 3;
// calc weights:
// (1-t) / wa t / wb
// ------------------- , -------------------
// (1-t) / wa + t / wb (1-t) / wa + t / wb
// Allow 1 ULP
const float dividend = tcu::dot(pr - pa, pb - pa);
const float dividendMax = getMaxValueWithinError(dividend, 1);
const float dividendMin = getMinValueWithinError(dividend, 1);
DE_ASSERT(dividendMin <= dividendMax);
// Assuming lengthSquared will not be implemented as sqrt(x)^2, allow 1 ULP
const float divisor = tcu::lengthSquared(pb - pa);
const float divisorMax = getMaxValueWithinError(divisor, 1);
const float divisorMin = getMinValueWithinError(divisor, 1);
DE_ASSERT(divisorMin <= divisorMax);
// Allow 3 ULP precision for division
const float tMax = getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
const float tMin = getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
DE_ASSERT(tMin <= tMax);
const float perspectiveTMax = getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
const float perspectiveTMin = getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
DE_ASSERT(perspectiveTMin <= perspectiveTMax);
const float perspectiveInvTMax = getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
const float perspectiveInvTMin = getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
const float perspectiveDivisorMax = getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
const float perspectiveDivisorMin = getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
LineInterpolationRange returnValue;
returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
return returnValue;
}
LineInterpolationRange calcLineInterpolationWeightsAxisProjected (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::Vec2& pr)
{
const int roundError = 1;
const int divError = 3;
const bool isXMajor = isLineXMajor(pa, pb);
const int majorAxisNdx = (isXMajor) ? (0) : (1);
// calc weights:
// (1-t) / wa t / wb
// ------------------- , -------------------
// (1-t) / wa + t / wb (1-t) / wa + t / wb
// Use axis projected (inaccurate) method, i.e. for X-major lines:
// (xd - xa) * (xb - xa) xd - xa
// t = --------------------- == -------
// ( xb - xa ) ^ 2 xb - xa
// Allow 1 ULP
const float dividend = (pr[majorAxisNdx] - pa[majorAxisNdx]);
const float dividendMax = getMaxValueWithinError(dividend, 1);
const float dividendMin = getMinValueWithinError(dividend, 1);
DE_ASSERT(dividendMin <= dividendMax);
// Allow 1 ULP
const float divisor = (pb[majorAxisNdx] - pa[majorAxisNdx]);
const float divisorMax = getMaxValueWithinError(divisor, 1);
const float divisorMin = getMinValueWithinError(divisor, 1);
DE_ASSERT(divisorMin <= divisorMax);
// Allow 3 ULP precision for division
const float tMax = getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
const float tMin = getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
DE_ASSERT(tMin <= tMax);
const float perspectiveTMax = getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
const float perspectiveTMin = getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
DE_ASSERT(perspectiveTMin <= perspectiveTMax);
const float perspectiveInvTMax = getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
const float perspectiveInvTMin = getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
const float perspectiveDivisorMax = getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
const float perspectiveDivisorMin = getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
LineInterpolationRange returnValue;
returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
return returnValue;
}
template <typename WeightEquation>
LineInterpolationRange calcSingleSampleLineInterpolationRangeWithWeightEquation (const tcu::Vec2& pa,
float wa,
const tcu::Vec2& pb,
float wb,
const tcu::IVec2& pixel,
int subpixelBits,
WeightEquation weightEquation)
{
// allow interpolation weights anywhere in the central subpixels
const float testSquareSize = (2.0f / (float)(1UL << subpixelBits));
const float testSquarePos = (0.5f - testSquareSize / 2);
const tcu::Vec2 corners[4] =
{
tcu::Vec2((float)pixel.x() + testSquarePos + 0.0f, (float)pixel.y() + testSquarePos + 0.0f),
tcu::Vec2((float)pixel.x() + testSquarePos + 0.0f, (float)pixel.y() + testSquarePos + testSquareSize),
tcu::Vec2((float)pixel.x() + testSquarePos + testSquareSize, (float)pixel.y() + testSquarePos + testSquareSize),
tcu::Vec2((float)pixel.x() + testSquarePos + testSquareSize, (float)pixel.y() + testSquarePos + 0.0f),
};
// calculate interpolation as a line
const LineInterpolationRange weights[4] =
{
weightEquation(pa, wa, pb, wb, corners[0]),
weightEquation(pa, wa, pb, wb, corners[1]),
weightEquation(pa, wa, pb, wb, corners[2]),
weightEquation(pa, wa, pb, wb, corners[3]),
};
const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
LineInterpolationRange result;
result.min = minWeights;
result.max = maxWeights;
return result;
}
LineInterpolationRange calcSingleSampleLineInterpolationRange (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::IVec2& pixel, int subpixelBits)
{
return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits, calcLineInterpolationWeights);
}
LineInterpolationRange calcSingleSampleLineInterpolationRangeAxisProjected (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::IVec2& pixel, int subpixelBits)
{
return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits, calcLineInterpolationWeightsAxisProjected);
}
struct TriangleInterpolator
{
const TriangleSceneSpec& scene;
TriangleInterpolator (const TriangleSceneSpec& scene_)
: scene(scene_)
{
}
InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
{
// allow anywhere in the pixel area in multisample
// allow only in the center subpixels (4 subpixels) in singlesample
const float testSquareSize = (multisample) ? (1.0f) : (2.0f / (float)(1UL << subpixelBits));
const float testSquarePos = (multisample) ? (0.0f) : (0.5f - testSquareSize / 2);
const tcu::Vec2 corners[4] =
{
tcu::Vec2(((float)pixel.x() + testSquarePos + 0.0f) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + 0.0f ) / (float)viewportSize.y() * 2.0f - 1.0f),
tcu::Vec2(((float)pixel.x() + testSquarePos + 0.0f) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + testSquareSize) / (float)viewportSize.y() * 2.0f - 1.0f),
tcu::Vec2(((float)pixel.x() + testSquarePos + testSquareSize) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + testSquareSize) / (float)viewportSize.y() * 2.0f - 1.0f),
tcu::Vec2(((float)pixel.x() + testSquarePos + testSquareSize) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + 0.0f ) / (float)viewportSize.y() * 2.0f - 1.0f),
};
const InterpolationRange weights[4] =
{
calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[0]),
calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[1]),
calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[2]),
calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[3]),
};
InterpolationRange result;
result.min = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
result.max = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
return result;
}
};
/*--------------------------------------------------------------------*//*!
* Used only by verifyMultisampleLineGroupInterpolation to calculate
* correct line interpolations for the triangulated lines.
*//*--------------------------------------------------------------------*/
struct MultisampleLineInterpolator
{
const LineSceneSpec& scene;
MultisampleLineInterpolator (const LineSceneSpec& scene_)
: scene(scene_)
{
}
InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
{
DE_UNREF(multisample);
DE_UNREF(subpixelBits);
// in triangulation, one line emits two triangles
const int lineNdx = primitiveNdx / 2;
// allow interpolation weights anywhere in the pixel
const tcu::Vec2 corners[4] =
{
tcu::Vec2((float)pixel.x() + 0.0f, (float)pixel.y() + 0.0f),
tcu::Vec2((float)pixel.x() + 0.0f, (float)pixel.y() + 1.0f),
tcu::Vec2((float)pixel.x() + 1.0f, (float)pixel.y() + 1.0f),
tcu::Vec2((float)pixel.x() + 1.0f, (float)pixel.y() + 0.0f),
};
const float wa = scene.lines[lineNdx].positions[0].w();
const float wb = scene.lines[lineNdx].positions[1].w();
const tcu::Vec2 pa = tcu::Vec2((scene.lines[lineNdx].positions[0].x() / wa + 1.0f) * 0.5f * (float)viewportSize.x(),
(scene.lines[lineNdx].positions[0].y() / wa + 1.0f) * 0.5f * (float)viewportSize.y());
const tcu::Vec2 pb = tcu::Vec2((scene.lines[lineNdx].positions[1].x() / wb + 1.0f) * 0.5f * (float)viewportSize.x(),
(scene.lines[lineNdx].positions[1].y() / wb + 1.0f) * 0.5f * (float)viewportSize.y());
// calculate interpolation as a line
const LineInterpolationRange weights[4] =
{
calcLineInterpolationWeights(pa, wa, pb, wb, corners[0]),
calcLineInterpolationWeights(pa, wa, pb, wb, corners[1]),
calcLineInterpolationWeights(pa, wa, pb, wb, corners[2]),
calcLineInterpolationWeights(pa, wa, pb, wb, corners[3]),
};
const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
// convert to three-component form. For all triangles, the vertex 0 is always emitted by the line starting point, and vertex 2 by the ending point
InterpolationRange result;
result.min = tcu::Vec3(minWeights.x(), 0.0f, minWeights.y());
result.max = tcu::Vec3(maxWeights.x(), 0.0f, maxWeights.y());
return result;
}
};
template <typename Interpolator>
bool verifyTriangleGroupInterpolationWithInterpolator (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, const Interpolator& interpolator)
{
const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
const bool multisampled = (args.numSamples != 0);
const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
const int errorFloodThreshold = 4;
int errorCount = 0;
int invalidPixels = 0;
int subPixelBits = args.subpixelBits;
tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
// log format
log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
// subpixel bits in in a valid range?
if (subPixelBits < 0)
{
log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
subPixelBits = 0;
}
else if (subPixelBits > 16)
{
// At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
subPixelBits = 16;
}
// check pixels
for (int y = 0; y < surface.getHeight(); ++y)
for (int x = 0; x < surface.getWidth(); ++x)
{
const tcu::RGBA color = surface.getPixel(x, y);
bool stackBottomFound = false;
int stackSize = 0;
tcu::Vec4 colorStackMin;
tcu::Vec4 colorStackMax;
// Iterate triangle coverage front to back, find the stack of pontentially contributing fragments
for (int triNdx = (int)scene.triangles.size() - 1; triNdx >= 0; --triNdx)
{
const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
scene.triangles[triNdx].positions[1],
scene.triangles[triNdx].positions[2],
tcu::IVec2(x, y),
viewportSize,
subPixelBits,
multisampled);
if (coverage == COVERAGE_FULL || coverage == COVERAGE_PARTIAL)
{
// potentially contributes to the result fragment's value
const InterpolationRange weights = interpolator.interpolate(triNdx, tcu::IVec2(x, y), viewportSize, multisampled, subPixelBits);
const tcu::Vec4 fragmentColorMax = de::clamp(weights.max.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
de::clamp(weights.max.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
de::clamp(weights.max.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
const tcu::Vec4 fragmentColorMin = de::clamp(weights.min.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
de::clamp(weights.min.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
de::clamp(weights.min.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
if (stackSize++ == 0)
{
// first triangle, set the values properly
colorStackMin = fragmentColorMin;
colorStackMax = fragmentColorMax;
}
else
{
// contributing triangle
colorStackMin = tcu::min(colorStackMin, fragmentColorMin);
colorStackMax = tcu::max(colorStackMax, fragmentColorMax);
}
if (coverage == COVERAGE_FULL)
{
// loop terminates, this is the bottommost fragment
stackBottomFound = true;
break;
}
}
}
// Partial coverage == background may be visible
if (stackSize != 0 && !stackBottomFound)
{
stackSize++;
colorStackMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
}
// Is the result image color in the valid range.
if (stackSize == 0)
{
// No coverage, allow only background (black, value=0)
const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
const int threshold = 1;
if (pixelNativeColor.x() > threshold ||
pixelNativeColor.y() > threshold ||
pixelNativeColor.z() > threshold)
{
++errorCount;
// don't fill the logs with too much data
if (errorCount < errorFloodThreshold)
{
log << tcu::TestLog::Message
<< "Found an invalid pixel at (" << x << "," << y << ")\n"
<< "\tPixel color:\t\t" << color << "\n"
<< "\tExpected background color.\n"
<< tcu::TestLog::EndMessage;
}
++invalidPixels;
errorMask.setPixel(x, y, invalidPixelColor);
}
}
else
{
DE_ASSERT(stackSize);
// Each additional step in the stack may cause conversion error of 1 bit due to undefined rounding direction
const int thresholdRed = stackSize - 1;
const int thresholdGreen = stackSize - 1;
const int thresholdBlue = stackSize - 1;
const tcu::Vec3 valueRangeMin = tcu::Vec3(colorStackMin.xyz());
const tcu::Vec3 valueRangeMax = tcu::Vec3(colorStackMax.xyz());
const tcu::IVec3 formatLimit ((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
const tcu::Vec3 colorMinF (de::clamp(valueRangeMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
de::clamp(valueRangeMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
de::clamp(valueRangeMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
const tcu::Vec3 colorMaxF (de::clamp(valueRangeMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
de::clamp(valueRangeMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
de::clamp(valueRangeMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
const tcu::IVec3 colorMin ((int)deFloatFloor(colorMinF.x()),
(int)deFloatFloor(colorMinF.y()),
(int)deFloatFloor(colorMinF.z()));
const tcu::IVec3 colorMax ((int)deFloatCeil (colorMaxF.x()),
(int)deFloatCeil (colorMaxF.y()),
(int)deFloatCeil (colorMaxF.z()));
// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
// Validity check
if (pixelNativeColor.x() < colorMin.x() - thresholdRed ||
pixelNativeColor.y() < colorMin.y() - thresholdGreen ||
pixelNativeColor.z() < colorMin.z() - thresholdBlue ||
pixelNativeColor.x() > colorMax.x() + thresholdRed ||
pixelNativeColor.y() > colorMax.y() + thresholdGreen ||
pixelNativeColor.z() > colorMax.z() + thresholdBlue)
{
++errorCount;
// don't fill the logs with too much data
if (errorCount <= errorFloodThreshold)
{
log << tcu::TestLog::Message
<< "Found an invalid pixel at (" << x << "," << y << ")\n"
<< "\tPixel color:\t\t" << color << "\n"
<< "\tNative color:\t\t" << pixelNativeColor << "\n"
<< "\tAllowed error:\t\t" << tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue) << "\n"
<< "\tReference native color min: " << tcu::clamp(colorMin - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
<< "\tReference native color max: " << tcu::clamp(colorMax + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
<< "\tReference native float min: " << tcu::clamp(colorMinF - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
<< "\tReference native float max: " << tcu::clamp(colorMaxF + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
<< "\tFmin:\t" << tcu::clamp(valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
<< "\tFmax:\t" << tcu::clamp(valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
<< tcu::TestLog::EndMessage;
}
++invalidPixels;
errorMask.setPixel(x, y, invalidPixelColor);
}
}
}
// don't just hide failures
if (errorCount > errorFloodThreshold)
log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
// report result
if (invalidPixels)
{
log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::Image("ErrorMask", "ErrorMask", errorMask)
<< tcu::TestLog::EndImageSet;
return false;
}
else
{
log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::EndImageSet;
return true;
}
}
float calculateIntersectionParameter (const tcu::Vec2 line[2], float w, int componentNdx)
{
DE_ASSERT(componentNdx < 2);
if (line[1][componentNdx] == line[0][componentNdx])
return -1.0f;
return (w - line[0][componentNdx]) / (line[1][componentNdx] - line[0][componentNdx]);
}
// Clips the given line with a ((-w, -w), (-w, w), (w, w), (w, -w)) rectangle
void applyClippingBox (tcu::Vec2 line[2], float w)
{
for (int side = 0; side < 4; ++side)
{
const int sign = ((side / 2) * -2) + 1;
const int component = side % 2;
const float t = calculateIntersectionParameter(line, w * (float)sign, component);
if ((t > 0) && (t < 1))
{
const float newCoord = t * line[1][1 - component] + (1 - t) * line[0][1 - component];
if (line[1][component] > (w * (float)sign))
{
line[1 - side / 2][component] = w * (float)sign;
line[1 - side / 2][1 - component] = newCoord;
}
else
{
line[side / 2][component] = w * (float)sign;
line[side / 2][1 - component] = newCoord;
}
}
}
}
enum ClipMode
{
CLIPMODE_NO_CLIPPING = 0,
CLIPMODE_USE_CLIPPING_BOX,
CLIPMODE_LAST
};
bool verifyMultisampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, ClipMode clipMode, VerifyTriangleGroupRasterizationLogStash* logStash = DE_NULL)
{
// Multisampled line == 2 triangles
const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
const float halfLineWidth = scene.lineWidth * 0.5f;
TriangleSceneSpec triangleScene;
triangleScene.triangles.resize(2 * scene.lines.size());
for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
{
// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
tcu::Vec2 lineNormalizedDeviceSpace[2] =
{
tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
};
if (clipMode == CLIPMODE_USE_CLIPPING_BOX)
{
applyClippingBox(lineNormalizedDeviceSpace, 1.0f);
}
const tcu::Vec2 lineScreenSpace[2] =
{
(lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
(lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
};
const tcu::Vec2 lineDir = tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
const tcu::Vec2 lineNormalDir = tcu::Vec2(lineDir.y(), -lineDir.x());
const tcu::Vec2 lineQuadScreenSpace[4] =
{
lineScreenSpace[0] + lineNormalDir * halfLineWidth,
lineScreenSpace[0] - lineNormalDir * halfLineWidth,
lineScreenSpace[1] - lineNormalDir * halfLineWidth,
lineScreenSpace[1] + lineNormalDir * halfLineWidth,
};
const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
{
lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
};
triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
}
return verifyTriangleGroupRasterization(surface, triangleScene, args, log, VERIFICATIONMODE_STRICT, logStash);
}
bool verifyMultisampleLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
// Multisampled line == 2 triangles
const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
const float halfLineWidth = scene.lineWidth * 0.5f;
TriangleSceneSpec triangleScene;
triangleScene.triangles.resize(2 * scene.lines.size());
for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
{
// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
const tcu::Vec2 lineNormalizedDeviceSpace[2] =
{
tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
};
const tcu::Vec2 lineScreenSpace[2] =
{
(lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
(lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
};
const tcu::Vec2 lineDir = tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
const tcu::Vec2 lineNormalDir = tcu::Vec2(lineDir.y(), -lineDir.x());
const tcu::Vec2 lineQuadScreenSpace[4] =
{
lineScreenSpace[0] + lineNormalDir * halfLineWidth,
lineScreenSpace[0] - lineNormalDir * halfLineWidth,
lineScreenSpace[1] - lineNormalDir * halfLineWidth,
lineScreenSpace[1] + lineNormalDir * halfLineWidth,
};
const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
{
lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
};
triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);
triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
triangleScene.triangles[lineNdx*2 + 0].colors[0] = scene.lines[lineNdx].colors[0];
triangleScene.triangles[lineNdx*2 + 0].colors[1] = scene.lines[lineNdx].colors[0];
triangleScene.triangles[lineNdx*2 + 0].colors[2] = scene.lines[lineNdx].colors[1];
triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);
triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
triangleScene.triangles[lineNdx*2 + 1].colors[0] = scene.lines[lineNdx].colors[0];
triangleScene.triangles[lineNdx*2 + 1].colors[1] = scene.lines[lineNdx].colors[1];
triangleScene.triangles[lineNdx*2 + 1].colors[2] = scene.lines[lineNdx].colors[1];
}
return verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, log, MultisampleLineInterpolator(scene));
}
bool verifyMultisamplePointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
// Multisampled point == 2 triangles
const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
TriangleSceneSpec triangleScene;
triangleScene.triangles.resize(2 * scene.points.size());
for (int pointNdx = 0; pointNdx < (int)scene.points.size(); ++pointNdx)
{
// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
const tcu::Vec2 pointNormalizedDeviceSpace = tcu::Vec2(scene.points[pointNdx].position.x() / scene.points[pointNdx].position.w(), scene.points[pointNdx].position.y() / scene.points[pointNdx].position.w());
const tcu::Vec2 pointScreenSpace = (pointNormalizedDeviceSpace + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize;
const float offset = scene.points[pointNdx].pointSize * 0.5f;
const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
{
(pointScreenSpace + tcu::Vec2(-offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
(pointScreenSpace + tcu::Vec2(-offset, offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
(pointScreenSpace + tcu::Vec2( offset, offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
(pointScreenSpace + tcu::Vec2( offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
};
triangleScene.triangles[pointNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 0].sharedEdge[0] = false;
triangleScene.triangles[pointNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 0].sharedEdge[1] = false;
triangleScene.triangles[pointNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 0].sharedEdge[2] = true;
triangleScene.triangles[pointNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 1].sharedEdge[0] = true;
triangleScene.triangles[pointNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 1].sharedEdge[1] = false;
triangleScene.triangles[pointNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 1].sharedEdge[2] = false;
}
return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
}
void genScreenSpaceLines (std::vector<tcu::Vec4>& screenspaceLines, const std::vector<LineSceneSpec::SceneLine>& lines, const tcu::IVec2& viewportSize)
{
DE_ASSERT(screenspaceLines.size() == lines.size());
for (int lineNdx = 0; lineNdx < (int)lines.size(); ++lineNdx)
{
const tcu::Vec2 lineNormalizedDeviceSpace[2] =
{
tcu::Vec2(lines[lineNdx].positions[0].x() / lines[lineNdx].positions[0].w(), lines[lineNdx].positions[0].y() / lines[lineNdx].positions[0].w()),
tcu::Vec2(lines[lineNdx].positions[1].x() / lines[lineNdx].positions[1].w(), lines[lineNdx].positions[1].y() / lines[lineNdx].positions[1].w()),
};
const tcu::Vec4 lineScreenSpace[2] =
{
tcu::Vec4((lineNormalizedDeviceSpace[0].x() + 1.0f) * 0.5f * (float)viewportSize.x(), (lineNormalizedDeviceSpace[0].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
tcu::Vec4((lineNormalizedDeviceSpace[1].x() + 1.0f) * 0.5f * (float)viewportSize.x(), (lineNormalizedDeviceSpace[1].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
};
screenspaceLines[lineNdx] = tcu::Vec4(lineScreenSpace[0].x(), lineScreenSpace[0].y(), lineScreenSpace[1].x(), lineScreenSpace[1].y());
}
}
bool verifySinglesampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
DE_ASSERT(scene.lines.size() < 255); // indices are stored as unsigned 8-bit ints
bool allOK = true;
bool overdrawInReference = false;
int referenceFragments = 0;
int resultFragments = 0;
int lineWidth = deFloorFloatToInt32(scene.lineWidth + 0.5f);
bool imageShown = false;
std::vector<bool> lineIsXMajor (scene.lines.size());
std::vector<tcu::Vec4> screenspaceLines(scene.lines.size());
// Reference renderer produces correct fragments using the diamond-rule. Make 2D int array, each cell contains the highest index (first index = 1) of the overlapping lines or 0 if no line intersects the pixel
tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
genScreenSpaceLines(screenspaceLines, scene.lines, tcu::IVec2(surface.getWidth(), surface.getHeight()));
for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
{
rr::SingleSampleLineRasterizer rasterizer(tcu::IVec4(0, 0, surface.getWidth(), surface.getHeight()));
rasterizer.init(tcu::Vec4(screenspaceLines[lineNdx][0],
screenspaceLines[lineNdx][1],
0.0f,
1.0f),
tcu::Vec4(screenspaceLines[lineNdx][2],
screenspaceLines[lineNdx][3],
0.0f,
1.0f),
scene.lineWidth);
// calculate majority of later use
lineIsXMajor[lineNdx] = isPackedSSLineXMajor(screenspaceLines[lineNdx]);
for (;;)
{
const int maxPackets = 32;
int numRasterized = 0;
rr::FragmentPacket packets[maxPackets];
rasterizer.rasterize(packets, DE_NULL, maxPackets, numRasterized);
for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
{
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
{
if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
{
const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
// Check for overdraw
if (!overdrawInReference)
overdrawInReference = referenceLineMap.getAccess().getPixelInt(fragPos.x(), fragPos.y()).x() != 0;
// Output pixel
referenceLineMap.getAccess().setPixel(tcu::IVec4(lineNdx + 1, 0, 0, 0), fragPos.x(), fragPos.y());
}
}
}
if (numRasterized != maxPackets)
break;
}
}
// Requirement 1: The coordinates of a fragment produced by the algorithm may not deviate by more than one unit
{
tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
bool missingFragments = false;
tcu::clear(errorMask.getAccess(), tcu::IVec4(0, 255, 0, 255));
log << tcu::TestLog::Message << "Searching for deviating fragments." << tcu::TestLog::EndMessage;
for (int y = 0; y < referenceLineMap.getHeight(); ++y)
for (int x = 0; x < referenceLineMap.getWidth(); ++x)
{
const bool reference = referenceLineMap.getAccess().getPixelInt(x, y).x() != 0;
const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
if (reference)
++referenceFragments;
if (result)
++resultFragments;
if (reference == result)
continue;
// Reference fragment here, matching result fragment must be nearby
if (reference && !result)
{
bool foundFragment = false;
if (x == 0 || y == 0 || x == referenceLineMap.getWidth() - 1 || y == referenceLineMap.getHeight() -1)
{
// image boundary, missing fragment could be over the image edge
foundFragment = true;
}
// find nearby fragment
for (int dy = -1; dy < 2 && !foundFragment; ++dy)
for (int dx = -1; dx < 2 && !foundFragment; ++dx)
{
if (compareColors(surface.getPixel(x+dx, y+dy), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits))
foundFragment = true;
}
if (!foundFragment)
{
missingFragments = true;
errorMask.setPixel(x, y, tcu::RGBA::red());
}
}
}
if (missingFragments)
{
log << tcu::TestLog::Message << "Invalid deviation(s) found." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::Image("ErrorMask", "ErrorMask", errorMask)
<< tcu::TestLog::EndImageSet;
imageShown = true;
allOK = false;
}
else
{
log << tcu::TestLog::Message << "No invalid deviations found." << tcu::TestLog::EndMessage;
}
}
// Requirement 2: The total number of fragments produced by the algorithm may differ from
// that produced by the diamond-exit rule by no more than one.
{
// Check is not valid if the primitives intersect or otherwise share same fragments
if (!overdrawInReference)
{
int allowedDeviation = (int)scene.lines.size() * lineWidth; // one pixel per primitive in the major direction
log << tcu::TestLog::Message << "Verifying fragment counts:\n"
<< "\tDiamond-exit rule: " << referenceFragments << " fragments.\n"
<< "\tResult image: " << resultFragments << " fragments.\n"
<< "\tAllowing deviation of " << allowedDeviation << " fragments.\n"
<< tcu::TestLog::EndMessage;
if (deAbs32(referenceFragments - resultFragments) > allowedDeviation)
{
tcu::Surface reference(surface.getWidth(), surface.getHeight());
// show a helpful reference image
tcu::clear(reference.getAccess(), tcu::IVec4(0, 0, 0, 255));
for (int y = 0; y < surface.getHeight(); ++y)
for (int x = 0; x < surface.getWidth(); ++x)
if (referenceLineMap.getAccess().getPixelInt(x, y).x())
reference.setPixel(x, y, tcu::RGBA::white());
log << tcu::TestLog::Message << "Invalid fragment count in result image." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Reference", "Reference", reference)
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::EndImageSet;
allOK = false;
imageShown = true;
}
else
{
log << tcu::TestLog::Message << "Fragment count is valid." << tcu::TestLog::EndMessage;
}
}
else
{
log << tcu::TestLog::Message << "Overdraw in scene. Fragment count cannot be verified. Skipping fragment count checks." << tcu::TestLog::EndMessage;
}
}
// Requirement 3: Line width must be constant
{
bool invalidWidthFound = false;
log << tcu::TestLog::Message << "Verifying line widths of the x-major lines." << tcu::TestLog::EndMessage;
for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
{
bool fullyVisibleLine = false;
bool previousPixelUndefined = false;
int currentLine = 0;
int currentWidth = 1;
for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
{
const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
int lineID = 0;
// Which line does this fragment belong to?
if (result)
{
bool multipleNearbyLines = false;
bool renderAtSurfaceEdge = false;
renderAtSurfaceEdge = (x == 1) || (x == referenceLineMap.getWidth() - 2);
for (int dy = -1; dy < 2; ++dy)
for (int dx = -1; dx < 2; ++dx)
{
const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
if (nearbyID)
{
if (lineID && lineID != nearbyID)
multipleNearbyLines = true;
lineID = nearbyID;
}
}
if (multipleNearbyLines || renderAtSurfaceEdge)
{
// Another line is too close, don't try to calculate width here
// Or the render result is outside of surface range
previousPixelUndefined = true;
continue;
}
}
// Only line with id of lineID is nearby
if (previousPixelUndefined)
{
// The line might have been overdrawn or not
currentLine = lineID;
currentWidth = 1;
fullyVisibleLine = false;
previousPixelUndefined = false;
}
else if (lineID == currentLine)
{
// Current line continues
++currentWidth;
}
else if (lineID > currentLine)
{
// Another line was drawn over or the line ends
currentLine = lineID;
currentWidth = 1;
fullyVisibleLine = true;
}
else
{
// The line ends
if (fullyVisibleLine && !lineIsXMajor[currentLine-1])
{
// check width
if (currentWidth != lineWidth)
{
log << tcu::TestLog::Message << "\tInvalid line width at (" << x - currentWidth << ", " << y << ") - (" << x - 1 << ", " << y << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
invalidWidthFound = true;
}
}
currentLine = lineID;
currentWidth = 1;
fullyVisibleLine = false;
}
}
}
log << tcu::TestLog::Message << "Verifying line widths of the y-major lines." << tcu::TestLog::EndMessage;
for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
{
bool fullyVisibleLine = false;
bool previousPixelUndefined = false;
int currentLine = 0;
int currentWidth = 1;
for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
{
const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
int lineID = 0;
// Which line does this fragment belong to?
if (result)
{
bool multipleNearbyLines = false;
bool renderAtSurfaceEdge = false;
renderAtSurfaceEdge = (y == 1) || (y == referenceLineMap.getWidth() - 2);
for (int dy = -1; dy < 2; ++dy)
for (int dx = -1; dx < 2; ++dx)
{
const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
if (nearbyID)
{
if (lineID && lineID != nearbyID)
multipleNearbyLines = true;
lineID = nearbyID;
}
}
if (multipleNearbyLines || renderAtSurfaceEdge)
{
// Another line is too close, don't try to calculate width here
// Or the render result is outside of surface range
previousPixelUndefined = true;
continue;
}
}
// Only line with id of lineID is nearby
if (previousPixelUndefined)
{
// The line might have been overdrawn or not
currentLine = lineID;
currentWidth = 1;
fullyVisibleLine = false;
previousPixelUndefined = false;
}
else if (lineID == currentLine)
{
// Current line continues
++currentWidth;
}
else if (lineID > currentLine)
{
// Another line was drawn over or the line ends
currentLine = lineID;
currentWidth = 1;
fullyVisibleLine = true;
}
else
{
// The line ends
if (fullyVisibleLine && lineIsXMajor[currentLine-1])
{
// check width
if (currentWidth != lineWidth)
{
log << tcu::TestLog::Message << "\tInvalid line width at (" << x << ", " << y - currentWidth << ") - (" << x << ", " << y - 1 << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
invalidWidthFound = true;
}
}
currentLine = lineID;
currentWidth = 1;
fullyVisibleLine = false;
}
}
}
if (invalidWidthFound)
{
log << tcu::TestLog::Message << "Invalid line width found, image is not valid." << tcu::TestLog::EndMessage;
allOK = false;
}
else
{
log << tcu::TestLog::Message << "Line widths are valid." << tcu::TestLog::EndMessage;
}
}
//\todo [2013-10-24 jarkko].
//Requirement 4. If two line segments share a common endpoint, and both segments are either
//x-major (both left-to-right or both right-to-left) or y-major (both bottom-totop
//or both top-to-bottom), then rasterizing both segments may not produce
//duplicate fragments, nor may any fragments be omitted so as to interrupt
//continuity of the connected segments.
if (!imageShown)
{
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::EndImageSet;
}
return allOK;
}
struct SingleSampleNarrowLineCandidate
{
int lineNdx;
tcu::IVec3 colorMin;
tcu::IVec3 colorMax;
tcu::Vec3 colorMinF;
tcu::Vec3 colorMaxF;
tcu::Vec3 valueRangeMin;
tcu::Vec3 valueRangeMax;
};
void setMaskMapCoverageBitForLine (int bitNdx, const tcu::Vec2& screenSpaceP0, const tcu::Vec2& screenSpaceP1, float lineWidth, tcu::PixelBufferAccess maskMap)
{
enum
{
MAX_PACKETS = 32,
};
rr::SingleSampleLineRasterizer rasterizer (tcu::IVec4(0, 0, maskMap.getWidth(), maskMap.getHeight()));
int numRasterized = MAX_PACKETS;
rr::FragmentPacket packets[MAX_PACKETS];
rasterizer.init(tcu::Vec4(screenSpaceP0.x(), screenSpaceP0.y(), 0.0f, 1.0f),
tcu::Vec4(screenSpaceP1.x(), screenSpaceP1.y(), 0.0f, 1.0f),
lineWidth);
while (numRasterized == MAX_PACKETS)
{
rasterizer.rasterize(packets, DE_NULL, MAX_PACKETS, numRasterized);
for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
{
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
{
if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
{
const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
DE_ASSERT(deInBounds32(fragPos.x(), 0, maskMap.getWidth()));
DE_ASSERT(deInBounds32(fragPos.y(), 0, maskMap.getHeight()));
const deUint32 previousMask = maskMap.getPixelUint(fragPos.x(), fragPos.y()).x();
const deUint32 newMask = (previousMask) | ((deUint32)1u << bitNdx);
maskMap.setPixel(tcu::UVec4(newMask, 0, 0, 0), fragPos.x(), fragPos.y());
}
}
}
}
}
void setMaskMapCoverageBitForLines (const std::vector<tcu::Vec4>& screenspaceLines, float lineWidth, tcu::PixelBufferAccess maskMap)
{
for (int lineNdx = 0; lineNdx < (int)screenspaceLines.size(); ++lineNdx)
{
const tcu::Vec2 pa = screenspaceLines[lineNdx].swizzle(0, 1);
const tcu::Vec2 pb = screenspaceLines[lineNdx].swizzle(2, 3);
setMaskMapCoverageBitForLine(lineNdx, pa, pb, lineWidth, maskMap);
}
}
// verify line interpolation assuming line pixels are interpolated independently depending only on screen space location
bool verifyLineGroupPixelIndependentInterpolation (const tcu::Surface& surface,
const LineSceneSpec& scene,
const RasterizationArguments& args,
tcu::TestLog& log,
LineInterpolationMethod interpolationMethod)
{
DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
DE_ASSERT(interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT || interpolationMethod == LINEINTERPOLATION_PROJECTED);
const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
const int errorFloodThreshold = 4;
int errorCount = 0;
tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
int invalidPixels = 0;
std::vector<tcu::Vec4> screenspaceLines (scene.lines.size()); //!< packed (x0, y0, x1, y1)
// Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
// The map is used to find lines with potential coverage to a given pixel
tcu::TextureLevel referenceLineMap (tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
// log format
log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
// prepare lookup map
genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess());
// Find all possible lines with coverage, check pixel color matches one of them
for (int y = 1; y < surface.getHeight() - 1; ++y)
for (int x = 1; x < surface.getWidth() - 1; ++x)
{
const tcu::RGBA color = surface.getPixel(x, y);
const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args); // Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
int lineCoverageSet = 0; // !< lines that may cover this fragment
int lineSurroundingCoverage = 0xFFFF; // !< lines that will cover this fragment
bool matchFound = false;
const tcu::IVec3 formatLimit ((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
std::vector<SingleSampleNarrowLineCandidate> candidates;
// Find lines with possible coverage
for (int dy = -1; dy < 2; ++dy)
for (int dx = -1; dx < 2; ++dx)
{
const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
lineCoverageSet |= coverage;
lineSurroundingCoverage &= coverage;
}
// background color is possible?
if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black(), args.redBits, args.greenBits, args.blueBits))
continue;
// Check those lines
for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
{
if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
{
const float wa = scene.lines[lineNdx].positions[0].w();
const float wb = scene.lines[lineNdx].positions[1].w();
const tcu::Vec2 pa = screenspaceLines[lineNdx].swizzle(0, 1);
const tcu::Vec2 pb = screenspaceLines[lineNdx].swizzle(2, 3);
const LineInterpolationRange range = (interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT)
? (calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits))
: (calcSingleSampleLineInterpolationRangeAxisProjected(pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits));
const tcu::Vec4 valueMin = de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
const tcu::Vec4 valueMax = de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
const tcu::Vec3 colorMinF (de::clamp(valueMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
de::clamp(valueMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
de::clamp(valueMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
const tcu::Vec3 colorMaxF (de::clamp(valueMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
de::clamp(valueMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
de::clamp(valueMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
const tcu::IVec3 colorMin ((int)deFloatFloor(colorMinF.x()),
(int)deFloatFloor(colorMinF.y()),
(int)deFloatFloor(colorMinF.z()));
const tcu::IVec3 colorMax ((int)deFloatCeil (colorMaxF.x()),
(int)deFloatCeil (colorMaxF.y()),
(int)deFloatCeil (colorMaxF.z()));
// Verify validity
if (pixelNativeColor.x() < colorMin.x() ||
pixelNativeColor.y() < colorMin.y() ||
pixelNativeColor.z() < colorMin.z() ||
pixelNativeColor.x() > colorMax.x() ||
pixelNativeColor.y() > colorMax.y() ||
pixelNativeColor.z() > colorMax.z())
{
if (errorCount < errorFloodThreshold)
{
// Store candidate information for logging
SingleSampleNarrowLineCandidate candidate;
candidate.lineNdx = lineNdx;
candidate.colorMin = colorMin;
candidate.colorMax = colorMax;
candidate.colorMinF = colorMinF;
candidate.colorMaxF = colorMaxF;
candidate.valueRangeMin = valueMin.swizzle(0, 1, 2);
candidate.valueRangeMax = valueMax.swizzle(0, 1, 2);
candidates.push_back(candidate);
}
}
else
{
matchFound = true;
break;
}
}
}
if (matchFound)
continue;
// invalid fragment
++invalidPixels;
errorMask.setPixel(x, y, invalidPixelColor);
++errorCount;
// don't fill the logs with too much data
if (errorCount < errorFloodThreshold)
{
log << tcu::TestLog::Message
<< "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
<< "\tPixel color:\t\t" << color << "\n"
<< "\tNative color:\t\t" << pixelNativeColor << "\n"
<< tcu::TestLog::EndMessage;
for (int candidateNdx = 0; candidateNdx < (int)candidates.size(); ++candidateNdx)
{
const SingleSampleNarrowLineCandidate& candidate = candidates[candidateNdx];
log << tcu::TestLog::Message << "\tCandidate (line " << candidate.lineNdx << "):\n"
<< "\t\tReference native color min: " << tcu::clamp(candidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
<< "\t\tReference native color max: " << tcu::clamp(candidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
<< "\t\tReference native float min: " << tcu::clamp(candidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
<< "\t\tReference native float max: " << tcu::clamp(candidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
<< "\t\tFmin:\t" << tcu::clamp(candidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
<< "\t\tFmax:\t" << tcu::clamp(candidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
<< tcu::TestLog::EndMessage;
}
}
}
// don't just hide failures
if (errorCount > errorFloodThreshold)
log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
// report result
if (invalidPixels)
{
log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::Image("ErrorMask", "ErrorMask", errorMask)
<< tcu::TestLog::EndImageSet;
return false;
}
else
{
log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::EndImageSet;
return true;
}
}
bool verifySinglesampleNarrowLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
DE_ASSERT(scene.lineWidth == 1.0f);
return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_STRICTLY_CORRECT);
}
bool verifyLineGroupInterpolationWithProjectedWeights (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_PROJECTED);
}
struct SingleSampleWideLineCandidate
{
struct InterpolationPointCandidate
{
tcu::IVec2 interpolationPoint;
tcu::IVec3 colorMin;
tcu::IVec3 colorMax;
tcu::Vec3 colorMinF;
tcu::Vec3 colorMaxF;
tcu::Vec3 valueRangeMin;
tcu::Vec3 valueRangeMax;
};
int lineNdx;
int numCandidates;
InterpolationPointCandidate interpolationCandidates[3];
};
// return point on line at a given position on a given axis
tcu::Vec2 getLineCoordAtAxisCoord (const tcu::Vec2& pa, const tcu::Vec2& pb, bool isXAxis, float axisCoord)
{
const int fixedCoordNdx = (isXAxis) ? (0) : (1);
const int varyingCoordNdx = (isXAxis) ? (1) : (0);
const float fixedDifference = pb[fixedCoordNdx] - pa[fixedCoordNdx];
const float varyingDifference = pb[varyingCoordNdx] - pa[varyingCoordNdx];
DE_ASSERT(fixedDifference != 0.0f);
const float resultFixedCoord = axisCoord;
const float resultVaryingCoord = pa[varyingCoordNdx] + (axisCoord - pa[fixedCoordNdx]) * (varyingDifference / fixedDifference);
return (isXAxis) ? (tcu::Vec2(resultFixedCoord, resultVaryingCoord))
: (tcu::Vec2(resultVaryingCoord, resultFixedCoord));
}
bool isBlack (const tcu::RGBA& c)
{
return c.getRed() == 0 && c.getGreen() == 0 && c.getBlue() == 0;
}
bool verifySinglesampleWideLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
enum
{
FLAG_ROOT_NOT_SET = (1u << 16)
};
const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
const int errorFloodThreshold = 4;
int errorCount = 0;
tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
int invalidPixels = 0;
std::vector<tcu::Vec4> effectiveLines (scene.lines.size()); //!< packed (x0, y0, x1, y1)
std::vector<bool> lineIsXMajor (scene.lines.size());
// for each line, for every distinct major direction fragment, store root pixel location (along
// minor direction);
std::vector<std::vector<deUint32> > rootPixelLocation (scene.lines.size()); //!< packed [16b - flags] [16b - coordinate]
// log format
log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
// Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
// The map is used to find lines with potential coverage to a given pixel
tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
// calculate mask and effective line coordinates
{
std::vector<tcu::Vec4> screenspaceLines(scene.lines.size());
genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess());
for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
{
const tcu::Vec2 lineScreenSpaceP0 = screenspaceLines[lineNdx].swizzle(0, 1);
const tcu::Vec2 lineScreenSpaceP1 = screenspaceLines[lineNdx].swizzle(2, 3);
const bool isXMajor = isPackedSSLineXMajor(screenspaceLines[lineNdx]);
lineIsXMajor[lineNdx] = isXMajor;
// wide line interpolations are calculated for a line moved in minor direction
{
const float offsetLength = (scene.lineWidth - 1.0f) / 2.0f;
const tcu::Vec2 offsetDirection = (isXMajor) ? (tcu::Vec2(0.0f, -1.0f)) : (tcu::Vec2(-1.0f, 0.0f));
const tcu::Vec2 offset = offsetDirection * offsetLength;
effectiveLines[lineNdx] = tcu::Vec4(lineScreenSpaceP0.x() + offset.x(),
lineScreenSpaceP0.y() + offset.y(),
lineScreenSpaceP1.x() + offset.x(),
lineScreenSpaceP1.y() + offset.y());
}
}
}
for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
{
// Calculate root pixel lookup table for this line. Since the implementation's fragment
// major coordinate range might not be a subset of the correct line range (they are allowed
// to vary by one pixel), we must extend the domain to cover whole viewport along major
// dimension.
//
// Expanding line strip to (effectively) infinite line might result in exit-diamnod set
// that is not a superset of the exit-diamond set of the line strip. In practice, this
// won't be an issue, since the allow-one-pixel-variation rule should tolerate this even
// if the original and extended line would resolve differently a diamond the line just
// touches (precision lost in expansion changes enter/exit status).
{
const bool isXMajor = lineIsXMajor[lineNdx];
const int majorSize = (isXMajor) ? (surface.getWidth()) : (surface.getHeight());
rr::LineExitDiamondGenerator diamondGenerator;
rr::LineExitDiamond diamonds[32];
int numRasterized = DE_LENGTH_OF_ARRAY(diamonds);
// Expand to effectively infinite line (endpoints are just one pixel over viewport boundaries)
const tcu::Vec2 expandedP0 = getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, -1.0f);
const tcu::Vec2 expandedP1 = getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, (float)majorSize + 1.0f);
diamondGenerator.init(tcu::Vec4(expandedP0.x(), expandedP0.y(), 0.0f, 1.0f),
tcu::Vec4(expandedP1.x(), expandedP1.y(), 0.0f, 1.0f));
rootPixelLocation[lineNdx].resize(majorSize, FLAG_ROOT_NOT_SET);
while (numRasterized == DE_LENGTH_OF_ARRAY(diamonds))
{
diamondGenerator.rasterize(diamonds, DE_LENGTH_OF_ARRAY(diamonds), numRasterized);
for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
{
const tcu::IVec2 fragPos = diamonds[packetNdx].position;
const int majorPos = (isXMajor) ? (fragPos.x()) : (fragPos.y());
const int rootPos = (isXMajor) ? (fragPos.y()) : (fragPos.x());
const deUint32 packed = (deUint32)((deUint16)((deInt16)rootPos));
// infinite line will generate some diamonds outside the viewport
if (deInBounds32(majorPos, 0, majorSize))
{
DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) != 0u);
rootPixelLocation[lineNdx][majorPos] = packed;
}
}
}
// Filled whole lookup table
for (int majorPos = 0; majorPos < majorSize; ++majorPos)
DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) == 0u);
}
}
// Find all possible lines with coverage, check pixel color matches one of them
for (int y = 1; y < surface.getHeight() - 1; ++y)
for (int x = 1; x < surface.getWidth() - 1; ++x)
{
const tcu::RGBA color = surface.getPixel(x, y);
const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args); // Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
int lineCoverageSet = 0; // !< lines that may cover this fragment
int lineSurroundingCoverage = 0xFFFF; // !< lines that will cover this fragment
bool matchFound = false;
const tcu::IVec3 formatLimit ((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
std::vector<SingleSampleWideLineCandidate> candidates;
// Find lines with possible coverage
for (int dy = -1; dy < 2; ++dy)
for (int dx = -1; dx < 2; ++dx)
{
const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
lineCoverageSet |= coverage;
lineSurroundingCoverage &= coverage;
}
// background color is possible?
if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black(), args.redBits, args.greenBits, args.blueBits))
continue;
// Check those lines
for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
{
if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
{
const float wa = scene.lines[lineNdx].positions[0].w();
const float wb = scene.lines[lineNdx].positions[1].w();
const tcu::Vec2 pa = effectiveLines[lineNdx].swizzle(0, 1);
const tcu::Vec2 pb = effectiveLines[lineNdx].swizzle(2, 3);
// \note Wide line fragments are generated by replicating the root fragment for each
// fragment column (row for y-major). Calculate interpolation at the root
// fragment.
const bool isXMajor = lineIsXMajor[lineNdx];
const int majorPosition = (isXMajor) ? (x) : (y);
const deUint32 minorInfoPacked = rootPixelLocation[lineNdx][majorPosition];
const int minorPosition = (int)((deInt16)((deUint16)(minorInfoPacked & 0xFFFFu)));
const tcu::IVec2 idealRootPos = (isXMajor) ? (tcu::IVec2(majorPosition, minorPosition)) : (tcu::IVec2(minorPosition, majorPosition));
const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
SingleSampleWideLineCandidate candidate;
candidate.lineNdx = lineNdx;
candidate.numCandidates = 0;
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates) == 3);
// Interpolation happens at the root fragment, which is then replicated in minor
// direction. Search for implementation's root position near accurate root.
for (int minorOffset = -1; minorOffset < 2; ++minorOffset)
{
const tcu::IVec2 rootPosition = idealRootPos + minorOffset * minorDirection;
// A fragment can be root fragment only if it exists
// \note root fragment can "exist" outside viewport
// \note no pixel format theshold since in this case allowing only black is more conservative
if (deInBounds32(rootPosition.x(), 0, surface.getWidth()) &&
deInBounds32(rootPosition.y(), 0, surface.getHeight()) &&
isBlack(surface.getPixel(rootPosition.x(), rootPosition.y())))
{
continue;
}
const LineInterpolationRange range = calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, rootPosition, args.subpixelBits);
const tcu::Vec4 valueMin = de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
const tcu::Vec4 valueMax = de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
const tcu::Vec3 colorMinF (de::clamp(valueMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
de::clamp(valueMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
de::clamp(valueMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
const tcu::Vec3 colorMaxF (de::clamp(valueMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
de::clamp(valueMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
de::clamp(valueMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
const tcu::IVec3 colorMin ((int)deFloatFloor(colorMinF.x()),
(int)deFloatFloor(colorMinF.y()),
(int)deFloatFloor(colorMinF.z()));
const tcu::IVec3 colorMax ((int)deFloatCeil (colorMaxF.x()),
(int)deFloatCeil (colorMaxF.y()),
(int)deFloatCeil (colorMaxF.z()));
// Verify validity
if (pixelNativeColor.x() < colorMin.x() ||
pixelNativeColor.y() < colorMin.y() ||
pixelNativeColor.z() < colorMin.z() ||
pixelNativeColor.x() > colorMax.x() ||
pixelNativeColor.y() > colorMax.y() ||
pixelNativeColor.z() > colorMax.z())
{
if (errorCount < errorFloodThreshold)
{
// Store candidate information for logging
SingleSampleWideLineCandidate::InterpolationPointCandidate& interpolationCandidate = candidate.interpolationCandidates[candidate.numCandidates++];
DE_ASSERT(candidate.numCandidates <= DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates));
interpolationCandidate.interpolationPoint = rootPosition;
interpolationCandidate.colorMin = colorMin;
interpolationCandidate.colorMax = colorMax;
interpolationCandidate.colorMinF = colorMinF;
interpolationCandidate.colorMaxF = colorMaxF;
interpolationCandidate.valueRangeMin = valueMin.swizzle(0, 1, 2);
interpolationCandidate.valueRangeMax = valueMax.swizzle(0, 1, 2);
}
}
else
{
matchFound = true;
break;
}
}
if (!matchFound)
{
// store info for logging
if (errorCount < errorFloodThreshold && candidate.numCandidates > 0)
candidates.push_back(candidate);
}
else
{
// no need to check other lines
break;
}
}
}
if (matchFound)
continue;
// invalid fragment
++invalidPixels;
errorMask.setPixel(x, y, invalidPixelColor);
++errorCount;
// don't fill the logs with too much data
if (errorCount < errorFloodThreshold)
{
tcu::MessageBuilder msg(&log);
msg << "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
<< "\tPixel color:\t\t" << color << "\n"
<< "\tNative color:\t\t" << pixelNativeColor << "\n";
for (int lineCandidateNdx = 0; lineCandidateNdx < (int)candidates.size(); ++lineCandidateNdx)
{
const SingleSampleWideLineCandidate& candidate = candidates[lineCandidateNdx];
msg << "\tCandidate line (line " << candidate.lineNdx << "):\n";
for (int interpolationCandidateNdx = 0; interpolationCandidateNdx < candidate.numCandidates; ++interpolationCandidateNdx)
{
const SingleSampleWideLineCandidate::InterpolationPointCandidate& interpolationCandidate = candidate.interpolationCandidates[interpolationCandidateNdx];
msg << "\t\tCandidate interpolation point (index " << interpolationCandidateNdx << "):\n"
<< "\t\t\tRoot fragment position (non-replicated fragment): " << interpolationCandidate.interpolationPoint << ":\n"
<< "\t\t\tReference native color min: " << tcu::clamp(interpolationCandidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
<< "\t\t\tReference native color max: " << tcu::clamp(interpolationCandidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
<< "\t\t\tReference native float min: " << tcu::clamp(interpolationCandidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
<< "\t\t\tReference native float max: " << tcu::clamp(interpolationCandidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
<< "\t\t\tFmin:\t" << tcu::clamp(interpolationCandidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
<< "\t\t\tFmax:\t" << tcu::clamp(interpolationCandidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n";
}
}
msg << tcu::TestLog::EndMessage;
}
}
// don't just hide failures
if (errorCount > errorFloodThreshold)
log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
// report result
if (invalidPixels)
{
log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::Image("ErrorMask", "ErrorMask", errorMask)
<< tcu::TestLog::EndImageSet;
return false;
}
else
{
log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::EndImageSet;
return true;
}
}
} // anonymous
CoverageType calculateTriangleCoverage (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::IVec2& pixel, const tcu::IVec2& viewportSize, int subpixelBits, bool multisample)
{
typedef tcu::Vector<deInt64, 2> I64Vec2;
const deUint64 numSubPixels = ((deUint64)1) << subpixelBits;
const deUint64 pixelHitBoxSize = (multisample) ? (numSubPixels) : (2+2); //!< allow 4 central (2x2) for non-multisample pixels. Rounding may move edges 1 subpixel to any direction.
const bool order = isTriangleClockwise(p0, p1, p2); //!< clockwise / counter-clockwise
const tcu::Vec4& orderedP0 = p0; //!< vertices of a clockwise triangle
const tcu::Vec4& orderedP1 = (order) ? (p1) : (p2);
const tcu::Vec4& orderedP2 = (order) ? (p2) : (p1);
const tcu::Vec2 triangleNormalizedDeviceSpace[3] =
{
tcu::Vec2(orderedP0.x() / orderedP0.w(), orderedP0.y() / orderedP0.w()),
tcu::Vec2(orderedP1.x() / orderedP1.w(), orderedP1.y() / orderedP1.w()),
tcu::Vec2(orderedP2.x() / orderedP2.w(), orderedP2.y() / orderedP2.w()),
};
const tcu::Vec2 triangleScreenSpace[3] =
{
(triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
(triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
(triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
};
// Broad bounding box - pixel check
{
const float minX = de::min(de::min(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
const float minY = de::min(de::min(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
const float maxX = de::max(de::max(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
const float maxY = de::max(de::max(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
if ((float)pixel.x() > maxX + 1 ||
(float)pixel.y() > maxY + 1 ||
(float)pixel.x() < minX - 1 ||
(float)pixel.y() < minY - 1)
return COVERAGE_NONE;
}
// Broad triangle - pixel area intersection
{
const I64Vec2 pixelCenterPosition = I64Vec2(pixel.x(), pixel.y()) * I64Vec2(numSubPixels, numSubPixels) + I64Vec2(numSubPixels / 2, numSubPixels / 2);
const I64Vec2 triangleSubPixelSpaceRound[3] =
{
I64Vec2(deRoundFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deRoundFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
I64Vec2(deRoundFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deRoundFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
I64Vec2(deRoundFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deRoundFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
};
// Check (using cross product) if pixel center is
// a) too far from any edge
// b) fully inside all edges
bool insideAllEdges = true;
for (int vtxNdx = 0; vtxNdx < 3; ++vtxNdx)
{
const int otherVtxNdx = (vtxNdx + 1) % 3;
const deInt64 maxPixelDistanceSquared = pixelHitBoxSize*pixelHitBoxSize; // Max distance from the pixel center from within the pixel is (sqrt(2) * boxWidth/2). Use 2x value for rounding tolerance
const I64Vec2 edge = triangleSubPixelSpaceRound[otherVtxNdx] - triangleSubPixelSpaceRound[vtxNdx];
const I64Vec2 v = pixelCenterPosition - triangleSubPixelSpaceRound[vtxNdx];
const deInt64 crossProduct = (edge.x() * v.y() - edge.y() * v.x());
// distance from edge: (edge x v) / |edge|
// (edge x v) / |edge| > maxPixelDistance
// ==> (edge x v)^2 / edge^2 > maxPixelDistance^2 | edge x v > 0
// ==> (edge x v)^2 > maxPixelDistance^2 * edge^2
if (crossProduct < 0 && crossProduct*crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(edge))
return COVERAGE_NONE;
if (crossProduct < 0 || crossProduct*crossProduct < maxPixelDistanceSquared * tcu::lengthSquared(edge))
insideAllEdges = false;
}
if (insideAllEdges)
return COVERAGE_FULL;
}
// Accurate intersection for edge pixels
{
// In multisampling, the sample points can be anywhere in the pixel, and in single sampling only in the center.
const I64Vec2 pixelCorners[4] =
{
I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+0) * numSubPixels),
I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+0) * numSubPixels),
I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+1) * numSubPixels),
I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+1) * numSubPixels),
};
const I64Vec2 pixelCenterCorners[4] =
{
I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 0, pixel.y() * numSubPixels + numSubPixels/2 + 0),
I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 1, pixel.y() * numSubPixels + numSubPixels/2 + 0),
I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 1, pixel.y() * numSubPixels + numSubPixels/2 + 1),
I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 0, pixel.y() * numSubPixels + numSubPixels/2 + 1),
};
// both rounding directions
const I64Vec2 triangleSubPixelSpaceFloor[3] =
{
I64Vec2(deFloorFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
I64Vec2(deFloorFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
I64Vec2(deFloorFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
};
const I64Vec2 triangleSubPixelSpaceCeil[3] =
{
I64Vec2(deCeilFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
I64Vec2(deCeilFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
I64Vec2(deCeilFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
};
const I64Vec2* const corners = (multisample) ? (pixelCorners) : (pixelCenterCorners);
// Test if any edge (with any rounding) intersects the pixel (boundary). If it does => Partial. If not => fully inside or outside
for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
for (int startRounding = 0; startRounding < 4; ++startRounding)
for (int endRounding = 0; endRounding < 4; ++endRounding)
{
const int nextEdgeNdx = (edgeNdx+1) % 3;
const I64Vec2 startPos ((startRounding&0x01) ? (triangleSubPixelSpaceFloor[edgeNdx].x()) : (triangleSubPixelSpaceCeil[edgeNdx].x()), (startRounding&0x02) ? (triangleSubPixelSpaceFloor[edgeNdx].y()) : (triangleSubPixelSpaceCeil[edgeNdx].y()));
const I64Vec2 endPos ((endRounding&0x01) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].x()) : (triangleSubPixelSpaceCeil[nextEdgeNdx].x()), (endRounding&0x02) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].y()) : (triangleSubPixelSpaceCeil[nextEdgeNdx].y()));
for (int pixelEdgeNdx = 0; pixelEdgeNdx < 4; ++pixelEdgeNdx)
{
const int pixelEdgeEnd = (pixelEdgeNdx + 1) % 4;
if (lineLineIntersect(startPos, endPos, corners[pixelEdgeNdx], corners[pixelEdgeEnd]))
return COVERAGE_PARTIAL;
}
}
// fully inside or outside
for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
{
const int nextEdgeNdx = (edgeNdx+1) % 3;
const I64Vec2& startPos = triangleSubPixelSpaceFloor[edgeNdx];
const I64Vec2& endPos = triangleSubPixelSpaceFloor[nextEdgeNdx];
const I64Vec2 edge = endPos - startPos;
const I64Vec2 v = corners[0] - endPos;
const deInt64 crossProduct = (edge.x() * v.y() - edge.y() * v.x());
// a corner of the pixel is outside => "fully inside" option is impossible
if (crossProduct < 0)
return COVERAGE_NONE;
}
return COVERAGE_FULL;
}
}
static void verifyTriangleGroupRasterizationLog (const tcu::Surface& surface, tcu::TestLog& log, VerifyTriangleGroupRasterizationLogStash& logStash)
{
// Output results
log << tcu::TestLog::Message << "Verifying rasterization result." << tcu::TestLog::EndMessage;
if (!logStash.result)
{
log << tcu::TestLog::Message << "Invalid pixels found:\n\t"
<< logStash.missingPixels << " missing pixels. (Marked with purple)\n\t"
<< logStash.unexpectedPixels << " incorrectly filled pixels. (Marked with red)\n\t"
<< "Unknown (subpixel on edge) pixels are marked with yellow."
<< tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::Image("ErrorMask", "ErrorMask", logStash.errorMask)
<< tcu::TestLog::EndImageSet;
}
else
{
log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::EndImageSet;
}
}
bool verifyTriangleGroupRasterization (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, VerificationMode mode, VerifyTriangleGroupRasterizationLogStash* logStash)
{
DE_ASSERT(mode < VERIFICATIONMODE_LAST);
const tcu::RGBA backGroundColor = tcu::RGBA(0, 0, 0, 255);
const tcu::RGBA triangleColor = tcu::RGBA(255, 255, 255, 255);
const tcu::RGBA missingPixelColor = tcu::RGBA(255, 0, 255, 255);
const tcu::RGBA unexpectedPixelColor = tcu::RGBA(255, 0, 0, 255);
const tcu::RGBA partialPixelColor = tcu::RGBA(255, 255, 0, 255);
const tcu::RGBA primitivePixelColor = tcu::RGBA(30, 30, 30, 255);
const int weakVerificationThreshold = 10;
const bool multisampled = (args.numSamples != 0);
const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
int missingPixels = 0;
int unexpectedPixels = 0;
int subPixelBits = args.subpixelBits;
tcu::TextureLevel coverageMap (tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
bool result = false;
// subpixel bits in in a valid range?
if (subPixelBits < 0)
{
log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
subPixelBits = 0;
}
else if (subPixelBits > 16)
{
// At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
subPixelBits = 16;
}
// generate coverage map
tcu::clear(coverageMap.getAccess(), tcu::IVec4(COVERAGE_NONE, 0, 0, 0));
for (int triNdx = 0; triNdx < (int)scene.triangles.size(); ++triNdx)
{
const tcu::IVec4 aabb = getTriangleAABB(scene.triangles[triNdx], viewportSize);
for (int y = de::max(0, aabb.y()); y <= de::min(aabb.w(), coverageMap.getHeight() - 1); ++y)
for (int x = de::max(0, aabb.x()); x <= de::min(aabb.z(), coverageMap.getWidth() - 1); ++x)
{
if (coverageMap.getAccess().getPixelUint(x, y).x() == COVERAGE_FULL)
continue;
const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
scene.triangles[triNdx].positions[1],
scene.triangles[triNdx].positions[2],
tcu::IVec2(x, y),
viewportSize,
subPixelBits,
multisampled);
if (coverage == COVERAGE_FULL)
{
coverageMap.getAccess().setPixel(tcu::IVec4(COVERAGE_FULL, 0, 0, 0), x, y);
}
else if (coverage == COVERAGE_PARTIAL)
{
CoverageType resultCoverage = COVERAGE_PARTIAL;
// Sharing an edge with another triangle?
// There should always be such a triangle, but the pixel in the other triangle might be
// on multiple edges, some of which are not shared. In these cases the coverage cannot be determined.
// Assume full coverage if the pixel is only on a shared edge in shared triangle too.
if (pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[triNdx], viewportSize))
{
bool friendFound = false;
for (int friendTriNdx = 0; friendTriNdx < (int)scene.triangles.size(); ++friendTriNdx)
{
if (friendTriNdx != triNdx && pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[friendTriNdx], viewportSize))
{
friendFound = true;
break;
}
}
if (friendFound)
resultCoverage = COVERAGE_FULL;
}
coverageMap.getAccess().setPixel(tcu::IVec4(resultCoverage, 0, 0, 0), x, y);
}
}
}
// check pixels
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
for (int y = 0; y < surface.getHeight(); ++y)
for (int x = 0; x < surface.getWidth(); ++x)
{
const tcu::RGBA color = surface.getPixel(x, y);
const bool imageNoCoverage = compareColors(color, backGroundColor, args.redBits, args.greenBits, args.blueBits);
const bool imageFullCoverage = compareColors(color, triangleColor, args.redBits, args.greenBits, args.blueBits);
CoverageType referenceCoverage = (CoverageType)coverageMap.getAccess().getPixelUint(x, y).x();
switch (referenceCoverage)
{
case COVERAGE_NONE:
if (!imageNoCoverage)
{
// coverage where there should not be
++unexpectedPixels;
errorMask.setPixel(x, y, unexpectedPixelColor);
}
break;
case COVERAGE_PARTIAL:
// anything goes
errorMask.setPixel(x, y, partialPixelColor);
break;
case COVERAGE_FULL:
if (!imageFullCoverage)
{
// no coverage where there should be
++missingPixels;
errorMask.setPixel(x, y, missingPixelColor);
}
else
{
errorMask.setPixel(x, y, primitivePixelColor);
}
break;
default:
DE_ASSERT(false);
};
}
if (((mode == VERIFICATIONMODE_STRICT) && (missingPixels + unexpectedPixels > 0)) ||
((mode == VERIFICATIONMODE_WEAK) && (missingPixels + unexpectedPixels > weakVerificationThreshold)))
{
result = false;
}
else
{
result = true;
}
// Output or stash results
{
VerifyTriangleGroupRasterizationLogStash* tempLogStash = (logStash == DE_NULL) ? new VerifyTriangleGroupRasterizationLogStash : logStash;
tempLogStash->result = result;
tempLogStash->missingPixels = missingPixels;
tempLogStash->unexpectedPixels = unexpectedPixels;
tempLogStash->errorMask = errorMask;
if (logStash == DE_NULL)
{
verifyTriangleGroupRasterizationLog(surface, log, *tempLogStash);
delete tempLogStash;
}
}
return result;
}
bool verifyLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
const bool multisampled = args.numSamples != 0;
if (multisampled)
return verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_NO_CLIPPING, DE_NULL);
else
return verifySinglesampleLineGroupRasterization(surface, scene, args, log);
}
bool verifyClippedTriangulatedLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
return verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_USE_CLIPPING_BOX, DE_NULL);
}
bool verifyRelaxedLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
VerifyTriangleGroupRasterizationLogStash noClippingLogStash;
VerifyTriangleGroupRasterizationLogStash useClippingLogStash;
if (verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_USE_CLIPPING_BOX, &useClippingLogStash))
{
log << tcu::TestLog::Message << "Relaxed rasterization succeeded with CLIPMODE_USE_CLIPPING_BOX, details follow." << tcu::TestLog::EndMessage;
verifyTriangleGroupRasterizationLog(surface, log, useClippingLogStash);
return true;
}
else if (verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_NO_CLIPPING, &noClippingLogStash))
{
log << tcu::TestLog::Message << "Relaxed rasterization succeeded with CLIPMODE_NO_CLIPPING, details follow." << tcu::TestLog::EndMessage;
verifyTriangleGroupRasterizationLog(surface, log, noClippingLogStash);
return true;
}
else
{
log << tcu::TestLog::Message << "Relaxed rasterization failed, details follow." << tcu::TestLog::EndMessage;
verifyTriangleGroupRasterizationLog(surface, log, useClippingLogStash);
verifyTriangleGroupRasterizationLog(surface, log, noClippingLogStash);
return false;
}
}
bool verifyPointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
// Splitting to triangles is a valid solution in multisampled cases and even in non-multisample cases too.
return verifyMultisamplePointGroupRasterization(surface, scene, args, log);
}
bool verifyTriangleGroupInterpolation (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
return verifyTriangleGroupInterpolationWithInterpolator(surface, scene, args, log, TriangleInterpolator(scene));
}
LineInterpolationMethod verifyLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
const bool multisampled = args.numSamples != 0;
if (multisampled)
{
if (verifyMultisampleLineGroupInterpolation(surface, scene, args, log))
return LINEINTERPOLATION_STRICTLY_CORRECT;
return LINEINTERPOLATION_INCORRECT;
}
else
{
const bool isNarrow = (scene.lineWidth == 1.0f);
// accurate interpolation
if (isNarrow)
{
if (verifySinglesampleNarrowLineGroupInterpolation(surface, scene, args, log))
return LINEINTERPOLATION_STRICTLY_CORRECT;
}
else
{
if (verifySinglesampleWideLineGroupInterpolation(surface, scene, args, log))
return LINEINTERPOLATION_STRICTLY_CORRECT;
}
// check with projected (inaccurate) interpolation
log << tcu::TestLog::Message << "Accurate verification failed, checking with projected weights (inaccurate equation)." << tcu::TestLog::EndMessage;
if (verifyLineGroupInterpolationWithProjectedWeights(surface, scene, args, log))
return LINEINTERPOLATION_PROJECTED;
return LINEINTERPOLATION_INCORRECT;
}
}
bool verifyTriangulatedLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
{
return verifyMultisampleLineGroupInterpolation(surface, scene, args, log);
}
} // tcu