//===-- ARMInstPrinter.cpp - Convert ARM MCInst to assembly syntax --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class prints an ARM MCInst to a .s file.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2014 */
#ifdef CAPSTONE_HAS_ARM
#include <stdio.h> // DEBUG
#include <stdlib.h>
#include <string.h>
#include <platform.h>
#include "ARMInstPrinter.h"
#include "ARMAddressingModes.h"
#include "ARMBaseInfo.h"
#include "ARMDisassembler.h"
#include "../../MCInst.h"
#include "../../SStream.h"
#include "../../MCRegisterInfo.h"
#include "../../utils.h"
#include "ARMMapping.h"
#define GET_SUBTARGETINFO_ENUM
#include "ARMGenSubtargetInfo.inc"
static void printRegName(cs_struct *h, SStream *OS, unsigned RegNo);
// Autogenerated by tblgen.
static void printInstruction(MCInst *MI, SStream *O, MCRegisterInfo *MRI);
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O);
static void printSORegRegOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printSORegImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrModeTBB(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrModeTBH(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode2Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAM2PreOrOffsetIndexOp(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode2OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode3Operand(MCInst *MI, unsigned OpNum, SStream *O, bool AlwaysPrintImm0);
static void printAddrMode3OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAM3PreOrOffsetIndexOp(MCInst *MI, unsigned Op, SStream *O, bool AlwaysPrintImm0);
static void printPostIdxImm8Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printPostIdxRegOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printPostIdxImm8s4Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode5Operand(MCInst *MI, unsigned OpNum, SStream *O, bool AlwaysPrintImm0);
static void printAddrMode6Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode7Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode6OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printBitfieldInvMaskImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printMemBOption(MCInst *MI, unsigned OpNum, SStream *O);
static void printShiftImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printPKHLSLShiftImm(MCInst *MI, unsigned OpNum, SStream *O);
static void printPKHASRShiftImm(MCInst *MI, unsigned OpNum, SStream *O);
static void printAdrLabelOperand(MCInst *MI, unsigned OpNum, SStream *O, unsigned);
static void printThumbS4ImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbSRImm(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbITMask(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeRROperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeImm5SOperand(MCInst *MI, unsigned OpNum, SStream *O, unsigned Scale);
static void printThumbAddrModeImm5S1Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeImm5S2Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeImm5S4Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeSPOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printT2SOOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrModeImm12Operand(MCInst *MI, unsigned OpNum, SStream *O, bool AlwaysPrintImm0);
static void printT2AddrModeImm8Operand(MCInst *MI, unsigned OpNum, SStream *O, bool);
static void printT2AddrModeImm8s4Operand(MCInst *MI, unsigned OpNum, SStream *O, bool);
static void printT2AddrModeImm0_1020s4Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printT2AddrModeImm8OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printT2AddrModeImm8s4OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printT2AddrModeSoRegOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printSetendOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printCPSIMod(MCInst *MI, unsigned OpNum, SStream *O);
static void printCPSIFlag(MCInst *MI, unsigned OpNum, SStream *O);
static void printMSRMaskOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printPredicateOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printMandatoryPredicateOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printSBitModifierOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printRegisterList(MCInst *MI, unsigned OpNum, SStream *O);
static void printNoHashImmediate(MCInst *MI, unsigned OpNum, SStream *O);
static void printPImmediate(MCInst *MI, unsigned OpNum, SStream *O);
static void printCImmediate(MCInst *MI, unsigned OpNum, SStream *O);
static void printCoprocOptionImm(MCInst *MI, unsigned OpNum, SStream *O);
static void printFPImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printNEONModImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printImmPlusOneOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printRotImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printGPRPairOperand(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *MRI);
static void printThumbLdrLabelOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printFBits16(MCInst *MI, unsigned OpNum, SStream *O);
static void printFBits32(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorIndex(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListOne(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListTwo(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *MRI);
static void printVectorListTwoSpaced(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *RI);
static void printVectorListThree(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListFour(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListOneAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListTwoAllLanes(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *RI);
static void printVectorListThreeAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListFourAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListTwoSpacedAllLanes(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *MRI);
static void printVectorListThreeSpacedAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListFourSpacedAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListThreeSpaced(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListFourSpaced(MCInst *MI, unsigned OpNum, SStream *O);
static void printInstSyncBOption(MCInst *MI, unsigned OpNum, SStream *O);
static void set_mem_access(MCInst *MI, bool status)
{
if (MI->csh->detail != CS_OPT_ON)
return;
MI->csh->doing_mem = status;
if (status) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_MEM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = ARM_REG_INVALID;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = ARM_REG_INVALID;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.scale = 1;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = 0;
} else {
// done, create the next operand slot
MI->flat_insn->detail->arm.op_count++;
}
}
static void op_addImm(MCInst *MI, int v)
{
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = v;
MI->flat_insn->detail->arm.op_count++;
}
}
#define GET_INSTRINFO_ENUM
#include "ARMGenInstrInfo.inc"
//#define PRINT_ALIAS_INSTR
#include "ARMGenAsmWriter.inc"
void ARM_getRegName(cs_struct *handle, int value)
{
if (value == CS_OPT_SYNTAX_NOREGNAME) {
handle->get_regname = getRegisterName2;
handle->reg_name = ARM_reg_name2;;
} else {
handle->get_regname = getRegisterName;
handle->reg_name = ARM_reg_name;;
}
}
/// translateShiftImm - Convert shift immediate from 0-31 to 1-32 for printing.
///
/// getSORegOffset returns an integer from 0-31, representing '32' as 0.
static unsigned translateShiftImm(unsigned imm)
{
// lsr #32 and asr #32 exist, but should be encoded as a 0.
//assert((imm & ~0x1f) == 0 && "Invalid shift encoding");
if (imm == 0)
return 32;
return imm;
}
/// Prints the shift value with an immediate value.
static void printRegImmShift(MCInst *MI, SStream *O, ARM_AM_ShiftOpc ShOpc, unsigned ShImm)
{
if (ShOpc == ARM_AM_no_shift || (ShOpc == ARM_AM_lsl && !ShImm))
return;
SStream_concat0(O, ", ");
//assert (!(ShOpc == ARM_AM_ror && !ShImm) && "Cannot have ror #0");
SStream_concat0(O, ARM_AM_getShiftOpcStr(ShOpc));
if (MI->csh->detail) {
if (MI->csh->doing_mem)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.type = (arm_shifter)ShOpc;
else
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.type = (arm_shifter)ShOpc;
}
if (ShOpc != ARM_AM_rrx) {
SStream_concat0(O, " ");
SStream_concat(O, "#%u", translateShiftImm(ShImm));
if (MI->csh->detail) {
if (MI->csh->doing_mem)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.value = translateShiftImm(ShImm);
else
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = translateShiftImm(ShImm);
}
}
}
static void printRegName(cs_struct *h, SStream *OS, unsigned RegNo)
{
#ifndef CAPSTONE_DIET
SStream_concat0(OS, h->get_regname(RegNo));
#endif
}
static name_map insn_update_flgs[] = {
{ ARM_INS_CMN, "cmn" },
{ ARM_INS_CMP, "cmp" },
{ ARM_INS_TEQ, "teq" },
{ ARM_INS_TST, "tst" },
{ ARM_INS_ADC, "adcs" },
{ ARM_INS_ADD, "adds" },
{ ARM_INS_AND, "ands" },
{ ARM_INS_ASR, "asrs" },
{ ARM_INS_BIC, "bics" },
{ ARM_INS_EOR, "eors" },
{ ARM_INS_LSL, "lsls" },
{ ARM_INS_LSR, "lsrs" },
{ ARM_INS_MLA, "mlas" },
{ ARM_INS_MOV, "movs" },
{ ARM_INS_MUL, "muls" },
{ ARM_INS_MVN, "mvns" },
{ ARM_INS_ORN, "orns" },
{ ARM_INS_ORR, "orrs" },
{ ARM_INS_ROR, "rors" },
{ ARM_INS_RRX, "rrxs" },
{ ARM_INS_RSB, "rsbs" },
{ ARM_INS_RSC, "rscs" },
{ ARM_INS_SBC, "sbcs" },
{ ARM_INS_SMLAL, "smlals" },
{ ARM_INS_SMULL, "smulls" },
{ ARM_INS_SUB, "subs" },
{ ARM_INS_UMLAL, "umlals" },
{ ARM_INS_UMULL, "umulls" },
{ ARM_INS_UADD8, "uadd8" },
};
void ARM_post_printer(csh ud, cs_insn *insn, char *insn_asm, MCInst *mci)
{
if (((cs_struct *)ud)->detail != CS_OPT_ON)
return;
// check if this insn requests write-back
if (mci->writeback || (strrchr(insn_asm, '!')) != NULL) {
insn->detail->arm.writeback = true;
} else if (mci->csh->mode & CS_MODE_THUMB) {
// handle some special instructions with writeback
//printf(">> Opcode = %u\n", mci->Opcode);
switch(mci->Opcode) {
default:
break;
case ARM_t2LDC2L_PRE:
case ARM_t2LDC2_PRE:
case ARM_t2LDCL_PRE:
case ARM_t2LDC_PRE:
case ARM_t2LDRB_PRE:
case ARM_t2LDRD_PRE:
case ARM_t2LDRH_PRE:
case ARM_t2LDRSB_PRE:
case ARM_t2LDRSH_PRE:
case ARM_t2LDR_PRE:
case ARM_t2STC2L_PRE:
case ARM_t2STC2_PRE:
case ARM_t2STCL_PRE:
case ARM_t2STC_PRE:
case ARM_t2STRB_PRE:
case ARM_t2STRD_PRE:
case ARM_t2STRH_PRE:
case ARM_t2STR_PRE:
case ARM_t2LDC2L_POST:
case ARM_t2LDC2_POST:
case ARM_t2LDCL_POST:
case ARM_t2LDC_POST:
case ARM_t2LDRB_POST:
case ARM_t2LDRD_POST:
case ARM_t2LDRH_POST:
case ARM_t2LDRSB_POST:
case ARM_t2LDRSH_POST:
case ARM_t2LDR_POST:
case ARM_t2STC2L_POST:
case ARM_t2STC2_POST:
case ARM_t2STCL_POST:
case ARM_t2STC_POST:
case ARM_t2STRB_POST:
case ARM_t2STRD_POST:
case ARM_t2STRH_POST:
case ARM_t2STR_POST:
insn->detail->arm.writeback = true;
break;
}
} else { // ARM mode
// handle some special instructions with writeback
//printf(">> Opcode = %u\n", mci->Opcode);
switch(mci->Opcode) {
default:
break;
case ARM_LDC2L_PRE:
case ARM_LDC2_PRE:
case ARM_LDCL_PRE:
case ARM_LDC_PRE:
case ARM_LDRD_PRE:
case ARM_LDRH_PRE:
case ARM_LDRSB_PRE:
case ARM_LDRSH_PRE:
case ARM_STC2L_PRE:
case ARM_STC2_PRE:
case ARM_STCL_PRE:
case ARM_STC_PRE:
case ARM_STRD_PRE:
case ARM_STRH_PRE:
case ARM_LDC2L_POST:
case ARM_LDC2_POST:
case ARM_LDCL_POST:
case ARM_LDC_POST:
case ARM_LDRBT_POST:
case ARM_LDRD_POST:
case ARM_LDRH_POST:
case ARM_LDRSB_POST:
case ARM_LDRSH_POST:
case ARM_STC2L_POST:
case ARM_STC2_POST:
case ARM_STCL_POST:
case ARM_STC_POST:
case ARM_STRBT_POST:
case ARM_STRD_POST:
case ARM_STRH_POST:
case ARM_LDRB_POST_IMM:
case ARM_LDR_POST_IMM:
case ARM_LDR_POST_REG:
case ARM_STRB_POST_IMM:
case ARM_STR_POST_IMM:
insn->detail->arm.writeback = true;
break;
}
}
// check if this insn requests update flags
if (insn->detail->arm.update_flags == false) {
// some insn still update flags, regardless of tabgen info
unsigned int i, j;
for (i = 0; i < ARR_SIZE(insn_update_flgs); i++) {
if (insn->id == insn_update_flgs[i].id &&
!strncmp(insn_asm, insn_update_flgs[i].name,
strlen(insn_update_flgs[i].name))) {
insn->detail->arm.update_flags = true;
// we have to update regs_write array as well
for (j = 0; j < ARR_SIZE(insn->detail->regs_write); j++) {
if (insn->detail->regs_write[j] == 0) {
insn->detail->regs_write[j] = ARM_REG_CPSR;
break;
}
}
break;
}
}
}
// instruction should not have invalid CC
if (insn->detail->arm.cc == ARM_CC_INVALID) {
insn->detail->arm.cc = ARM_CC_AL;
}
// manual fix for some special instructions
// printf(">>> id: %u, mcid: %u\n", insn->id, mci->Opcode);
switch(mci->Opcode) {
default:
break;
case ARM_MOVPCLR:
insn->detail->arm.operands[0].type = ARM_OP_REG;
insn->detail->arm.operands[0].reg = ARM_REG_PC;
insn->detail->arm.operands[1].type = ARM_OP_REG;
insn->detail->arm.operands[1].reg = ARM_REG_LR;
insn->detail->arm.op_count = 2;
break;
}
}
void ARM_printInst(MCInst *MI, SStream *O, void *Info)
{
MCRegisterInfo *MRI = (MCRegisterInfo *)Info;
unsigned Opcode = MCInst_getOpcode(MI), tmp, i, pubOpcode;
switch(Opcode) {
// Check for HINT instructions w/ canonical names.
case ARM_HINT:
case ARM_tHINT:
case ARM_t2HINT:
switch (MCOperand_getImm(MCInst_getOperand(MI, 0))) {
case 0: SStream_concat0(O, "nop"); pubOpcode = ARM_INS_NOP; break;
case 1: SStream_concat0(O, "yield"); pubOpcode = ARM_INS_YIELD; break;
case 2: SStream_concat0(O, "wfe"); pubOpcode = ARM_INS_WFE; break;
case 3: SStream_concat0(O, "wfi"); pubOpcode = ARM_INS_WFI; break;
case 4: SStream_concat0(O, "sev"); pubOpcode = ARM_INS_SEV; break;
case 5:
if ((ARM_getFeatureBits(MI->csh->mode) & ARM_HasV8Ops)) {
SStream_concat0(O, "sevl");
pubOpcode = ARM_INS_SEVL;
break;
}
// Fallthrough for non-v8
default:
// Anything else should just print normally.
printInstruction(MI, O, MRI);
return;
}
printPredicateOperand(MI, 1, O);
if (Opcode == ARM_t2HINT)
SStream_concat0(O, ".w");
MCInst_setOpcodePub(MI, pubOpcode);
return;
// Check for MOVs and print canonical forms, instead.
case ARM_MOVsr: {
// FIXME: Thumb variants?
MCOperand *Dst = MCInst_getOperand(MI, 0);
MCOperand *MO1 = MCInst_getOperand(MI, 1);
MCOperand *MO2 = MCInst_getOperand(MI, 2);
MCOperand *MO3 = MCInst_getOperand(MI, 3);
SStream_concat0(O, ARM_AM_getShiftOpcStr(ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO3))));
printSBitModifierOperand(MI, 6, O);
printPredicateOperand(MI, 4, O);
SStream_concat0(O, "\t");
printRegName(MI->csh, O, MCOperand_getReg(Dst));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(Dst);
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MO2));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO2);
MI->flat_insn->detail->arm.op_count++;
}
//assert(ARM_AM_getSORegOffset(MO3.getImm()) == 0);
return;
}
case ARM_MOVsi: {
// FIXME: Thumb variants?
MCOperand *Dst = MCInst_getOperand(MI, 0);
MCOperand *MO1 = MCInst_getOperand(MI, 1);
MCOperand *MO2 = MCInst_getOperand(MI, 2);
SStream_concat0(O, ARM_AM_getShiftOpcStr(ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2))));
printSBitModifierOperand(MI, 5, O);
printPredicateOperand(MI, 3, O);
SStream_concat0(O, "\t");
printRegName(MI->csh, O, MCOperand_getReg(Dst));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(Dst);
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn->detail->arm.op_count++;
}
if (ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2)) == ARM_AM_rrx) {
//printAnnotation(O, Annot);
return;
}
SStream_concat0(O, ", ");
tmp = translateShiftImm(getSORegOffset((unsigned int)MCOperand_getImm(MO2)));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.type =
(arm_shifter)ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2));
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = tmp;
}
return;
}
// A8.6.123 PUSH
case ARM_STMDB_UPD:
case ARM_t2STMDB_UPD:
if (MCOperand_getReg(MCInst_getOperand(MI, 0)) == ARM_SP &&
MCInst_getNumOperands(MI) > 5) {
// Should only print PUSH if there are at least two registers in the list.
SStream_concat0(O, "push");
MCInst_setOpcodePub(MI, ARM_INS_PUSH);
printPredicateOperand(MI, 2, O);
if (Opcode == ARM_t2STMDB_UPD)
SStream_concat0(O, ".w");
SStream_concat0(O, "\t");
printRegisterList(MI, 4, O);
return;
}
break;
case ARM_STR_PRE_IMM:
if (MCOperand_getReg(MCInst_getOperand(MI, 2)) == ARM_SP &&
MCOperand_getImm(MCInst_getOperand(MI, 3)) == -4) {
SStream_concat0(O, "push");
MCInst_setOpcodePub(MI, ARM_INS_PUSH);
printPredicateOperand(MI, 4, O);
SStream_concat0(O, "\t{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, 1)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, 1));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "}");
return;
}
break;
// A8.6.122 POP
case ARM_LDMIA_UPD:
case ARM_t2LDMIA_UPD:
if (MCOperand_getReg(MCInst_getOperand(MI, 0)) == ARM_SP &&
MCInst_getNumOperands(MI) > 5) {
// Should only print POP if there are at least two registers in the list.
SStream_concat0(O, "pop");
MCInst_setOpcodePub(MI, ARM_INS_POP);
printPredicateOperand(MI, 2, O);
if (Opcode == ARM_t2LDMIA_UPD)
SStream_concat0(O, ".w");
SStream_concat0(O, "\t");
printRegisterList(MI, 4, O);
return;
}
break;
case ARM_LDR_POST_IMM:
if (MCOperand_getReg(MCInst_getOperand(MI, 2)) == ARM_SP) {
MCOperand *MO2 = MCInst_getOperand(MI, 4);
if ((getAM2Op((unsigned int)MCOperand_getImm(MO2)) == ARM_AM_add &&
getAM2Offset((unsigned int)MCOperand_getImm(MO2)) == 4) ||
MCOperand_getImm(MO2) == 4) {
SStream_concat0(O, "pop");
MCInst_setOpcodePub(MI, ARM_INS_POP);
printPredicateOperand(MI, 5, O);
SStream_concat0(O, "\t{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, 0)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, 0));
MI->flat_insn->detail->arm.op_count++;
// this instruction implicitly read/write SP register
MI->flat_insn->detail->regs_read[MI->flat_insn->detail->regs_read_count] = ARM_REG_SP;
MI->flat_insn->detail->regs_read_count++;
MI->flat_insn->detail->regs_write[MI->flat_insn->detail->regs_write_count] = ARM_REG_SP;
MI->flat_insn->detail->regs_write_count++;
}
SStream_concat0(O, "}");
return;
}
}
break;
// A8.6.355 VPUSH
case ARM_VSTMSDB_UPD:
case ARM_VSTMDDB_UPD:
if (MCOperand_getReg(MCInst_getOperand(MI, 0)) == ARM_SP) {
SStream_concat0(O, "vpush");
MCInst_setOpcodePub(MI, ARM_INS_VPUSH);
printPredicateOperand(MI, 2, O);
SStream_concat0(O, "\t");
printRegisterList(MI, 4, O);
return;
}
break;
// A8.6.354 VPOP
case ARM_VLDMSIA_UPD:
case ARM_VLDMDIA_UPD:
if (MCOperand_getReg(MCInst_getOperand(MI, 0)) == ARM_SP) {
SStream_concat0(O, "vpop");
MCInst_setOpcodePub(MI, ARM_INS_VPOP);
printPredicateOperand(MI, 2, O);
SStream_concat0(O, "\t");
printRegisterList(MI, 4, O);
return;
}
break;
case ARM_tLDMIA: {
bool Writeback = true;
unsigned BaseReg = MCOperand_getReg(MCInst_getOperand(MI, 0));
unsigned i;
for (i = 3; i < MCInst_getNumOperands(MI); ++i) {
if (MCOperand_getReg(MCInst_getOperand(MI, i)) == BaseReg)
Writeback = false;
}
SStream_concat0(O, "ldm");
MCInst_setOpcodePub(MI, ARM_INS_LDM);
printPredicateOperand(MI, 1, O);
SStream_concat0(O, "\t");
printRegName(MI->csh, O, BaseReg);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = BaseReg;
MI->flat_insn->detail->arm.op_count++;
}
if (Writeback) {
MI->writeback = true;
SStream_concat0(O, "!");
}
SStream_concat0(O, ", ");
printRegisterList(MI, 3, O);
return;
}
// Combine 2 GPRs from disassember into a GPRPair to match with instr def.
// ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
// a single GPRPair reg operand is used in the .td file to replace the two
// GPRs. However, when decoding them, the two GRPs cannot be automatically
// expressed as a GPRPair, so we have to manually merge them.
// FIXME: We would really like to be able to tablegen'erate this.
case ARM_LDREXD:
case ARM_STREXD:
case ARM_LDAEXD:
case ARM_STLEXD: {
MCRegisterClass* MRC = MCRegisterInfo_getRegClass(MRI, ARM_GPRRegClassID);
bool isStore = Opcode == ARM_STREXD || Opcode == ARM_STLEXD;
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, isStore ? 1 : 0));
if (MCRegisterClass_contains(MRC, Reg)) {
MCInst NewMI;
MCInst_Init(&NewMI);
MCInst_setOpcode(&NewMI, Opcode);
if (isStore)
MCInst_addOperand2(&NewMI, MCInst_getOperand(MI, 0));
MCOperand_CreateReg0(&NewMI, MCRegisterInfo_getMatchingSuperReg(MRI, Reg, ARM_gsub_0,
MCRegisterInfo_getRegClass(MRI, ARM_GPRPairRegClassID)));
// Copy the rest operands into NewMI.
for(i = isStore ? 3 : 2; i < MCInst_getNumOperands(MI); ++i)
MCInst_addOperand2(&NewMI, MCInst_getOperand(MI, i));
printInstruction(&NewMI, O, MRI);
return;
}
}
}
//if (printAliasInstr(MI, O, MRI))
// printInstruction(MI, O, MRI);
printInstruction(MI, O, MRI);
}
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
int32_t imm;
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
unsigned Reg = MCOperand_getReg(Op);
printRegName(MI->csh, O, Reg);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
if (MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base == ARM_REG_INVALID)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = Reg;
else
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = Reg;
} else {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg;
MI->flat_insn->detail->arm.op_count++;
}
}
} else if (MCOperand_isImm(Op)) {
unsigned int opc = MCInst_getOpcode(MI);
imm = (int32_t)MCOperand_getImm(Op);
// relative branch only has relative offset, so we have to update it
// to reflect absolute address.
// Note: in ARM, PC is always 2 instructions ahead, so we have to
// add 8 in ARM mode, or 4 in Thumb mode
// printf(">> opcode: %u\n", MCInst_getOpcode(MI));
if (ARM_rel_branch(MI->csh, opc)) {
uint32_t address;
// only do this for relative branch
if (MI->csh->mode & CS_MODE_THUMB) {
address = (uint32_t)MI->address + 4;
if (ARM_blx_to_arm_mode(MI->csh, opc)) {
// here need to align down to the nearest 4-byte address
#define _ALIGN_DOWN(v, align_width) ((v/align_width)*align_width)
address = _ALIGN_DOWN(address, 4);
#undef _ALIGN_DOWN
}
} else {
address = (uint32_t)MI->address + 8;
}
imm += address;
if (imm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", imm);
else
SStream_concat(O, "#%u", imm);
} else {
switch(MI->flat_insn->id) {
default:
if (imm >= 0) {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", imm);
else
SStream_concat(O, "#%u", imm);
} else {
if (imm < -HEX_THRESHOLD)
SStream_concat(O, "#-0x%x", -imm);
else
SStream_concat(O, "#-%u", -imm);
}
break;
case ARM_INS_AND:
case ARM_INS_ORR:
case ARM_INS_EOR:
case ARM_INS_BIC:
case ARM_INS_MVN:
// do not print number in negative form
if (imm >= 0 && imm <= HEX_THRESHOLD)
SStream_concat(O, "#%u", imm);
else
SStream_concat(O, "#0x%x", imm);
break;
}
}
if (MI->csh->detail) {
if (MI->csh->doing_mem)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = imm;
else {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = imm;
MI->flat_insn->detail->arm.op_count++;
}
}
}
}
static void printThumbLdrLabelOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
int32_t OffImm;
bool isSub;
SStream_concat0(O, "[pc, ");
OffImm = (int32_t)MCOperand_getImm(MO1);
isSub = OffImm < 0;
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
SStream_concat(O, "#-0x%x", -OffImm);
} else {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", OffImm);
else
SStream_concat(O, "#%u", OffImm);
}
SStream_concat0(O, "]");
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_MEM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = ARM_REG_PC;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = ARM_REG_INVALID;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.scale = 1;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = OffImm;
MI->flat_insn->detail->arm.op_count++;
}
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
// "Addressing Mode 1 - Data-processing operands" forms. This includes:
// REG 0 0 - e.g. R5
// REG REG 0,SH_OPC - e.g. R5, ROR R3
// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
static void printSORegRegOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
MCOperand *MO3 = MCInst_getOperand(MI, OpNum+2);
ARM_AM_ShiftOpc ShOpc;
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.type = (MCOperand_getImm(MO3) & 7) + ARM_SFT_ASR_REG - 1;
MI->flat_insn->detail->arm.op_count++;
}
// Print the shift opc.
ShOpc = ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO3));
SStream_concat0(O, ", ");
SStream_concat0(O, ARM_AM_getShiftOpcStr(ShOpc));
if (ShOpc == ARM_AM_rrx)
return;
SStream_concat0(O, " ");
printRegName(MI->csh, O, MCOperand_getReg(MO2));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = MCOperand_getReg(MO2);
//assert(ARM_AM_getSORegOffset(MO3.getImm()) == 0);
}
static void printSORegImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.type = MCOperand_getImm(MO2) & 7;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.value = (unsigned int)MCOperand_getImm(MO2) >> 3;
MI->flat_insn->detail->arm.op_count++;
}
// Print the shift opc.
printRegImmShift(MI, O, ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2)),
getSORegOffset((unsigned int)MCOperand_getImm(MO2)));
}
//===--------------------------------------------------------------------===//
// Addressing Mode #2
//===--------------------------------------------------------------------===//
static void printAM2PreOrOffsetIndexOp(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op + 1);
MCOperand *MO3 = MCInst_getOperand(MI, Op + 2);
ARM_AM_AddrOpc subtracted = getAM2Op((unsigned int)MCOperand_getImm(MO3));
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
}
if (!MCOperand_getReg(MO2)) {
unsigned tmp = getAM2Offset((unsigned int)MCOperand_getImm(MO3));
if (tmp) { // Don't print +0.
subtracted = getAM2Op((unsigned int)MCOperand_getImm(MO3));
SStream_concat0(O, ", ");
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#%s0x%x", ARM_AM_getAddrOpcStr(subtracted), tmp);
else
SStream_concat(O, "#%s%u", ARM_AM_getAddrOpcStr(subtracted), tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.type = (arm_shifter)getAM2Op((unsigned int)MCOperand_getImm(MO3));
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.value = tmp;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].subtracted = subtracted == ARM_AM_sub;
}
}
SStream_concat0(O, "]");
set_mem_access(MI, false);
return;
}
SStream_concat0(O, ", ");
SStream_concat0(O, ARM_AM_getAddrOpcStr(subtracted));
printRegName(MI->csh, O, MCOperand_getReg(MO2));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = MCOperand_getReg(MO2);
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].subtracted = subtracted == ARM_AM_sub;
}
printRegImmShift(MI, O, getAM2ShiftOpc((unsigned int)MCOperand_getImm(MO3)),
getAM2Offset((unsigned int)MCOperand_getImm(MO3)));
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printAddrModeTBB(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op+1);
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MO2));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = MCOperand_getReg(MO2);
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printAddrModeTBH(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op+1);
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MO2));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = MCOperand_getReg(MO2);
SStream_concat0(O, ", lsl #1]");
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.type = ARM_SFT_LSL;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].shift.value = 1;
}
set_mem_access(MI, false);
}
static void printAddrMode2Operand(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
printAM2PreOrOffsetIndexOp(MI, Op, O);
}
static void printAddrMode2OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
ARM_AM_AddrOpc subtracted = getAM2Op((unsigned int)MCOperand_getImm(MO2));
if (!MCOperand_getReg(MO1)) {
unsigned ImmOffs = getAM2Offset((unsigned int)MCOperand_getImm(MO2));
if (ImmOffs > HEX_THRESHOLD)
SStream_concat(O, "#%s0x%x",
ARM_AM_getAddrOpcStr(subtracted), ImmOffs);
else
SStream_concat(O, "#%s%u",
ARM_AM_getAddrOpcStr(subtracted), ImmOffs);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = ImmOffs;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].subtracted = subtracted == ARM_AM_sub;
MI->flat_insn->detail->arm.op_count++;
}
return;
}
SStream_concat0(O, ARM_AM_getAddrOpcStr(subtracted));
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].subtracted = subtracted == ARM_AM_sub;
MI->flat_insn->detail->arm.op_count++;
}
printRegImmShift(MI, O, getAM2ShiftOpc((unsigned int)MCOperand_getImm(MO2)),
getAM2Offset((unsigned int)MCOperand_getImm(MO2)));
}
//===--------------------------------------------------------------------===//
// Addressing Mode #3
//===--------------------------------------------------------------------===//
static void printAM3PreOrOffsetIndexOp(MCInst *MI, unsigned Op, SStream *O,
bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op+1);
MCOperand *MO3 = MCInst_getOperand(MI, Op+2);
ARM_AM_AddrOpc sign = getAM3Op((unsigned int)MCOperand_getImm(MO3));
unsigned ImmOffs;
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
if (MCOperand_getReg(MO2)) {
SStream_concat0(O, ", ");
SStream_concat0(O, ARM_AM_getAddrOpcStr(sign));
printRegName(MI->csh, O, MCOperand_getReg(MO2));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = MCOperand_getReg(MO2);
if (!sign) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.scale = -1;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].subtracted = true;
}
}
SStream_concat0(O, "]");
set_mem_access(MI, false);
return;
}
//If the op is sub we have to print the immediate even if it is 0
ImmOffs = getAM3Offset((unsigned int)MCOperand_getImm(MO3));
if (AlwaysPrintImm0 || ImmOffs || (sign == ARM_AM_sub)) {
if (ImmOffs > HEX_THRESHOLD)
SStream_concat(O, ", #%s0x%x", ARM_AM_getAddrOpcStr(sign), ImmOffs);
else
SStream_concat(O, ", #%s%u", ARM_AM_getAddrOpcStr(sign), ImmOffs);
}
if (MI->csh->detail) {
if (!sign) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = -(int)ImmOffs;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].subtracted = true;
} else
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = (int)ImmOffs;
}
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printAddrMode3Operand(MCInst *MI, unsigned Op, SStream *O,
bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
if (!MCOperand_isReg(MO1)) { // For label symbolic references.
printOperand(MI, Op, O);
return;
}
printAM3PreOrOffsetIndexOp(MI, Op, O, AlwaysPrintImm0);
}
static void printAddrMode3OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
ARM_AM_AddrOpc subtracted = getAM3Op((unsigned int)MCOperand_getImm(MO2));
unsigned ImmOffs;
if (MCOperand_getReg(MO1)) {
SStream_concat0(O, ARM_AM_getAddrOpcStr(subtracted));
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].subtracted = subtracted == ARM_AM_sub;
MI->flat_insn->detail->arm.op_count++;
}
return;
}
ImmOffs = getAM3Offset((unsigned int)MCOperand_getImm(MO2));
if (ImmOffs > HEX_THRESHOLD)
SStream_concat(O, "#%s0x%x", ARM_AM_getAddrOpcStr(subtracted), ImmOffs);
else
SStream_concat(O, "#%s%u", ARM_AM_getAddrOpcStr(subtracted), ImmOffs);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
if (subtracted) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = ImmOffs;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].subtracted = true;
} else
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = -(int)ImmOffs;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printPostIdxImm8Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
unsigned Imm = (unsigned int)MCOperand_getImm(MO);
if ((Imm & 0xff) > HEX_THRESHOLD)
SStream_concat(O, "#%s0x%x", ((Imm & 256) ? "" : "-"), (Imm & 0xff));
else
SStream_concat(O, "#%s%u", ((Imm & 256) ? "" : "-"), (Imm & 0xff));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = Imm & 0xff;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printPostIdxRegOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
SStream_concat0(O, (MCOperand_getImm(MO2) ? "" : "-"));
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn->detail->arm.op_count++;
}
}
static void printPostIdxImm8s4Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
unsigned Imm = (unsigned int)MCOperand_getImm(MO);
if (((Imm & 0xff) << 2) > HEX_THRESHOLD) {
SStream_concat(O, "#%s0x%x", ((Imm & 256) ? "" : "-"), ((Imm & 0xff) << 2));
} else {
SStream_concat(O, "#%s%u", ((Imm & 256) ? "" : "-"), ((Imm & 0xff) << 2));
}
if (MI->csh->detail) {
int v = (Imm & 256) ? ((Imm & 0xff) << 2) : -((((int)Imm) & 0xff) << 2);
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = v;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printAddrMode5Operand(MCInst *MI, unsigned OpNum, SStream *O,
bool AlwaysPrintImm0)
{
unsigned ImmOffs;
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
ARM_AM_AddrOpc subtracted = ARM_AM_getAM5Op((unsigned int)MCOperand_getImm(MO2));
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, OpNum, O);
return;
}
SStream_concat0(O, "[");
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_MEM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = ARM_REG_INVALID;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.scale = 1;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = 0;
}
ImmOffs = ARM_AM_getAM5Offset((unsigned int)MCOperand_getImm(MO2));
if (AlwaysPrintImm0 || ImmOffs || subtracted == ARM_AM_sub) {
if (ImmOffs * 4 > HEX_THRESHOLD)
SStream_concat(O, ", #%s0x%x",
ARM_AM_getAddrOpcStr(subtracted),
ImmOffs * 4);
else
SStream_concat(O, ", #%s%u",
ARM_AM_getAddrOpcStr(subtracted),
ImmOffs * 4);
if (MI->csh->detail) {
if (subtracted)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = ImmOffs * 4;
else
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = -(int)ImmOffs * 4;
}
}
SStream_concat0(O, "]");
if (MI->csh->detail) {
MI->flat_insn->detail->arm.op_count++;
}
}
static void printAddrMode6Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
unsigned tmp;
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
tmp = (unsigned int)MCOperand_getImm(MO2);
if (tmp) {
if (tmp << 3 > HEX_THRESHOLD)
SStream_concat(O, ":0x%x", (tmp << 3));
else
SStream_concat(O, ":%u", (tmp << 3));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = tmp << 3;
}
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printAddrMode7Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printAddrMode6OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
if (MCOperand_getReg(MO) == 0) {
MI->writeback = true;
SStream_concat0(O, "!");
} else {
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MO));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MO);
MI->flat_insn->detail->arm.op_count++;
}
}
}
static void printBitfieldInvMaskImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
uint32_t v = ~(uint32_t)MCOperand_getImm(MO);
int32_t lsb = CountTrailingZeros_32(v);
int32_t width = (32 - CountLeadingZeros_32 (v)) - lsb;
//assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!");
if (lsb > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", lsb);
else
SStream_concat(O, "#%u", lsb);
if (width > HEX_THRESHOLD)
SStream_concat(O, ", #0x%x", width);
else
SStream_concat(O, ", #%u", width);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = lsb;
MI->flat_insn->detail->arm.op_count++;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = width;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printMemBOption(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned val = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat0(O, ARM_MB_MemBOptToString(val + 1,
(ARM_getFeatureBits(MI->csh->mode) & ARM_HasV8Ops) != 0));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.mem_barrier = (arm_mem_barrier)(val + 1);
}
}
void printInstSyncBOption(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned val = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat0(O, ARM_ISB_InstSyncBOptToString(val));
}
static void printShiftImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned ShiftOp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
bool isASR = (ShiftOp & (1 << 5)) != 0;
unsigned Amt = ShiftOp & 0x1f;
if (isASR) {
unsigned tmp = Amt == 0 ? 32 : Amt;
if (tmp > HEX_THRESHOLD)
SStream_concat(O, ", asr #0x%x", tmp);
else
SStream_concat(O, ", asr #%u", tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.type = ARM_SFT_ASR;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = tmp;
}
} else if (Amt) {
if (Amt > HEX_THRESHOLD)
SStream_concat(O, ", lsl #0x%x", Amt);
else
SStream_concat(O, ", lsl #%u", Amt);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.type = ARM_SFT_LSL;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = Amt;
}
}
}
static void printPKHLSLShiftImm(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (Imm == 0)
return;
//assert(Imm > 0 && Imm < 32 && "Invalid PKH shift immediate value!");
if (Imm > HEX_THRESHOLD)
SStream_concat(O, ", lsl #0x%x", Imm);
else
SStream_concat(O, ", lsl #%u", Imm);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.type = ARM_SFT_LSL;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = Imm;
}
}
static void printPKHASRShiftImm(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
// A shift amount of 32 is encoded as 0.
if (Imm == 0)
Imm = 32;
//assert(Imm > 0 && Imm <= 32 && "Invalid PKH shift immediate value!");
if (Imm > HEX_THRESHOLD)
SStream_concat(O, ", asr #0x%x", Imm);
else
SStream_concat(O, ", asr #%u", Imm);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.type = ARM_SFT_ASR;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = Imm;
}
}
// FIXME: push {r1, r2, r3, ...} can exceed the number of operands in MCInst struct
static void printRegisterList(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned i, e;
SStream_concat0(O, "{");
for (i = OpNum, e = MCInst_getNumOperands(MI); i != e; ++i) {
if (i != OpNum) SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, i)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, i));
MI->flat_insn->detail->arm.op_count++;
}
}
SStream_concat0(O, "}");
}
static void printGPRPairOperand(MCInst *MI, unsigned OpNum, SStream *O,
MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
printRegName(MI->csh, O, MCRegisterInfo_getSubReg(MRI, Reg, ARM_gsub_0));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCRegisterInfo_getSubReg(MRI, Reg, ARM_gsub_0);
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCRegisterInfo_getSubReg(MRI, Reg, ARM_gsub_1));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCRegisterInfo_getSubReg(MRI, Reg, ARM_gsub_1);
MI->flat_insn->detail->arm.op_count++;
}
}
// SETEND BE/LE
static void printSetendOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
if (MCOperand_getImm(Op)) {
SStream_concat0(O, "be");
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_SETEND;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].setend = ARM_SETEND_BE;
MI->flat_insn->detail->arm.op_count++;
}
} else {
SStream_concat0(O, "le");
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_SETEND;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].setend = ARM_SETEND_LE;
MI->flat_insn->detail->arm.op_count++;
}
}
}
static void printCPSIMod(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
unsigned int mode = (unsigned int)MCOperand_getImm(Op);
SStream_concat0(O, ARM_PROC_IModToString(mode));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.cps_mode = mode;
}
}
static void printCPSIFlag(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
unsigned IFlags = (unsigned int)MCOperand_getImm(Op);
int i;
for (i = 2; i >= 0; --i)
if (IFlags & (1 << i)) {
SStream_concat0(O, ARM_PROC_IFlagsToString(1 << i));
}
if (IFlags == 0) {
SStream_concat0(O, "none");
IFlags = ARM_CPSFLAG_NONE;
}
if (MI->csh->detail) {
MI->flat_insn->detail->arm.cps_flag = IFlags;
}
}
static void printMSRMaskOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
unsigned SpecRegRBit = (unsigned)MCOperand_getImm(Op) >> 4;
unsigned Mask = (unsigned)MCOperand_getImm(Op) & 0xf;
unsigned reg;
if (ARM_getFeatureBits(MI->csh->mode) & ARM_FeatureMClass) {
unsigned SYSm = (unsigned)MCOperand_getImm(Op);
unsigned Opcode = MCInst_getOpcode(MI);
// For reads of the special registers ignore the "mask encoding" bits
// which are only for writes.
if (Opcode == ARM_t2MRS_M)
SYSm &= 0xff;
switch (SYSm) {
default: //llvm_unreachable("Unexpected mask value!");
case 0:
case 0x800: SStream_concat0(O, "apsr"); ARM_addSysReg(MI, ARM_SYSREG_APSR); return; // with _nzcvq bits is an alias for aspr
case 0x400: SStream_concat0(O, "apsr_g"); ARM_addSysReg(MI, ARM_SYSREG_APSR_G); return;
case 0xc00: SStream_concat0(O, "apsr_nzcvqg"); ARM_addSysReg(MI, ARM_SYSREG_APSR_NZCVQG); return;
case 1:
case 0x801: SStream_concat0(O, "iapsr"); ARM_addSysReg(MI, ARM_SYSREG_IAPSR); return; // with _nzcvq bits is an alias for iapsr
case 0x401: SStream_concat0(O, "iapsr_g"); ARM_addSysReg(MI, ARM_SYSREG_IAPSR_G); return;
case 0xc01: SStream_concat0(O, "iapsr_nzcvqg"); ARM_addSysReg(MI, ARM_SYSREG_IAPSR_NZCVQG); return;
case 2:
case 0x802: SStream_concat0(O, "eapsr"); ARM_addSysReg(MI, ARM_SYSREG_EAPSR); return; // with _nzcvq bits is an alias for eapsr
case 0x402: SStream_concat0(O, "eapsr_g"); ARM_addSysReg(MI, ARM_SYSREG_EAPSR_G); return;
case 0xc02: SStream_concat0(O, "eapsr_nzcvqg"); ARM_addSysReg(MI, ARM_SYSREG_EAPSR_NZCVQG); return;
case 3:
case 0x803: SStream_concat0(O, "xpsr"); ARM_addSysReg(MI, ARM_SYSREG_XPSR); return; // with _nzcvq bits is an alias for xpsr
case 0x403: SStream_concat0(O, "xpsr_g"); ARM_addSysReg(MI, ARM_SYSREG_XPSR_G); return;
case 0xc03: SStream_concat0(O, "xpsr_nzcvqg"); ARM_addSysReg(MI, ARM_SYSREG_XPSR_NZCVQG); return;
case 5:
case 0x805: SStream_concat0(O, "ipsr"); ARM_addSysReg(MI, ARM_SYSREG_IPSR); return;
case 6:
case 0x806: SStream_concat0(O, "epsr"); ARM_addSysReg(MI, ARM_SYSREG_EPSR); return;
case 7:
case 0x807: SStream_concat0(O, "iepsr"); ARM_addSysReg(MI, ARM_SYSREG_IEPSR); return;
case 8:
case 0x808: SStream_concat0(O, "msp"); ARM_addSysReg(MI, ARM_SYSREG_MSP); return;
case 9:
case 0x809: SStream_concat0(O, "psp"); ARM_addSysReg(MI, ARM_SYSREG_PSP); return;
case 0x10:
case 0x810: SStream_concat0(O, "primask"); ARM_addSysReg(MI, ARM_SYSREG_PRIMASK); return;
case 0x11:
case 0x811: SStream_concat0(O, "basepri"); ARM_addSysReg(MI, ARM_SYSREG_BASEPRI); return;
case 0x12:
case 0x812: SStream_concat0(O, "basepri_max"); ARM_addSysReg(MI, ARM_SYSREG_BASEPRI_MAX); return;
case 0x13:
case 0x813: SStream_concat0(O, "faultmask"); ARM_addSysReg(MI, ARM_SYSREG_FAULTMASK); return;
case 0x14:
case 0x814: SStream_concat0(O, "control"); ARM_addSysReg(MI, ARM_SYSREG_CONTROL); return;
}
}
// As special cases, CPSR_f, CPSR_s and CPSR_fs prefer printing as
// APSR_nzcvq, APSR_g and APSRnzcvqg, respectively.
if (!SpecRegRBit && (Mask == 8 || Mask == 4 || Mask == 12)) {
SStream_concat0(O, "apsr_");
switch (Mask) {
default: // llvm_unreachable("Unexpected mask value!");
case 4: SStream_concat0(O, "g"); ARM_addSysReg(MI, ARM_SYSREG_APSR_G); return;
case 8: SStream_concat0(O, "nzcvq"); ARM_addSysReg(MI, ARM_SYSREG_APSR_NZCVQ); return;
case 12: SStream_concat0(O, "nzcvqg"); ARM_addSysReg(MI, ARM_SYSREG_APSR_NZCVQG); return;
}
}
reg = 0;
if (SpecRegRBit) {
SStream_concat0(O, "spsr");
if (Mask) {
SStream_concat0(O, "_");
if (Mask & 8) {
SStream_concat0(O, "f");
reg += ARM_SYSREG_SPSR_F;
}
if (Mask & 4) {
SStream_concat0(O, "s");
reg += ARM_SYSREG_SPSR_S;
}
if (Mask & 2) {
SStream_concat0(O, "x");
reg += ARM_SYSREG_SPSR_X;
}
if (Mask & 1) {
SStream_concat0(O, "c");
reg += ARM_SYSREG_SPSR_C;
}
ARM_addSysReg(MI, reg);
}
} else {
SStream_concat0(O, "cpsr");
if (Mask) {
SStream_concat0(O, "_");
if (Mask & 8) {
SStream_concat0(O, "f");
reg += ARM_SYSREG_CPSR_F;
}
if (Mask & 4) {
SStream_concat0(O, "s");
reg += ARM_SYSREG_CPSR_S;
}
if (Mask & 2) {
SStream_concat0(O, "x");
reg += ARM_SYSREG_CPSR_X;
}
if (Mask & 1) {
SStream_concat0(O, "c");
reg += ARM_SYSREG_CPSR_C;
}
ARM_addSysReg(MI, reg);
}
}
}
static void printPredicateOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
ARMCC_CondCodes CC = (ARMCC_CondCodes)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
// Handle the undefined 15 CC value here for printing so we don't abort().
if ((unsigned)CC == 15) {
SStream_concat0(O, "<und>");
if (MI->csh->detail)
MI->flat_insn->detail->arm.cc = ARM_CC_INVALID;
} else {
if (CC != ARMCC_AL) {
SStream_concat0(O, ARMCC_ARMCondCodeToString(CC));
}
if (MI->csh->detail)
MI->flat_insn->detail->arm.cc = CC + 1;
}
}
// TODO: test this
static void printMandatoryPredicateOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
ARMCC_CondCodes CC = (ARMCC_CondCodes)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat0(O, ARMCC_ARMCondCodeToString(CC));
if (MI->csh->detail)
MI->flat_insn->detail->arm.cc = CC + 1;
}
static void printSBitModifierOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
if (MCOperand_getReg(MCInst_getOperand(MI, OpNum))) {
//assert(MCOperand_getReg(MCInst_getOperand(MI, OpNum)) == ARM_CPSR &&
// "Expect ARM CPSR register!");
SStream_concat0(O, "s");
if (MI->csh->detail)
MI->flat_insn->detail->arm.update_flags = true;
}
}
static void printNoHashImmediate(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "0x%x", tmp);
else
SStream_concat(O, "%u", tmp);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = tmp;
} else {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = tmp;
MI->flat_insn->detail->arm.op_count++;
}
}
}
static void printPImmediate(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat(O, "p%u", imm);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_PIMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = imm;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printCImmediate(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat(O, "c%u", imm);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_CIMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = imm;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printCoprocOptionImm(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "{0x%x}", tmp);
else
SStream_concat(O, "{%u}", tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = tmp;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printAdrLabelOperand(MCInst *MI, unsigned OpNum, SStream *O, unsigned scale)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
int32_t OffImm = (int32_t)MCOperand_getImm(MO) << scale;
if (OffImm == INT32_MIN) {
SStream_concat0(O, "#-0");
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = 0;
MI->flat_insn->detail->arm.op_count++;
}
} else {
if (OffImm < 0)
SStream_concat(O, "#-0x%x", -OffImm);
else {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", OffImm);
else
SStream_concat(O, "#%u", OffImm);
}
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = OffImm;
MI->flat_insn->detail->arm.op_count++;
}
}
}
static void printThumbS4ImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum)) * 4;
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = tmp;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printThumbSRImm(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
unsigned tmp = Imm == 0 ? 32 : Imm;
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = tmp;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printThumbITMask(MCInst *MI, unsigned OpNum, SStream *O)
{
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
unsigned Firstcond = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum-1));
unsigned CondBit0 = Firstcond & 1;
unsigned NumTZ = CountTrailingZeros_32(Mask);
//assert(NumTZ <= 3 && "Invalid IT mask!");
unsigned Pos, e;
for (Pos = 3, e = NumTZ; Pos > e; --Pos) {
bool T = ((Mask >> Pos) & 1) == CondBit0;
if (T)
SStream_concat0(O, "t");
else
SStream_concat0(O, "e");
}
}
static void printThumbAddrModeRROperand(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op + 1);
unsigned RegNum;
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
RegNum = MCOperand_getReg(MO2);
if (RegNum) {
SStream_concat0(O, ", ");
printRegName(MI->csh, O, RegNum);
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = RegNum;
}
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printThumbAddrModeImm5SOperand(MCInst *MI, unsigned Op, SStream *O,
unsigned Scale)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op + 1);
unsigned ImmOffs, tmp;
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
ImmOffs = (unsigned int)MCOperand_getImm(MO2);
if (ImmOffs) {
tmp = ImmOffs * Scale;
SStream_concat0(O, ", ");
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = tmp;
}
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printThumbAddrModeImm5S1Operand(MCInst *MI, unsigned Op, SStream *O)
{
printThumbAddrModeImm5SOperand(MI, Op, O, 1);
}
static void printThumbAddrModeImm5S2Operand(MCInst *MI, unsigned Op, SStream *O)
{
printThumbAddrModeImm5SOperand(MI, Op, O, 2);
}
static void printThumbAddrModeImm5S4Operand(MCInst *MI, unsigned Op, SStream *O)
{
printThumbAddrModeImm5SOperand(MI, Op, O, 4);
}
static void printThumbAddrModeSPOperand(MCInst *MI, unsigned Op, SStream *O)
{
printThumbAddrModeImm5SOperand(MI, Op, O, 4);
}
// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
// register with shift forms.
// REG 0 0 - e.g. R5
// REG IMM, SH_OPC - e.g. R5, LSL #3
static void printT2SOOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
unsigned Reg = MCOperand_getReg(MO1);
printRegName(MI->csh, O, Reg);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg;
MI->flat_insn->detail->arm.op_count++;
}
// Print the shift opc.
//assert(MO2.isImm() && "Not a valid t2_so_reg value!");
printRegImmShift(MI, O, ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2)),
getSORegOffset((unsigned int)MCOperand_getImm(MO2)));
}
static void printAddrModeImm12Operand(MCInst *MI, unsigned OpNum,
SStream *O, bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
int32_t OffImm;
bool isSub;
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, OpNum, O);
return;
}
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
OffImm = (int32_t)MCOperand_getImm(MO2);
isSub = OffImm < 0;
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
if (OffImm < -HEX_THRESHOLD)
SStream_concat(O, ", #-0x%x", -OffImm);
else
SStream_concat(O, ", #-%u", -OffImm);
} else if (AlwaysPrintImm0 || OffImm > 0) {
if (OffImm >= 0) {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, ", #0x%x", OffImm);
else
SStream_concat(O, ", #%u", OffImm);
} else {
if (OffImm < -HEX_THRESHOLD)
SStream_concat(O, ", #-0x%x", -OffImm);
else
SStream_concat(O, ", #-%u", -OffImm);
}
}
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = OffImm;
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printT2AddrModeImm8Operand(MCInst *MI, unsigned OpNum, SStream *O,
bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
int32_t OffImm;
bool isSub;
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
OffImm = (int32_t)MCOperand_getImm(MO2);
isSub = OffImm < 0;
// Don't print +0.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub)
SStream_concat(O, ", #-0x%x", -OffImm);
else if (AlwaysPrintImm0 || OffImm > 0) {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, ", #0x%x", OffImm);
else
SStream_concat(O, ", #%u", OffImm);
}
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = OffImm;
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printT2AddrModeImm8s4Operand(MCInst *MI,
unsigned OpNum, SStream *O, bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
int32_t OffImm;
bool isSub;
if (!MCOperand_isReg(MO1)) { // For label symbolic references.
printOperand(MI, OpNum, O);
return;
}
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
OffImm = (int32_t)MCOperand_getImm(MO2);
isSub = OffImm < 0;
//assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
// Don't print +0.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
SStream_concat(O, ", #-0x%x", -OffImm);
} else if (AlwaysPrintImm0 || OffImm > 0) {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, ", #0x%x", OffImm);
else
SStream_concat(O, ", #%u", OffImm);
}
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = OffImm;
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printT2AddrModeImm0_1020s4Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
unsigned tmp;
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
if (MCOperand_getImm(MO2)) {
SStream_concat0(O, ", ");
tmp = (unsigned int)MCOperand_getImm(MO2) * 4;
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.disp = tmp;
}
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printT2AddrModeImm8OffsetOperand(MCInst *MI,
unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
int32_t OffImm = (int32_t)MCOperand_getImm(MO1);
SStream_concat0(O, ", ");
if (OffImm == INT32_MIN) {
SStream_concat0(O, "#-0");
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = 0;
MI->flat_insn->detail->arm.op_count++;
}
} else {
if (OffImm < 0) {
if (OffImm < -HEX_THRESHOLD)
SStream_concat(O, "#-0x%x", -OffImm);
else
SStream_concat(O, "#-%u", -OffImm);
} else {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", OffImm);
else
SStream_concat(O, "#%u", OffImm);
}
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = OffImm;
MI->flat_insn->detail->arm.op_count++;
}
}
}
static void printT2AddrModeImm8s4OffsetOperand(MCInst *MI,
unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
int32_t OffImm = (int32_t)MCOperand_getImm(MO1);
//assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
SStream_concat0(O, ", ");
if (OffImm == INT32_MIN) {
SStream_concat0(O, "#-0");
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = 0;
MI->flat_insn->detail->arm.op_count++;
}
} else {
if (OffImm < 0) {
if (OffImm < -HEX_THRESHOLD)
SStream_concat(O, "#-0x%x", -OffImm);
else
SStream_concat(O, "#-%u", -OffImm);
} else {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", OffImm);
else
SStream_concat(O, "#%u", OffImm);
}
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = OffImm;
MI->flat_insn->detail->arm.op_count++;
}
}
}
static void printT2AddrModeSoRegOperand(MCInst *MI,
unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
MCOperand *MO3 = MCInst_getOperand(MI, OpNum+2);
unsigned ShAmt;
SStream_concat0(O, "[");
set_mem_access(MI, true);
printRegName(MI->csh, O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.base = MCOperand_getReg(MO1);
//assert(MCOperand_getReg(MO2.getReg() && "Invalid so_reg load / store address!");
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MO2));
if (MI->csh->detail)
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].mem.index = MCOperand_getReg(MO2);
ShAmt = (unsigned int)MCOperand_getImm(MO3);
if (ShAmt) {
//assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
SStream_concat0(O, ", lsl ");
SStream_concat(O, "#%d", ShAmt);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.type = ARM_SFT_LSL;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = ShAmt;
}
}
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printFPImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
#if defined(_KERNEL_MODE)
// Issue #681: Windows kernel does not support formatting float point
SStream_concat(O, "#<float_point_unsupported>");
#else
SStream_concat(O, "#%e", getFPImmFloat((unsigned int)MCOperand_getImm(MO)));
#endif
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_FP;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].fp = getFPImmFloat((unsigned int)MCOperand_getImm(MO));
MI->flat_insn->detail->arm.op_count++;
}
}
static void printNEONModImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned EncodedImm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
unsigned EltBits;
uint64_t Val = ARM_AM_decodeNEONModImm(EncodedImm, &EltBits);
if (Val > HEX_THRESHOLD)
SStream_concat(O, "#0x%"PRIx64, Val);
else
SStream_concat(O, "#%"PRIu64, Val);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = (unsigned int)Val;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printImmPlusOneOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (Imm + 1 > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", Imm + 1);
else
SStream_concat(O, "#%u", Imm + 1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = Imm + 1;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printRotImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (Imm == 0)
return;
SStream_concat0(O, ", ror #");
switch (Imm) {
default: //assert (0 && "illegal ror immediate!");
case 1: SStream_concat0(O, "8"); break;
case 2: SStream_concat0(O, "16"); break;
case 3: SStream_concat0(O, "24"); break;
}
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.type = ARM_SFT_ROR;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].shift.value = Imm * 8;
}
}
static void printFBits16(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp;
tmp = 16 - (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = tmp;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printFBits32(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp;
tmp = 32 - (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_IMM;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].imm = tmp;
MI->flat_insn->detail->arm.op_count++;
}
}
static void printVectorIndex(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "[0x%x]",tmp);
else
SStream_concat(O, "[%u]",tmp);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count - 1].vector_index = tmp;
}
}
static void printVectorListOne(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "}");
}
static void printVectorListTwo(MCInst *MI, unsigned OpNum,
SStream *O, MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned Reg0 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_0);
unsigned Reg1 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_1);
SStream_concat0(O, "{");
printRegName(MI->csh, O, Reg0);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg0;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, Reg1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg1;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "}");
}
static void printVectorListTwoSpaced(MCInst *MI, unsigned OpNum,
SStream *O, MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned Reg0 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_0);
unsigned Reg1 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_2);
SStream_concat0(O, "{");
printRegName(MI->csh, O, Reg0);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg0;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, Reg1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg1;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "}");
}
static void printVectorListThree(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "}");
}
static void printVectorListFour(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 3);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 3;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "}");
}
static void printVectorListOneAllLanes(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[]}");
}
static void printVectorListTwoAllLanes(MCInst *MI, unsigned OpNum,
SStream *O, MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned Reg0 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_0);
unsigned Reg1 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_1);
SStream_concat0(O, "{");
printRegName(MI->csh, O, Reg0);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg0;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, Reg1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg1;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[]}");
}
static void printVectorListThreeAllLanes(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[]}");
}
static void printVectorListFourAllLanes(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 3);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 3;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[]}");
}
static void printVectorListTwoSpacedAllLanes(MCInst *MI,
unsigned OpNum, SStream *O, MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned Reg0 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_0);
unsigned Reg1 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_2);
SStream_concat0(O, "{");
printRegName(MI->csh, O, Reg0);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg0;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, Reg1);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = Reg1;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[]}");
}
static void printVectorListThreeSpacedAllLanes(MCInst *MI,
unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[]}");
}
static void printVectorListFourSpacedAllLanes(MCInst *MI,
unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[], ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 6);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 6;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "[]}");
}
static void printVectorListThreeSpaced(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "}");
}
static void printVectorListFourSpaced(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat0(O, "{");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, ", ");
printRegName(MI->csh, O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 6);
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 6;
MI->flat_insn->detail->arm.op_count++;
}
SStream_concat0(O, "}");
}
void ARM_addVectorDataType(MCInst *MI, arm_vectordata_type vd)
{
if (MI->csh->detail) {
MI->flat_insn->detail->arm.vector_data = vd;
}
}
void ARM_addVectorDataSize(MCInst *MI, int size)
{
if (MI->csh->detail) {
MI->flat_insn->detail->arm.vector_size = size;
}
}
void ARM_addReg(MCInst *MI, int reg)
{
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_REG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = reg;
MI->flat_insn->detail->arm.op_count++;
}
}
void ARM_addUserMode(MCInst *MI)
{
if (MI->csh->detail) {
MI->flat_insn->detail->arm.usermode = true;
}
}
void ARM_addSysReg(MCInst *MI, arm_sysreg reg)
{
if (MI->csh->detail) {
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].type = ARM_OP_SYSREG;
MI->flat_insn->detail->arm.operands[MI->flat_insn->detail->arm.op_count].reg = reg;
MI->flat_insn->detail->arm.op_count++;
}
}
#endif