/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/cipher.h>
#include <openssl/err.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/type_check.h>
#include "../fipsmodule/cipher/internal.h"
#include "../internal.h"
#include "internal.h"
typedef struct {
EVP_CIPHER_CTX cipher_ctx;
HMAC_CTX hmac_ctx;
// mac_key is the portion of the key used for the MAC. It is retained
// separately for the constant-time CBC code.
uint8_t mac_key[EVP_MAX_MD_SIZE];
uint8_t mac_key_len;
// implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit
// IV.
char implicit_iv;
} AEAD_TLS_CTX;
OPENSSL_COMPILE_ASSERT(EVP_MAX_MD_SIZE < 256, mac_key_len_fits_in_uint8_t);
static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx);
HMAC_CTX_cleanup(&tls_ctx->hmac_ctx);
OPENSSL_free(tls_ctx);
ctx->aead_state = NULL;
}
static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len,
size_t tag_len, enum evp_aead_direction_t dir,
const EVP_CIPHER *cipher, const EVP_MD *md,
char implicit_iv) {
if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH &&
tag_len != EVP_MD_size(md)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE);
return 0;
}
if (key_len != EVP_AEAD_key_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
return 0;
}
size_t mac_key_len = EVP_MD_size(md);
size_t enc_key_len = EVP_CIPHER_key_length(cipher);
assert(mac_key_len + enc_key_len +
(implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == key_len);
AEAD_TLS_CTX *tls_ctx = OPENSSL_malloc(sizeof(AEAD_TLS_CTX));
if (tls_ctx == NULL) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
return 0;
}
EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx);
HMAC_CTX_init(&tls_ctx->hmac_ctx);
assert(mac_key_len <= EVP_MAX_MD_SIZE);
OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len);
tls_ctx->mac_key_len = (uint8_t)mac_key_len;
tls_ctx->implicit_iv = implicit_iv;
ctx->aead_state = tls_ctx;
if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len],
implicit_iv ? &key[mac_key_len + enc_key_len] : NULL,
dir == evp_aead_seal) ||
!HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) {
aead_tls_cleanup(ctx);
ctx->aead_state = NULL;
return 0;
}
EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0);
return 1;
}
static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len,
const size_t extra_in_len) {
assert(extra_in_len == 0);
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
const size_t hmac_len = HMAC_size(&tls_ctx->hmac_ctx);
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE) {
// The NULL cipher.
return hmac_len;
}
const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
// An overflow of |in_len + hmac_len| doesn't affect the result mod
// |block_size|, provided that |block_size| is a smaller power of two.
assert(block_size != 0 && (block_size & (block_size - 1)) == 0);
const size_t pad_len = block_size - (in_len + hmac_len) % block_size;
return hmac_len + pad_len;
}
static int aead_tls_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
uint8_t *out_tag, size_t *out_tag_len,
const size_t max_out_tag_len,
const uint8_t *nonce, const size_t nonce_len,
const uint8_t *in, const size_t in_len,
const uint8_t *extra_in,
const size_t extra_in_len, const uint8_t *ad,
const size_t ad_len) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
if (!tls_ctx->cipher_ctx.encrypt) {
// Unlike a normal AEAD, a TLS AEAD may only be used in one direction.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
return 0;
}
if (in_len > INT_MAX) {
// EVP_CIPHER takes int as input.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
if (max_out_tag_len < aead_tls_tag_len(ctx, in_len, extra_in_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
if (ad_len != 13 - 2 /* length bytes */) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
return 0;
}
// To allow for CBC mode which changes cipher length, |ad| doesn't include the
// length for legacy ciphers.
uint8_t ad_extra[2];
ad_extra[0] = (uint8_t)(in_len >> 8);
ad_extra[1] = (uint8_t)(in_len & 0xff);
// Compute the MAC. This must be first in case the operation is being done
// in-place.
uint8_t mac[EVP_MAX_MD_SIZE];
unsigned mac_len;
if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) ||
!HMAC_Update(&tls_ctx->hmac_ctx, ad, ad_len) ||
!HMAC_Update(&tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) ||
!HMAC_Update(&tls_ctx->hmac_ctx, in, in_len) ||
!HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len)) {
return 0;
}
// Configure the explicit IV.
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
!tls_ctx->implicit_iv &&
!EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
return 0;
}
// Encrypt the input.
int len;
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) {
return 0;
}
unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
// Feed the MAC into the cipher in two steps. First complete the final partial
// block from encrypting the input and split the result between |out| and
// |out_tag|. Then feed the rest.
const size_t early_mac_len = (block_size - (in_len % block_size)) % block_size;
if (early_mac_len != 0) {
assert(len + block_size - early_mac_len == in_len);
uint8_t buf[EVP_MAX_BLOCK_LENGTH];
int buf_len;
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, buf, &buf_len, mac,
(int)early_mac_len)) {
return 0;
}
assert(buf_len == (int)block_size);
OPENSSL_memcpy(out + len, buf, block_size - early_mac_len);
OPENSSL_memcpy(out_tag, buf + block_size - early_mac_len, early_mac_len);
}
size_t tag_len = early_mac_len;
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len,
mac + tag_len, mac_len - tag_len)) {
return 0;
}
tag_len += len;
if (block_size > 1) {
assert(block_size <= 256);
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
// Compute padding and feed that into the cipher.
uint8_t padding[256];
unsigned padding_len = block_size - ((in_len + mac_len) % block_size);
OPENSSL_memset(padding, padding_len - 1, padding_len);
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len,
padding, (int)padding_len)) {
return 0;
}
tag_len += len;
}
if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len)) {
return 0;
}
assert(len == 0); // Padding is explicit.
assert(tag_len == aead_tls_tag_len(ctx, in_len, extra_in_len));
*out_tag_len = tag_len;
return 1;
}
static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out_len, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
if (tls_ctx->cipher_ctx.encrypt) {
// Unlike a normal AEAD, a TLS AEAD may only be used in one direction.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
return 0;
}
if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
if (max_out_len < in_len) {
// This requires that the caller provide space for the MAC, even though it
// will always be removed on return.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
if (ad_len != 13 - 2 /* length bytes */) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
return 0;
}
if (in_len > INT_MAX) {
// EVP_CIPHER takes int as input.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
// Configure the explicit IV.
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
!tls_ctx->implicit_iv &&
!EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
return 0;
}
// Decrypt to get the plaintext + MAC + padding.
size_t total = 0;
int len;
if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) {
return 0;
}
total += len;
if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
return 0;
}
total += len;
assert(total == in_len);
// Remove CBC padding. Code from here on is timing-sensitive with respect to
// |padding_ok| and |data_plus_mac_len| for CBC ciphers.
size_t data_plus_mac_len;
crypto_word_t padding_ok;
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) {
if (!EVP_tls_cbc_remove_padding(
&padding_ok, &data_plus_mac_len, out, total,
EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx),
HMAC_size(&tls_ctx->hmac_ctx))) {
// Publicly invalid. This can be rejected in non-constant time.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
} else {
padding_ok = CONSTTIME_TRUE_W;
data_plus_mac_len = total;
// |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has
// already been checked against the MAC size at the top of the function.
assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx));
}
size_t data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx);
// At this point, if the padding is valid, the first |data_plus_mac_len| bytes
// after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is
// still large enough to extract a MAC, but it will be irrelevant.
// To allow for CBC mode which changes cipher length, |ad| doesn't include the
// length for legacy ciphers.
uint8_t ad_fixed[13];
OPENSSL_memcpy(ad_fixed, ad, 11);
ad_fixed[11] = (uint8_t)(data_len >> 8);
ad_fixed[12] = (uint8_t)(data_len & 0xff);
ad_len += 2;
// Compute the MAC and extract the one in the record.
uint8_t mac[EVP_MAX_MD_SIZE];
size_t mac_len;
uint8_t record_mac_tmp[EVP_MAX_MD_SIZE];
uint8_t *record_mac;
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) {
if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len,
ad_fixed, out, data_plus_mac_len, total,
tls_ctx->mac_key, tls_ctx->mac_key_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
record_mac = record_mac_tmp;
EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total);
} else {
// We should support the constant-time path for all CBC-mode ciphers
// implemented.
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE);
unsigned mac_len_u;
if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) ||
!HMAC_Update(&tls_ctx->hmac_ctx, ad_fixed, ad_len) ||
!HMAC_Update(&tls_ctx->hmac_ctx, out, data_len) ||
!HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len_u)) {
return 0;
}
mac_len = mac_len_u;
assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
record_mac = &out[data_len];
}
// Perform the MAC check and the padding check in constant-time. It should be
// safe to simply perform the padding check first, but it would not be under a
// different choice of MAC location on padding failure. See
// EVP_tls_cbc_remove_padding.
crypto_word_t good =
constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0);
good &= padding_ok;
if (!good) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
// End of timing-sensitive code.
*out_len = data_len;
return 1;
}
static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
EVP_sha1(), 0);
}
static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
EVP_sha1(), 1);
}
static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
EVP_sha256(), 0);
}
static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
EVP_sha1(), 0);
}
static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
EVP_sha1(), 1);
}
static int aead_aes_256_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
EVP_sha256(), 0);
}
static int aead_aes_256_cbc_sha384_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
EVP_sha384(), 0);
}
static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
EVP_sha1(), 0);
}
static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
EVP_sha1(), 1);
}
static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv,
size_t *out_iv_len) {
const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX*) ctx->aead_state;
const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx);
if (iv_len <= 1) {
return 0;
}
*out_iv = tls_ctx->cipher_ctx.iv;
*out_iv_len = iv_len;
return 1;
}
static int aead_null_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_enc_null(),
EVP_sha1(), 1 /* implicit iv */);
}
static const EVP_AEAD aead_aes_128_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 16, // key len (SHA1 + AES128)
16, // nonce len (IV)
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_aes_128_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
NULL, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 16 + 16, // key len (SHA1 + AES128 + IV)
0, // nonce len
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_aes_128_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
aead_tls_get_iv, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_128_cbc_sha256_tls = {
SHA256_DIGEST_LENGTH + 16, // key len (SHA256 + AES128)
16, // nonce len (IV)
16 + SHA256_DIGEST_LENGTH, // overhead (padding + SHA256)
SHA256_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_aes_128_cbc_sha256_tls_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
NULL, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_256_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 32, // key len (SHA1 + AES256)
16, // nonce len (IV)
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_aes_256_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
NULL, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 32 + 16, // key len (SHA1 + AES256 + IV)
0, // nonce len
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_aes_256_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
aead_tls_get_iv, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_256_cbc_sha256_tls = {
SHA256_DIGEST_LENGTH + 32, // key len (SHA256 + AES256)
16, // nonce len (IV)
16 + SHA256_DIGEST_LENGTH, // overhead (padding + SHA256)
SHA256_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_aes_256_cbc_sha256_tls_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
NULL, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_256_cbc_sha384_tls = {
SHA384_DIGEST_LENGTH + 32, // key len (SHA384 + AES256)
16, // nonce len (IV)
16 + SHA384_DIGEST_LENGTH, // overhead (padding + SHA384)
SHA384_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_aes_256_cbc_sha384_tls_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
NULL, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 24, // key len (SHA1 + 3DES)
8, // nonce len (IV)
8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_des_ede3_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
NULL, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 24 + 8, // key len (SHA1 + 3DES + IV)
0, // nonce len
8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_des_ede3_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
aead_tls_get_iv, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_null_sha1_tls = {
SHA_DIGEST_LENGTH, // key len
0, // nonce len
SHA_DIGEST_LENGTH, // overhead (SHA1)
SHA_DIGEST_LENGTH, // max tag length
0, // seal_scatter_supports_extra_in
NULL, // init
aead_null_sha1_tls_init,
aead_tls_cleanup,
aead_tls_open,
aead_tls_seal_scatter,
NULL, // open_gather
NULL, // get_iv
aead_tls_tag_len,
};
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) {
return &aead_aes_128_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) {
return &aead_aes_128_cbc_sha1_tls_implicit_iv;
}
const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) {
return &aead_aes_128_cbc_sha256_tls;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) {
return &aead_aes_256_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) {
return &aead_aes_256_cbc_sha1_tls_implicit_iv;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void) {
return &aead_aes_256_cbc_sha256_tls;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void) {
return &aead_aes_256_cbc_sha384_tls;
}
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) {
return &aead_des_ede3_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) {
return &aead_des_ede3_cbc_sha1_tls_implicit_iv;
}
const EVP_AEAD *EVP_aead_null_sha1_tls(void) { return &aead_null_sha1_tls; }