# Copyright 2015-2016 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from bart.common import Utils
from bart.common.Analyzer import Analyzer
import unittest
import pandas as pd
import trappy
class TestCommonUtils(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestCommonUtils, self).__init__(*args, **kwargs)
def test_interval_sum(self):
"""Test Utils Function: interval_sum"""
# A series with a non uniform index
# Refer to the example illustrations in the
# the interval sum docs-strings which explains
# the difference between step-post and ste-pre
# calculations
values = [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1]
index = [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12]
series = pd.Series(values, index=index)
self.assertEqual(Utils.interval_sum(series, 1, step="post"), 8)
self.assertEqual(Utils.interval_sum(series, 1, step="pre"), 7)
# check left boundary
array = [1, 1, 0, 0]
series = pd.Series(array)
self.assertEqual(Utils.interval_sum(series, 1, step="post"), 2)
self.assertEqual(Utils.interval_sum(series, 1, step="pre"), 1)
# check right boundary
array = [0, 0, 1, 1]
series = pd.Series(array)
self.assertEqual(Utils.interval_sum(series, 1, step="post"), 1)
self.assertEqual(Utils.interval_sum(series, 1, step="pre"), 2)
array = [False, False, True, True, True, True, False, False]
series = pd.Series(array)
self.assertEqual(Utils.interval_sum(series), 4)
def test_area_under_curve(self):
"""Test Utils function: area_under_curve"""
array = [0, 0, 2, 2, 2, 1, 1, 1]
series = pd.Series(array)
# Area under curve post stepping
self.assertEqual(
Utils.area_under_curve(
series,
method="rect",
step="post"),
8)
# Area under curve pre stepping
self.assertEqual(
Utils.area_under_curve(
series,
method="rect",
step="pre"),
9)
array = [1]
series = pd.Series(array)
# Area under curve post stepping, edge case
self.assertEqual(
Utils.area_under_curve(
series,
method="rect",
step="post"),
0)
# Area under curve pre stepping, edge case
self.assertEqual(
Utils.area_under_curve(
series,
method="rect",
step="pre"),
0)
class TestAnalyzer(unittest.TestCase):
def test_assert_statement_bool(self):
"""Check that asssertStatement() works with a simple boolean case"""
rolls_dfr = pd.DataFrame({"results": [1, 3, 2, 6, 2, 4]})
trace = trappy.BareTrace()
trace.add_parsed_event("dice_rolls", rolls_dfr)
config = {"MAX_DICE_NUMBER": 6}
t = Analyzer(trace, config)
statement = "numpy.max(dice_rolls:results) <= MAX_DICE_NUMBER"
self.assertTrue(t.assertStatement(statement, select=0))
def test_assert_statement_dataframe(self):
"""assertStatement() works if the generated statement creates a pandas.DataFrame of bools"""
rolls_dfr = pd.DataFrame({"results": [1, 3, 2, 6, 2, 4]})
trace = trappy.BareTrace()
trace.add_parsed_event("dice_rolls", rolls_dfr)
config = {"MIN_DICE_NUMBER": 1, "MAX_DICE_NUMBER": 6}
t = Analyzer(trace, config)
statement = "(dice_rolls:results <= MAX_DICE_NUMBER) & (dice_rolls:results >= MIN_DICE_NUMBER)"
self.assertTrue(t.assertStatement(statement))
statement = "dice_rolls:results == 3"
self.assertFalse(t.assertStatement(statement))