/* SHA-256 and SHA-512 implementation based on code by Oliver Gay
* <olivier.gay@a3.epfl.ch> under a BSD-style license. See below.
*/
/*
* FIPS 180-2 SHA-224/256/384/512 implementation
* Last update: 02/02/2007
* Issue date: 04/30/2005
*
* Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "avb_sha.h"
#define SHFR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define CH(x, y, z) ((x & y) ^ (~x & z))
#define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define SHA256_F1(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define SHA256_F2(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SHA256_F3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHFR(x, 3))
#define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10))
#define UNPACK32(x, str) \
{ \
*((str) + 3) = (uint8_t)((x)); \
*((str) + 2) = (uint8_t)((x) >> 8); \
*((str) + 1) = (uint8_t)((x) >> 16); \
*((str) + 0) = (uint8_t)((x) >> 24); \
}
#define PACK32(str, x) \
{ \
*(x) = ((uint32_t) * ((str) + 3)) | ((uint32_t) * ((str) + 2) << 8) | \
((uint32_t) * ((str) + 1) << 16) | \
((uint32_t) * ((str) + 0) << 24); \
}
/* Macros used for loops unrolling */
#define SHA256_SCR(i) \
{ w[i] = SHA256_F4(w[i - 2]) + w[i - 7] + SHA256_F3(w[i - 15]) + w[i - 16]; }
#define SHA256_EXP(a, b, c, d, e, f, g, h, j) \
{ \
t1 = wv[h] + SHA256_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) + sha256_k[j] + \
w[j]; \
t2 = SHA256_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]); \
wv[d] += t1; \
wv[h] = t1 + t2; \
}
static const uint32_t sha256_h0[8] = {0x6a09e667,
0xbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be0cd19};
static const uint32_t sha256_k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
/* SHA-256 implementation */
void avb_sha256_init(AvbSHA256Ctx* ctx) {
#ifndef UNROLL_LOOPS
int i;
for (i = 0; i < 8; i++) {
ctx->h[i] = sha256_h0[i];
}
#else
ctx->h[0] = sha256_h0[0];
ctx->h[1] = sha256_h0[1];
ctx->h[2] = sha256_h0[2];
ctx->h[3] = sha256_h0[3];
ctx->h[4] = sha256_h0[4];
ctx->h[5] = sha256_h0[5];
ctx->h[6] = sha256_h0[6];
ctx->h[7] = sha256_h0[7];
#endif /* !UNROLL_LOOPS */
ctx->len = 0;
ctx->tot_len = 0;
}
static void SHA256_transform(AvbSHA256Ctx* ctx,
const uint8_t* message,
unsigned int block_nb) {
uint32_t w[64];
uint32_t wv[8];
uint32_t t1, t2;
const unsigned char* sub_block;
int i;
#ifndef UNROLL_LOOPS
int j;
#endif
for (i = 0; i < (int)block_nb; i++) {
sub_block = message + (i << 6);
#ifndef UNROLL_LOOPS
for (j = 0; j < 16; j++) {
PACK32(&sub_block[j << 2], &w[j]);
}
for (j = 16; j < 64; j++) {
SHA256_SCR(j);
}
for (j = 0; j < 8; j++) {
wv[j] = ctx->h[j];
}
for (j = 0; j < 64; j++) {
t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6]) + sha256_k[j] +
w[j];
t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;
}
for (j = 0; j < 8; j++) {
ctx->h[j] += wv[j];
}
#else
PACK32(&sub_block[0], &w[0]);
PACK32(&sub_block[4], &w[1]);
PACK32(&sub_block[8], &w[2]);
PACK32(&sub_block[12], &w[3]);
PACK32(&sub_block[16], &w[4]);
PACK32(&sub_block[20], &w[5]);
PACK32(&sub_block[24], &w[6]);
PACK32(&sub_block[28], &w[7]);
PACK32(&sub_block[32], &w[8]);
PACK32(&sub_block[36], &w[9]);
PACK32(&sub_block[40], &w[10]);
PACK32(&sub_block[44], &w[11]);
PACK32(&sub_block[48], &w[12]);
PACK32(&sub_block[52], &w[13]);
PACK32(&sub_block[56], &w[14]);
PACK32(&sub_block[60], &w[15]);
SHA256_SCR(16);
SHA256_SCR(17);
SHA256_SCR(18);
SHA256_SCR(19);
SHA256_SCR(20);
SHA256_SCR(21);
SHA256_SCR(22);
SHA256_SCR(23);
SHA256_SCR(24);
SHA256_SCR(25);
SHA256_SCR(26);
SHA256_SCR(27);
SHA256_SCR(28);
SHA256_SCR(29);
SHA256_SCR(30);
SHA256_SCR(31);
SHA256_SCR(32);
SHA256_SCR(33);
SHA256_SCR(34);
SHA256_SCR(35);
SHA256_SCR(36);
SHA256_SCR(37);
SHA256_SCR(38);
SHA256_SCR(39);
SHA256_SCR(40);
SHA256_SCR(41);
SHA256_SCR(42);
SHA256_SCR(43);
SHA256_SCR(44);
SHA256_SCR(45);
SHA256_SCR(46);
SHA256_SCR(47);
SHA256_SCR(48);
SHA256_SCR(49);
SHA256_SCR(50);
SHA256_SCR(51);
SHA256_SCR(52);
SHA256_SCR(53);
SHA256_SCR(54);
SHA256_SCR(55);
SHA256_SCR(56);
SHA256_SCR(57);
SHA256_SCR(58);
SHA256_SCR(59);
SHA256_SCR(60);
SHA256_SCR(61);
SHA256_SCR(62);
SHA256_SCR(63);
wv[0] = ctx->h[0];
wv[1] = ctx->h[1];
wv[2] = ctx->h[2];
wv[3] = ctx->h[3];
wv[4] = ctx->h[4];
wv[5] = ctx->h[5];
wv[6] = ctx->h[6];
wv[7] = ctx->h[7];
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 0);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 1);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 2);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 3);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 4);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 5);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 6);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 7);
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 8);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 9);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 10);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 11);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 12);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 13);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 14);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 15);
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 16);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 17);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 18);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 19);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 20);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 21);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 22);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 23);
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 24);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 25);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 26);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 27);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 28);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 29);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 30);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 31);
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 32);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 33);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 34);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 35);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 36);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 37);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 38);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 39);
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 40);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 41);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 42);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 43);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 44);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 45);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 46);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 47);
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 48);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 49);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 50);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 51);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 52);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 53);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 54);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 55);
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 56);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 57);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 58);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 59);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 60);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 61);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 62);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 63);
ctx->h[0] += wv[0];
ctx->h[1] += wv[1];
ctx->h[2] += wv[2];
ctx->h[3] += wv[3];
ctx->h[4] += wv[4];
ctx->h[5] += wv[5];
ctx->h[6] += wv[6];
ctx->h[7] += wv[7];
#endif /* !UNROLL_LOOPS */
}
}
void avb_sha256_update(AvbSHA256Ctx* ctx, const uint8_t* data, uint32_t len) {
unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const uint8_t* shifted_data;
tmp_len = AVB_SHA256_BLOCK_SIZE - ctx->len;
rem_len = len < tmp_len ? len : tmp_len;
avb_memcpy(&ctx->block[ctx->len], data, rem_len);
if (ctx->len + len < AVB_SHA256_BLOCK_SIZE) {
ctx->len += len;
return;
}
new_len = len - rem_len;
block_nb = new_len / AVB_SHA256_BLOCK_SIZE;
shifted_data = data + rem_len;
SHA256_transform(ctx, ctx->block, 1);
SHA256_transform(ctx, shifted_data, block_nb);
rem_len = new_len % AVB_SHA256_BLOCK_SIZE;
avb_memcpy(ctx->block, &shifted_data[block_nb << 6], rem_len);
ctx->len = rem_len;
ctx->tot_len += (block_nb + 1) << 6;
}
uint8_t* avb_sha256_final(AvbSHA256Ctx* ctx) {
unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
#ifndef UNROLL_LOOPS
int i;
#endif
block_nb =
(1 + ((AVB_SHA256_BLOCK_SIZE - 9) < (ctx->len % AVB_SHA256_BLOCK_SIZE)));
len_b = (ctx->tot_len + ctx->len) << 3;
pm_len = block_nb << 6;
avb_memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
ctx->block[ctx->len] = 0x80;
UNPACK32(len_b, ctx->block + pm_len - 4);
SHA256_transform(ctx, ctx->block, block_nb);
#ifndef UNROLL_LOOPS
for (i = 0; i < 8; i++) {
UNPACK32(ctx->h[i], &ctx->buf[i << 2]);
}
#else
UNPACK32(ctx->h[0], &ctx->buf[0]);
UNPACK32(ctx->h[1], &ctx->buf[4]);
UNPACK32(ctx->h[2], &ctx->buf[8]);
UNPACK32(ctx->h[3], &ctx->buf[12]);
UNPACK32(ctx->h[4], &ctx->buf[16]);
UNPACK32(ctx->h[5], &ctx->buf[20]);
UNPACK32(ctx->h[6], &ctx->buf[24]);
UNPACK32(ctx->h[7], &ctx->buf[28]);
#endif /* !UNROLL_LOOPS */
return ctx->buf;
}