/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
//#define LOG_NNDEBUG 0
#define LOG_TAG "EmulatedCamera2_Sensor"
#ifdef LOG_NNDEBUG
#define ALOGVV(...) ALOGV(__VA_ARGS__)
#else
#define ALOGVV(...) ((void)0)
#endif
#include <utils/Log.h>
#include <cmath>
#include <cstdlib>
#include "../EmulatedFakeCamera2.h"
#include "Sensor.h"
#include "guest/libs/platform_support/api_level_fixes.h"
#include "system/camera_metadata.h"
namespace android {
// const nsecs_t Sensor::kExposureTimeRange[2] =
// {1000L, 30000000000L} ; // 1 us - 30 sec
// const nsecs_t Sensor::kFrameDurationRange[2] =
// {33331760L, 30000000000L}; // ~1/30 s - 30 sec
const nsecs_t Sensor::kExposureTimeRange[2] = {1000L,
300000000L}; // 1 us - 0.3 sec
const nsecs_t Sensor::kFrameDurationRange[2] = {
33331760L, 300000000L}; // ~1/30 s - 0.3 sec
const nsecs_t Sensor::kMinVerticalBlank = 10000L;
const uint8_t Sensor::kColorFilterArrangement =
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_RGGB;
// Output image data characteristics
const uint32_t Sensor::kMaxRawValue = 4000;
const uint32_t Sensor::kBlackLevel = 1000;
// Sensor sensitivity
const float Sensor::kSaturationVoltage = 0.520f;
const uint32_t Sensor::kSaturationElectrons = 2000;
const float Sensor::kVoltsPerLuxSecond = 0.100f;
const float Sensor::kElectronsPerLuxSecond = Sensor::kSaturationElectrons /
Sensor::kSaturationVoltage *
Sensor::kVoltsPerLuxSecond;
const float Sensor::kBaseGainFactor =
(float)Sensor::kMaxRawValue / Sensor::kSaturationElectrons;
const float Sensor::kReadNoiseStddevBeforeGain = 1.177; // in electrons
const float Sensor::kReadNoiseStddevAfterGain = 2.100; // in digital counts
const float Sensor::kReadNoiseVarBeforeGain =
Sensor::kReadNoiseStddevBeforeGain * Sensor::kReadNoiseStddevBeforeGain;
const float Sensor::kReadNoiseVarAfterGain =
Sensor::kReadNoiseStddevAfterGain * Sensor::kReadNoiseStddevAfterGain;
const int32_t Sensor::kSensitivityRange[2] = {100, 1600};
const uint32_t Sensor::kDefaultSensitivity = 100;
/** A few utility functions for math, normal distributions */
// Take advantage of IEEE floating-point format to calculate an approximate
// square root. Accurate to within +-3.6%
float sqrtf_approx(float r) {
// Modifier is based on IEEE floating-point representation; the
// manipulations boil down to finding approximate log2, dividing by two, and
// then inverting the log2. A bias is added to make the relative error
// symmetric about the real answer.
const int32_t modifier = 0x1FBB4000;
int32_t r_i = *(int32_t *)(&r);
r_i = (r_i >> 1) + modifier;
return *(float *)(&r_i);
}
Sensor::Sensor(uint32_t width, uint32_t height)
: Thread(false),
mResolution{width, height},
mActiveArray{0, 0, width, height},
mRowReadoutTime(kFrameDurationRange[0] / height),
mGotVSync(false),
mExposureTime(kFrameDurationRange[0] - kMinVerticalBlank),
mFrameDuration(kFrameDurationRange[0]),
mGainFactor(kDefaultSensitivity),
mNextBuffers(NULL),
mFrameNumber(0),
mCapturedBuffers(NULL),
mListener(NULL),
mScene(width, height, kElectronsPerLuxSecond) {
ALOGV("Sensor created with pixel array %d x %d", width, height);
}
Sensor::~Sensor() { shutDown(); }
status_t Sensor::startUp() {
ALOGV("%s: E", __FUNCTION__);
int res;
mCapturedBuffers = NULL;
res = run("EmulatedFakeCamera2::Sensor", ANDROID_PRIORITY_URGENT_DISPLAY);
if (res != OK) {
ALOGE("Unable to start up sensor capture thread: %d", res);
}
return res;
}
status_t Sensor::shutDown() {
ALOGV("%s: E", __FUNCTION__);
int res;
res = requestExitAndWait();
if (res != OK) {
ALOGE("Unable to shut down sensor capture thread: %d", res);
}
return res;
}
Scene &Sensor::getScene() { return mScene; }
void Sensor::setExposureTime(uint64_t ns) {
Mutex::Autolock lock(mControlMutex);
ALOGVV("Exposure set to %f", ns / 1000000.f);
mExposureTime = ns;
}
void Sensor::setFrameDuration(uint64_t ns) {
Mutex::Autolock lock(mControlMutex);
ALOGVV("Frame duration set to %f", ns / 1000000.f);
mFrameDuration = ns;
}
void Sensor::setSensitivity(uint32_t gain) {
Mutex::Autolock lock(mControlMutex);
ALOGVV("Gain set to %d", gain);
mGainFactor = gain;
}
void Sensor::setDestinationBuffers(Buffers *buffers) {
Mutex::Autolock lock(mControlMutex);
mNextBuffers = buffers;
}
void Sensor::setFrameNumber(uint32_t frameNumber) {
Mutex::Autolock lock(mControlMutex);
mFrameNumber = frameNumber;
}
bool Sensor::waitForVSync(nsecs_t reltime) {
int res;
Mutex::Autolock lock(mControlMutex);
mGotVSync = false;
res = mVSync.waitRelative(mControlMutex, reltime);
if (res != OK && res != TIMED_OUT) {
ALOGE("%s: Error waiting for VSync signal: %d", __FUNCTION__, res);
return false;
}
return mGotVSync;
}
bool Sensor::waitForNewFrame(nsecs_t reltime, nsecs_t *captureTime) {
Mutex::Autolock lock(mReadoutMutex);
if (mCapturedBuffers == NULL) {
int res;
res = mReadoutAvailable.waitRelative(mReadoutMutex, reltime);
if (res == TIMED_OUT) {
return false;
} else if (res != OK || mCapturedBuffers == NULL) {
ALOGE("Error waiting for sensor readout signal: %d", res);
return false;
}
}
mReadoutComplete.signal();
*captureTime = mCaptureTime;
mCapturedBuffers = NULL;
return true;
}
Sensor::SensorListener::~SensorListener() {}
void Sensor::setSensorListener(SensorListener *listener) {
Mutex::Autolock lock(mControlMutex);
mListener = listener;
}
status_t Sensor::readyToRun() {
ALOGV("Starting up sensor thread");
mStartupTime = systemTime();
mNextCaptureTime = 0;
mNextCapturedBuffers = NULL;
return OK;
}
bool Sensor::threadLoop() {
/**
* Sensor capture operation main loop.
*
* Stages are out-of-order relative to a single frame's processing, but
* in-order in time.
*/
/**
* Stage 1: Read in latest control parameters
*/
uint64_t exposureDuration;
uint64_t frameDuration;
uint32_t gain;
Buffers *nextBuffers;
uint32_t frameNumber;
SensorListener *listener = NULL;
{
Mutex::Autolock lock(mControlMutex);
exposureDuration = mExposureTime;
frameDuration = mFrameDuration;
gain = mGainFactor;
nextBuffers = mNextBuffers;
frameNumber = mFrameNumber;
listener = mListener;
// Don't reuse a buffer set
mNextBuffers = NULL;
// Signal VSync for start of readout
ALOGVV("Sensor VSync");
mGotVSync = true;
mVSync.signal();
}
/**
* Stage 3: Read out latest captured image
*/
Buffers *capturedBuffers = NULL;
nsecs_t captureTime = 0;
nsecs_t startRealTime = systemTime();
// Stagefright cares about system time for timestamps, so base simulated
// time on that.
nsecs_t simulatedTime = startRealTime;
nsecs_t frameEndRealTime = startRealTime + frameDuration;
if (mNextCapturedBuffers != NULL) {
ALOGVV("Sensor starting readout");
// Pretend we're doing readout now; will signal once enough time has elapsed
capturedBuffers = mNextCapturedBuffers;
captureTime = mNextCaptureTime;
}
simulatedTime += mRowReadoutTime + kMinVerticalBlank;
// TODO: Move this signal to another thread to simulate readout
// time properly
if (capturedBuffers != NULL) {
ALOGVV("Sensor readout complete");
Mutex::Autolock lock(mReadoutMutex);
if (mCapturedBuffers != NULL) {
ALOGV("Waiting for readout thread to catch up!");
mReadoutComplete.wait(mReadoutMutex);
}
mCapturedBuffers = capturedBuffers;
mCaptureTime = captureTime;
mReadoutAvailable.signal();
capturedBuffers = NULL;
}
/**
* Stage 2: Capture new image
*/
mNextCaptureTime = simulatedTime;
mNextCapturedBuffers = nextBuffers;
if (mNextCapturedBuffers != NULL) {
if (listener != NULL) {
listener->onSensorEvent(frameNumber, SensorListener::EXPOSURE_START,
mNextCaptureTime);
}
ALOGVV("Starting next capture: Exposure: %f ms, gain: %d",
(float)exposureDuration / 1e6, gain);
mScene.setExposureDuration((float)exposureDuration / 1e9);
mScene.calculateScene(mNextCaptureTime);
// Might be adding more buffers, so size isn't constant
for (size_t i = 0; i < mNextCapturedBuffers->size(); i++) {
const StreamBuffer &b = (*mNextCapturedBuffers)[i];
ALOGVV(
"Sensor capturing buffer %d: stream %d,"
" %d x %d, format %x, stride %d, buf %p, img %p",
i, b.streamId, b.width, b.height, b.format, b.stride, b.buffer,
b.img);
switch (b.format) {
#if VSOC_PLATFORM_SDK_AFTER(K)
case HAL_PIXEL_FORMAT_RAW16:
captureRaw(b.img, gain, b.stride);
break;
#endif
case HAL_PIXEL_FORMAT_RGB_888:
captureRGB(b.img, gain, b.stride);
break;
case HAL_PIXEL_FORMAT_RGBA_8888:
captureRGBA(b.img, gain, b.stride);
break;
case HAL_PIXEL_FORMAT_BLOB:
#if defined HAL_DATASPACE_DEPTH
if (b.dataSpace != HAL_DATASPACE_DEPTH) {
#endif
// Add auxillary buffer of the right size
// Assumes only one BLOB (JPEG) buffer in
// mNextCapturedBuffers
StreamBuffer bAux;
bAux.streamId = 0;
bAux.width = b.width;
bAux.height = b.height;
bAux.format = HAL_PIXEL_FORMAT_RGB_888;
bAux.stride = b.width;
bAux.buffer = NULL;
// TODO: Reuse these
bAux.img = new uint8_t[b.width * b.height * 3];
mNextCapturedBuffers->push_back(bAux);
#if defined HAL_DATASPACE_DEPTH
} else {
captureDepthCloud(b.img);
}
#endif
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
case HAL_PIXEL_FORMAT_YCbCr_420_888:
captureNV21(b.img, gain, b.stride);
break;
case HAL_PIXEL_FORMAT_YV12:
// TODO:
ALOGE("%s: Format %x is TODO", __FUNCTION__, b.format);
break;
case HAL_PIXEL_FORMAT_Y16:
captureDepth(b.img, gain, b.stride);
break;
default:
ALOGE("%s: Unknown format %x, no output", __FUNCTION__, b.format);
break;
}
}
}
ALOGVV("Sensor vertical blanking interval");
nsecs_t workDoneRealTime = systemTime();
const nsecs_t timeAccuracy = 2e6; // 2 ms of imprecision is ok
if (workDoneRealTime < frameEndRealTime - timeAccuracy) {
timespec t;
t.tv_sec = (frameEndRealTime - workDoneRealTime) / 1000000000L;
t.tv_nsec = (frameEndRealTime - workDoneRealTime) % 1000000000L;
int ret;
do {
ret = nanosleep(&t, &t);
} while (ret != 0);
}
nsecs_t endRealTime __unused = systemTime();
ALOGVV("Frame cycle took %d ms, target %d ms",
(int)((endRealTime - startRealTime) / 1000000),
(int)(frameDuration / 1000000));
return true;
};
void Sensor::captureRaw(uint8_t *img, uint32_t gain, uint32_t stride) {
float totalGain = gain / 100.0 * kBaseGainFactor;
float noiseVarGain = totalGain * totalGain;
float readNoiseVar =
kReadNoiseVarBeforeGain * noiseVarGain + kReadNoiseVarAfterGain;
int bayerSelect[4] = {Scene::R, Scene::Gr, Scene::Gb, Scene::B}; // RGGB
mScene.setReadoutPixel(0, 0);
for (unsigned int y = 0; y < mResolution[1]; y++) {
int *bayerRow = bayerSelect + (y & 0x1) * 2;
uint16_t *px = (uint16_t *)img + y * stride;
for (unsigned int x = 0; x < mResolution[0]; x++) {
uint32_t electronCount;
electronCount = mScene.getPixelElectrons()[bayerRow[x & 0x1]];
// TODO: Better pixel saturation curve?
electronCount = (electronCount < kSaturationElectrons)
? electronCount
: kSaturationElectrons;
// TODO: Better A/D saturation curve?
uint16_t rawCount = electronCount * totalGain;
rawCount = (rawCount < kMaxRawValue) ? rawCount : kMaxRawValue;
// Calculate noise value
// TODO: Use more-correct Gaussian instead of uniform noise
float photonNoiseVar = electronCount * noiseVarGain;
float noiseStddev = sqrtf_approx(readNoiseVar + photonNoiseVar);
// Scaled to roughly match gaussian/uniform noise stddev
float noiseSample = std::rand() * (2.5 / (1.0 + RAND_MAX)) - 1.25;
rawCount += kBlackLevel;
rawCount += noiseStddev * noiseSample;
*px++ = rawCount;
}
// TODO: Handle this better
// simulatedTime += mRowReadoutTime;
}
ALOGVV("Raw sensor image captured");
}
void Sensor::captureRGBA(uint8_t *img, uint32_t gain, uint32_t stride) {
float totalGain = gain / 100.0 * kBaseGainFactor;
// In fixed-point math, calculate total scaling from electrons to 8bpp
int scale64x = 64 * totalGain * 255 / kMaxRawValue;
uint32_t inc = ceil((float)mResolution[0] / stride);
for (unsigned int y = 0, outY = 0; y < mResolution[1]; y += inc, outY++) {
uint8_t *px = img + outY * stride * 4;
mScene.setReadoutPixel(0, y);
for (unsigned int x = 0; x < mResolution[0]; x += inc) {
uint32_t rCount, gCount, bCount;
// TODO: Perfect demosaicing is a cheat
const uint32_t *pixel = mScene.getPixelElectrons();
rCount = pixel[Scene::R] * scale64x;
gCount = pixel[Scene::Gr] * scale64x;
bCount = pixel[Scene::B] * scale64x;
*px++ = rCount < 255 * 64 ? rCount / 64 : 255;
*px++ = gCount < 255 * 64 ? gCount / 64 : 255;
*px++ = bCount < 255 * 64 ? bCount / 64 : 255;
*px++ = 255;
for (unsigned int j = 1; j < inc; j++) mScene.getPixelElectrons();
}
// TODO: Handle this better
// simulatedTime += mRowReadoutTime;
}
ALOGVV("RGBA sensor image captured");
}
void Sensor::captureRGB(uint8_t *img, uint32_t gain, uint32_t stride) {
float totalGain = gain / 100.0 * kBaseGainFactor;
// In fixed-point math, calculate total scaling from electrons to 8bpp
int scale64x = 64 * totalGain * 255 / kMaxRawValue;
uint32_t inc = ceil((float)mResolution[0] / stride);
for (unsigned int y = 0, outY = 0; y < mResolution[1]; y += inc, outY++) {
mScene.setReadoutPixel(0, y);
uint8_t *px = img + outY * stride * 3;
for (unsigned int x = 0; x < mResolution[0]; x += inc) {
uint32_t rCount, gCount, bCount;
// TODO: Perfect demosaicing is a cheat
const uint32_t *pixel = mScene.getPixelElectrons();
rCount = pixel[Scene::R] * scale64x;
gCount = pixel[Scene::Gr] * scale64x;
bCount = pixel[Scene::B] * scale64x;
*px++ = rCount < 255 * 64 ? rCount / 64 : 255;
*px++ = gCount < 255 * 64 ? gCount / 64 : 255;
*px++ = bCount < 255 * 64 ? bCount / 64 : 255;
for (unsigned int j = 1; j < inc; j++) mScene.getPixelElectrons();
}
// TODO: Handle this better
// simulatedTime += mRowReadoutTime;
}
ALOGVV("RGB sensor image captured");
}
void Sensor::captureNV21(uint8_t *img, uint32_t gain, uint32_t stride) {
float totalGain = gain / 100.0 * kBaseGainFactor;
// Using fixed-point math with 6 bits of fractional precision.
// In fixed-point math, calculate total scaling from electrons to 8bpp
const int scale64x = 64 * totalGain * 255 / kMaxRawValue;
// In fixed-point math, saturation point of sensor after gain
const int saturationPoint = 64 * 255;
// Fixed-point coefficients for RGB-YUV transform
// Based on JFIF RGB->YUV transform.
// Cb/Cr offset scaled by 64x twice since they're applied post-multiply
const int rgbToY[] = {19, 37, 7};
const int rgbToCb[] = {-10, -21, 32, 524288};
const int rgbToCr[] = {32, -26, -5, 524288};
// Scale back to 8bpp non-fixed-point
const int scaleOut = 64;
const int scaleOutSq = scaleOut * scaleOut; // after multiplies
// inc = how many pixels to skip while reading every next pixel
// horizontally.
uint32_t inc = ceil((float)mResolution[0] / stride);
// outH = projected vertical resolution based on stride.
uint32_t outH = mResolution[1] / inc;
for (unsigned int y = 0, outY = 0; y < mResolution[1]; y += inc, outY++) {
uint8_t *pxY = img + outY * stride;
uint8_t *pxVU = img + (outH + outY / 2) * stride;
mScene.setReadoutPixel(0, y);
for (unsigned int outX = 0; outX < stride; outX++) {
int32_t rCount, gCount, bCount;
// TODO: Perfect demosaicing is a cheat
const uint32_t *pixel = mScene.getPixelElectrons();
rCount = pixel[Scene::R] * scale64x;
rCount = rCount < saturationPoint ? rCount : saturationPoint;
gCount = pixel[Scene::Gr] * scale64x;
gCount = gCount < saturationPoint ? gCount : saturationPoint;
bCount = pixel[Scene::B] * scale64x;
bCount = bCount < saturationPoint ? bCount : saturationPoint;
*pxY++ = (rgbToY[0] * rCount + rgbToY[1] * gCount + rgbToY[2] * bCount) /
scaleOutSq;
if (outY % 2 == 0 && outX % 2 == 0) {
*pxVU++ = (rgbToCb[0] * rCount + rgbToCb[1] * gCount +
rgbToCb[2] * bCount + rgbToCb[3]) /
scaleOutSq;
*pxVU++ = (rgbToCr[0] * rCount + rgbToCr[1] * gCount +
rgbToCr[2] * bCount + rgbToCr[3]) /
scaleOutSq;
}
// Skip unprocessed pixels from sensor.
for (unsigned int j = 1; j < inc; j++) mScene.getPixelElectrons();
}
}
ALOGVV("NV21 sensor image captured");
}
void Sensor::captureDepth(uint8_t *img, uint32_t gain, uint32_t stride) {
float totalGain = gain / 100.0 * kBaseGainFactor;
// In fixed-point math, calculate scaling factor to 13bpp millimeters
int scale64x = 64 * totalGain * 8191 / kMaxRawValue;
uint32_t inc = ceil((float)mResolution[0] / stride);
for (unsigned int y = 0, outY = 0; y < mResolution[1]; y += inc, outY++) {
mScene.setReadoutPixel(0, y);
uint16_t *px = ((uint16_t *)img) + outY * stride;
for (unsigned int x = 0; x < mResolution[0]; x += inc) {
uint32_t depthCount;
// TODO: Make up real depth scene instead of using green channel
// as depth
const uint32_t *pixel = mScene.getPixelElectrons();
depthCount = pixel[Scene::Gr] * scale64x;
*px++ = depthCount < 8191 * 64 ? depthCount / 64 : 0;
for (unsigned int j = 1; j < inc; j++) mScene.getPixelElectrons();
}
// TODO: Handle this better
// simulatedTime += mRowReadoutTime;
}
ALOGVV("Depth sensor image captured");
}
void Sensor::captureDepthCloud(uint8_t * /*img*/) {
#if defined HAL_DATASPACE_DEPTH
android_depth_points *cloud = reinterpret_cast<android_depth_points *>(img);
cloud->num_points = 16;
// TODO: Create point cloud values that match RGB scene
const int FLOATS_PER_POINT = 4;
const float JITTER_STDDEV = 0.1f;
for (size_t y = 0, i = 0; y < 4; y++) {
for (size_t x = 0; x < 4; x++, i++) {
float randSampleX = std::rand() * (2.5f / (1.0f + RAND_MAX)) - 1.25f;
randSampleX *= JITTER_STDDEV;
float randSampleY = std::rand() * (2.5f / (1.0f + RAND_MAX)) - 1.25f;
randSampleY *= JITTER_STDDEV;
float randSampleZ = std::rand() * (2.5f / (1.0f + RAND_MAX)) - 1.25f;
randSampleZ *= JITTER_STDDEV;
cloud->xyzc_points[i * FLOATS_PER_POINT + 0] = x - 1.5f + randSampleX;
cloud->xyzc_points[i * FLOATS_PER_POINT + 1] = y - 1.5f + randSampleY;
cloud->xyzc_points[i * FLOATS_PER_POINT + 2] = 3.f + randSampleZ;
cloud->xyzc_points[i * FLOATS_PER_POINT + 3] = 0.8f;
}
}
ALOGVV("Depth point cloud captured");
#endif
}
} // namespace android