/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <fcntl.h>
#include <sys/types.h>
#include <stdbool.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <stddef.h>
#include <errno.h>
#include <nanohub/nanohub.h>
#include <nanohub/nanoapp.h>
#include <nanohub/appRelocFormat.h>
//This code assumes it is run on a LE CPU with unaligned access abilities. Sorry.
#define FLASH_BASE 0x10000000u
#define RAM_BASE 0x80000000u
#define FLASH_SIZE 0x10000000u //256MB ought to be enough for everyone
#define RAM_SIZE 0x10000000u //256MB ought to be enough for everyone
//caution: double evaluation
#define IS_IN_RANGE_E(_val, _rstart, _rend) (((_val) >= (_rstart)) && ((_val) < (_rend)))
#define IS_IN_RANGE(_val, _rstart, _rsz) IS_IN_RANGE_E((_val), (_rstart), ((_rstart) + (_rsz)))
#define IS_IN_RAM(_val) IS_IN_RANGE(_val, RAM_BASE, RAM_SIZE)
#define IS_IN_FLASH(_val) IS_IN_RANGE(_val, FLASH_BASE, FLASH_SIZE)
#define NANO_RELOC_TYPE_RAM 0
#define NANO_RELOC_TYPE_FLASH 1
#define NANO_RELOC_LAST 2 //must be <= (RELOC_TYPE_MASK >> RELOC_TYPE_SHIFT)
struct RelocEntry {
uint32_t where;
uint32_t info; //bottom 8 bits is type, top 24 is sym idx
};
#define RELOC_TYPE_ABS_S 2
#define RELOC_TYPE_ABS_D 21
#define RELOC_TYPE_SECT 23
struct SymtabEntry {
uint32_t a;
uint32_t addr;
uint32_t b, c;
};
struct NanoRelocEntry {
uint32_t ofstInRam;
uint8_t type;
};
struct NanoAppInfo {
union {
struct BinHdr *bin;
uint8_t *data;
};
size_t dataSizeUsed;
size_t dataSizeAllocated;
size_t codeAndDataSize; // not including symbols, relocs and BinHdr
size_t codeAndRoDataSize; // also not including GOT & RW data in flash
struct SymtabEntry *symtab;
size_t symtabSize; // number of symbols
struct RelocEntry *reloc;
size_t relocSize; // number of reloc entries
struct NanoRelocEntry *nanoReloc;
size_t nanoRelocSize; // number of nanoReloc entries <= relocSize
uint8_t *packedNanoReloc;
size_t packedNanoRelocSize;
bool debug;
};
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(ary) (sizeof(ary) / sizeof((ary)[0]))
#endif
static FILE *stdlog = NULL;
#define DBG(fmt, ...) fprintf(stdlog, fmt "\n", ##__VA_ARGS__)
#define ERR(fmt, ...) fprintf(stderr, fmt "\n", ##__VA_ARGS__)
static void fatalUsage(const char *name, const char *msg, const char *arg)
{
if (msg && arg)
ERR("Error: %s: %s\n", msg, arg);
else if (msg)
ERR("Error: %s\n", msg);
ERR("USAGE: %s [-v] [-k <key id>] [-a <app id>] [-r] [-n <layout name>] [-i <layout id>] <input file> [<output file>]\n"
" -v : be verbose\n"
" -n <layout name> : app, os, key\n"
" -i <layout id> : 1 (app), 2 (key), 3 (os)\n"
" -f <layout flags>: 16-bit hex value, stored as layout-specific flags\n"
" -a <app ID> : 64-bit hex number != 0\n"
" -e <app ver> : 32-bit hex number\n"
" -k <key ID> : 64-bit hex number != 0\n"
" -r : bare (no AOSP header); used only for inner OS image generation\n"
" layout ID and layout name control the same parameter, so only one of them needs to be used\n"
, name);
exit(1);
}
bool packNanoRelocs(struct NanoAppInfo *app)
{
size_t i, j, k;
uint8_t *packedNanoRelocs;
uint32_t packedNanoRelocSz;
uint32_t lastOutType = 0, origin = 0;
bool verbose = app->debug;
//sort by type and then offset
for (i = 0; i < app->nanoRelocSize; i++) {
struct NanoRelocEntry t;
for (k = i, j = k + 1; j < app->nanoRelocSize; j++) {
if (app->nanoReloc[j].type > app->nanoReloc[k].type)
continue;
if ((app->nanoReloc[j].type < app->nanoReloc[k].type) || (app->nanoReloc[j].ofstInRam < app->nanoReloc[k].ofstInRam))
k = j;
}
memcpy(&t, app->nanoReloc + i, sizeof(struct NanoRelocEntry));
memcpy(app->nanoReloc + i, app->nanoReloc + k, sizeof(struct NanoRelocEntry));
memcpy(app->nanoReloc + k, &t, sizeof(struct NanoRelocEntry));
if (app->debug)
DBG("SortedReloc[%3zu] = {0x%08" PRIX32 ",0x%02" PRIX8 "}", i, app->nanoReloc[i].ofstInRam, app->nanoReloc[i].type);
}
//produce output nanorelocs in packed format
packedNanoRelocs = malloc(app->nanoRelocSize * 6); //definitely big enough
packedNanoRelocSz = 0;
if (!packedNanoRelocs) {
ERR("Failed to allocate memory for packed relocs");
return false;
}
for (i = 0; i < app->nanoRelocSize; i++) {
uint32_t displacement;
if (lastOutType != app->nanoReloc[i].type) { //output type if ti changed
if (app->nanoReloc[i].type - lastOutType == 1) {
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_RELOC_TYPE_NEXT;
if (verbose)
DBG("Out: RelocTC [size 1] // to 0x%02" PRIX8, app->nanoReloc[i].type);
} else {
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_RELOC_TYPE_CHG;
packedNanoRelocs[packedNanoRelocSz++] = app->nanoReloc[i].type - lastOutType - 1;
if (verbose)
DBG("Out: RelocTC [size 2] (0x%02" PRIX8 ") // to 0x%02" PRIX8,
(uint8_t)(app->nanoReloc[i].type - lastOutType - 1), app->nanoReloc[i].type);
}
lastOutType = app->nanoReloc[i].type;
origin = 0;
}
displacement = app->nanoReloc[i].ofstInRam - origin;
origin = app->nanoReloc[i].ofstInRam + 4;
if (displacement & 3) {
ERR("Unaligned relocs are not possible!");
return false;
}
displacement /= 4;
//might be start of a run. look into that
if (!displacement) {
for (j = 1; (j + i) < app->nanoRelocSize && j < MAX_RUN_LEN &&
app->nanoReloc[j + i].type == lastOutType &&
(app->nanoReloc[j + i].ofstInRam - app->nanoReloc[j + i - 1].ofstInRam) == 4; j++);
if (j >= MIN_RUN_LEN) {
if (verbose)
DBG("Out: Reloc0 [size 2]; repeat=%zu", j);
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_CONSECUTIVE;
packedNanoRelocs[packedNanoRelocSz++] = j - MIN_RUN_LEN;
origin = app->nanoReloc[j + i - 1].ofstInRam + 4; //reset origin to last one
i += j - 1; //loop will increment anyways, hence +1
continue;
}
}
//produce output
if (displacement <= MAX_8_BIT_NUM) {
if (verbose)
DBG("Out: Reloc8 [size 1] 0x%02" PRIX32, displacement);
packedNanoRelocs[packedNanoRelocSz++] = displacement;
} else if (displacement <= MAX_16_BIT_NUM) {
if (verbose)
DBG("Out: Reloc16 [size 3] 0x%06" PRIX32, displacement);
displacement -= MAX_8_BIT_NUM;
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_16BIT_OFST;
packedNanoRelocs[packedNanoRelocSz++] = displacement;
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8;
} else if (displacement <= MAX_24_BIT_NUM) {
if (verbose)
DBG("Out: Reloc24 [size 4] 0x%08" PRIX32, displacement);
displacement -= MAX_16_BIT_NUM;
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_24BIT_OFST;
packedNanoRelocs[packedNanoRelocSz++] = displacement;
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8;
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 16;
} else {
if (verbose)
DBG("Out: Reloc32 [size 5] 0x%08" PRIX32, displacement);
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_32BIT_OFST;
packedNanoRelocs[packedNanoRelocSz++] = displacement;
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8;
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 16;
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 24;
}
}
app->packedNanoReloc = packedNanoRelocs;
app->packedNanoRelocSize = packedNanoRelocSz;
return true;
}
static int finalizeAndWrite(struct NanoAppInfo *inf, FILE *out, uint32_t layoutFlags, uint64_t appId)
{
bool good = true;
struct AppInfo app;
struct SectInfo *sect;
struct BinHdr *bin = inf->bin;
struct ImageHeader outHeader = {
.aosp = (struct nano_app_binary_t) {
.header_version = 1,
.magic = NANOAPP_AOSP_MAGIC,
.app_id = appId,
.app_version = bin->hdr.appVer,
.flags = 0, // encrypted (1), signed (2) (will be set by other tools)
},
.layout = (struct ImageLayout) {
.magic = GOOGLE_LAYOUT_MAGIC,
.version = 1,
.payload = LAYOUT_APP,
.flags = layoutFlags,
},
};
app.sect = bin->sect;
app.vec = bin->vec;
sect = &app.sect;
//if we have any bytes to output, show stats
if (inf->codeAndRoDataSize) {
size_t binarySize = 0;
size_t gotSz = sect->got_end - sect->data_start;
size_t bssSz = sect->bss_end - sect->bss_start;
good = fwrite(&outHeader, sizeof(outHeader), 1, out) == 1 && good;
binarySize += sizeof(outHeader);
good = fwrite(&app, sizeof(app), 1, out) == 1 && good;
binarySize += sizeof(app);
good = fwrite(&bin[1], inf->codeAndDataSize, 1, out) == 1 && good;
binarySize += inf->codeAndDataSize;
if (inf->packedNanoReloc && inf->packedNanoRelocSize) {
good = fwrite(inf->packedNanoReloc, inf->packedNanoRelocSize, 1, out) == 1 && good;
binarySize += inf->packedNanoRelocSize;
}
if (!good) {
ERR("Failed to write output file: %s\n", strerror(errno));
} else {
DBG("Final binary size %zu bytes", binarySize);
DBG("");
DBG(" FW header size (flash): %6zu bytes", FLASH_RELOC_OFFSET);
DBG(" Code + RO data (flash): %6zu bytes", inf->codeAndRoDataSize);
DBG(" Relocs (flash): %6zu bytes", inf->packedNanoRelocSize);
DBG(" GOT + RW data (flash & RAM): %6zu bytes", gotSz);
DBG(" BSS (RAM): %6zu bytes", bssSz);
DBG("");
DBG("Runtime flash use: %zu bytes",
(size_t)(inf->codeAndRoDataSize + inf->packedNanoRelocSize + gotSz + FLASH_RELOC_OFFSET));
DBG("Runtime RAM use: %zu bytes", gotSz + bssSz);
}
}
return good ? 0 : 2;
}
// Subtracts the fixed memory region offset from an absolute address and returns
// the associated NANO_RELOC_* value, or NANO_RELOC_LAST if the address is not
// in the expected range.
static uint8_t fixupAddress(uint32_t *addr, struct SymtabEntry *sym, bool debug)
{
uint8_t type;
uint32_t old = *addr;
(*addr) += sym->addr;
// TODO: this assumes that the host running this tool has the same
// endianness as the image file/target processor
if (IS_IN_RAM(*addr)) {
*addr -= RAM_BASE;
type = NANO_RELOC_TYPE_RAM;
if (debug)
DBG("Fixup addr 0x%08" PRIX32 " (RAM) --> 0x%08" PRIX32, old, *addr);
} else if (IS_IN_FLASH(*addr)) {
*addr -= FLASH_BASE + BINARY_RELOC_OFFSET;
type = NANO_RELOC_TYPE_FLASH;
if (debug)
DBG("Fixup addr 0x%08" PRIX32 " (FLASH) --> 0x%08" PRIX32, old, *addr);
} else {
ERR("Error: invalid address 0x%08" PRIX32, *addr);
type = NANO_RELOC_LAST;
}
return type;
}
static void relocDiag(const struct NanoAppInfo *app, const struct RelocEntry *reloc, const char *msg)
{
size_t symIdx = reloc->info >> 8;
uint8_t symType = reloc->info;
ERR("Reloc %zu %s", reloc - app->reloc, msg);
ERR("INFO:");
ERR(" Where: 0x%08" PRIX32, reloc->where);
ERR(" type: %" PRIu8, symType);
ERR(" sym: %zu", symIdx);
if (symIdx < app->symtabSize) {
struct SymtabEntry *sym = &app->symtab[symIdx];
ERR(" addr: %" PRIu32, sym->addr);
} else {
ERR(" addr: <invalid>");
}
}
static uint8_t fixupReloc(struct NanoAppInfo *app, struct RelocEntry *reloc,
struct SymtabEntry *sym, struct NanoRelocEntry *nanoReloc)
{
uint8_t type;
uint32_t *addr;
uint32_t relocOffset = reloc->where;
uint32_t flashDataOffset = 0;
if (IS_IN_FLASH(relocOffset)) {
relocOffset -= FLASH_BASE;
flashDataOffset = 0;
} else if (IS_IN_RAM(reloc->where)) {
relocOffset = reloc->where - RAM_BASE;
flashDataOffset = app->bin->sect.data_data - FLASH_BASE;
} else {
relocDiag(app, reloc, "is neither in RAM nor in FLASH");
return NANO_RELOC_LAST;
}
addr = (uint32_t*)(app->data + flashDataOffset + relocOffset);
if (flashDataOffset + relocOffset >= app->dataSizeUsed - sizeof(*addr)) {
relocDiag(app, reloc, "points outside valid data area");
return NANO_RELOC_LAST;
}
switch (reloc->info & 0xFF) {
case RELOC_TYPE_ABS_S:
case RELOC_TYPE_ABS_D:
type = fixupAddress(addr, sym, app->debug);
break;
case RELOC_TYPE_SECT:
if (sym->addr) {
relocDiag(app, reloc, "has section relocation with non-zero symbol address");
return NANO_RELOC_LAST;
}
type = fixupAddress(addr, sym, app->debug);
break;
default:
relocDiag(app, reloc, "has unknown type");
type = NANO_RELOC_LAST;
}
if (nanoReloc && type != NANO_RELOC_LAST) {
nanoReloc->ofstInRam = relocOffset;
nanoReloc->type = type;
}
return type;
}
static int handleApp(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, uint64_t appId, uint32_t appVer, bool verbose)
{
uint32_t i;
struct BinHdr *bin;
int ret = -1;
struct SectInfo *sect;
uint8_t *buf = *pbuf;
uint32_t bufSz = bufUsed * 3 /2;
struct NanoAppInfo app;
//make buffer 50% bigger than bufUsed in case relocs grow out of hand
buf = reallocOrDie(buf, bufSz);
*pbuf = buf;
//sanity checks
bin = (struct BinHdr*)buf;
if (bufUsed < sizeof(*bin)) {
ERR("File size too small: %" PRIu32, bufUsed);
goto out;
}
if (bin->hdr.magic != NANOAPP_FW_MAGIC) {
ERR("Magic value is wrong: found %08" PRIX32"; expected %08" PRIX32, bin->hdr.magic, NANOAPP_FW_MAGIC);
goto out;
}
sect = &bin->sect;
bin->hdr.appVer = appVer;
if (!IS_IN_FLASH(sect->rel_start) || !IS_IN_FLASH(sect->rel_end) || !IS_IN_FLASH(sect->data_data)) {
ERR("relocation data or initialized data is not in FLASH");
goto out;
}
if (!IS_IN_RAM(sect->data_start) || !IS_IN_RAM(sect->data_end) || !IS_IN_RAM(sect->bss_start) ||
!IS_IN_RAM(sect->bss_end) || !IS_IN_RAM(sect->got_start) || !IS_IN_RAM(sect->got_end)) {
ERR("data, bss, or got not in ram\n");
goto out;
}
//do some math
app.reloc = (struct RelocEntry*)(buf + sect->rel_start - FLASH_BASE);
app.symtab = (struct SymtabEntry*)(buf + sect->rel_end - FLASH_BASE);
app.relocSize = (sect->rel_end - sect->rel_start) / sizeof(struct RelocEntry);
app.nanoRelocSize = 0;
app.symtabSize = (struct SymtabEntry*)(buf + bufUsed) - app.symtab;
app.data = buf;
app.dataSizeAllocated = bufSz;
app.dataSizeUsed = bufUsed;
app.codeAndRoDataSize = sect->data_data - FLASH_BASE - sizeof(*bin);
app.codeAndDataSize = sect->rel_start - FLASH_BASE - sizeof(*bin);
app.debug = verbose;
app.nanoReloc = NULL;
app.packedNanoReloc = NULL;
//sanity
if (app.relocSize * sizeof(struct RelocEntry) + sect->rel_start != sect->rel_end) {
ERR("Relocs of nonstandard size");
goto out;
}
if (app.symtabSize * sizeof(struct SymtabEntry) + sect->rel_end != bufUsed + FLASH_BASE) {
ERR("Syms of nonstandard size");
goto out;
}
//show some info
if (verbose)
DBG("Found %zu relocs and a %zu-entry symbol table", app.relocSize, app.symtabSize);
//handle relocs
app.nanoReloc = malloc(sizeof(struct NanoRelocEntry[app.relocSize]));
if (!app.nanoReloc) {
ERR("Failed to allocate a nano-reloc table\n");
goto out;
}
for (i = 0; i < app.relocSize; i++) {
struct RelocEntry *reloc = &app.reloc[i];
struct NanoRelocEntry *nanoReloc = &app.nanoReloc[app.nanoRelocSize];
uint32_t relocType = reloc->info & 0xff;
uint32_t whichSym = reloc->info >> 8;
struct SymtabEntry *sym = &app.symtab[whichSym];
if (whichSym >= app.symtabSize) {
relocDiag(&app, reloc, "references a nonexistent symbol");
goto out;
}
if (verbose) {
const char *seg;
if (IS_IN_RANGE_E(reloc->where, sect->bss_start, sect->bss_end))
seg = ".bss";
else if (IS_IN_RANGE_E(reloc->where, sect->data_start, sect->data_end))
seg = ".data";
else if (IS_IN_RANGE_E(reloc->where, sect->got_start, sect->got_end))
seg = ".got";
else if (IS_IN_RANGE_E(reloc->where, FLASH_BASE, FLASH_BASE + sizeof(struct BinHdr)))
seg = "APPHDR";
else
seg = "???";
DBG("Reloc[%3" PRIu32 "]:\n {@0x%08" PRIX32 ", type %3" PRIu32 ", -> sym[%3" PRIu32 "]: {@0x%08" PRIX32 "}, in %s}",
i, reloc->where, reloc->info & 0xff, whichSym, sym->addr, seg);
}
/* handle relocs inside the header */
if (IS_IN_FLASH(reloc->where) && reloc->where - FLASH_BASE < sizeof(struct BinHdr) && relocType == RELOC_TYPE_SECT) {
/* relocs in header are special - runtime corrects for them */
// binary header generated by objcopy, .napp header and final FW header in flash are of different layout and size.
// we subtract binary header offset here, so all the entry points are relative to beginning of "sect".
// FW will use § as a base to call these vectors; no more problems with different header sizes;
// Assumption: offsets between sect & vec, vec & code are the same in all images (or, in a simpler words, { sect, vec, code }
// must go together). this is enforced by linker script, and maintained by all tools and FW download code in the OS.
switch (fixupReloc(&app, reloc, sym, NULL)) {
case NANO_RELOC_TYPE_RAM:
relocDiag(&app, reloc, "is in APPHDR but relocated to RAM");
goto out;
case NANO_RELOC_TYPE_FLASH:
break;
default:
// other error happened; it is already reported
goto out;
}
if (verbose)
DBG(" -> Nano reloc skipped for in-header reloc");
continue; /* do not produce an output reloc */
}
// any other relocs may only happen in RAM
if (!IS_IN_RAM(reloc->where)) {
relocDiag(&app, reloc, "is not in RAM");
goto out;
}
if (fixupReloc(&app, reloc, sym, nanoReloc) != NANO_RELOC_LAST) {
app.nanoRelocSize++;
if (verbose)
DBG(" -> Nano reloc calculated as 0x%08" PRIX32 ",0x%02" PRIX8 "\n", nanoReloc->ofstInRam, nanoReloc->type);
}
}
if (!packNanoRelocs(&app))
goto out;
// we're going to write packed relocs; set correct size
sect->rel_end = sect->rel_start + app.packedNanoRelocSize;
//adjust headers for easy access (RAM)
sect->data_start -= RAM_BASE;
sect->data_end -= RAM_BASE;
sect->bss_start -= RAM_BASE;
sect->bss_end -= RAM_BASE;
sect->got_start -= RAM_BASE;
sect->got_end -= RAM_BASE;
//adjust headers for easy access (FLASH)
sect->data_data -= FLASH_BASE + BINARY_RELOC_OFFSET;
sect->rel_start -= FLASH_BASE + BINARY_RELOC_OFFSET;
sect->rel_end -= FLASH_BASE + BINARY_RELOC_OFFSET;
ret = finalizeAndWrite(&app, out, layoutFlags, appId);
out:
free(app.nanoReloc);
free(app.packedNanoReloc);
return ret;
}
static int handleKey(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, uint64_t appId, uint64_t keyId)
{
uint8_t *buf = *pbuf;
struct KeyInfo ki = { .data = keyId };
bool good = true;
struct ImageHeader outHeader = {
.aosp = (struct nano_app_binary_t) {
.header_version = 1,
.magic = NANOAPP_AOSP_MAGIC,
.app_id = appId,
},
.layout = (struct ImageLayout) {
.magic = GOOGLE_LAYOUT_MAGIC,
.version = 1,
.payload = LAYOUT_KEY,
.flags = layoutFlags,
},
};
good = good && fwrite(&outHeader, sizeof(outHeader), 1, out) == 1;
good = good && fwrite(&ki, sizeof(ki), 1, out) == 1;
good = good && fwrite(buf, bufUsed, 1, out) == 1;
return good ? 0 : 2;
}
static int handleOs(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, bool bare)
{
uint8_t *buf = *pbuf;
bool good;
struct OsUpdateHdr os = {
.magic = OS_UPDT_MAGIC,
.marker = OS_UPDT_MARKER_INPROGRESS,
.size = bufUsed
};
struct ImageHeader outHeader = {
.aosp = (struct nano_app_binary_t) {
.header_version = 1,
.magic = NANOAPP_AOSP_MAGIC,
},
.layout = (struct ImageLayout) {
.magic = GOOGLE_LAYOUT_MAGIC,
.version = 1,
.payload = LAYOUT_OS,
.flags = layoutFlags,
},
};
if (!bare)
good = fwrite(&outHeader, sizeof(outHeader), 1, out) == 1;
else
good = fwrite(&os, sizeof(os), 1, out) == 1;
good = good && fwrite(buf, bufUsed, 1, out) == 1;
return good ? 0 : 2;
}
int main(int argc, char **argv)
{
uint32_t bufUsed = 0;
bool verbose = false;
uint8_t *buf = NULL;
uint64_t appId = 0;
uint64_t keyId = 0;
uint32_t appVer = 0;
uint32_t layoutId = 0;
uint32_t layoutFlags = 0;
int ret = -1;
uint32_t *u32Arg = NULL;
uint64_t *u64Arg = NULL;
const char **strArg = NULL;
const char *appName = argv[0];
int posArgCnt = 0;
const char *posArg[2] = { NULL };
FILE *out = NULL;
const char *layoutName = "app";
const char *prev = NULL;
bool bareData = false;
for (int i = 1; i < argc; i++) {
char *end = NULL;
if (argv[i][0] == '-') {
prev = argv[i];
if (!strcmp(argv[i], "-v"))
verbose = true;
else if (!strcmp(argv[i], "-r"))
bareData = true;
else if (!strcmp(argv[i], "-a"))
u64Arg = &appId;
else if (!strcmp(argv[i], "-e"))
u32Arg = &appVer;
else if (!strcmp(argv[i], "-k"))
u64Arg = &keyId;
else if (!strcmp(argv[i], "-n"))
strArg = &layoutName;
else if (!strcmp(argv[i], "-i"))
u32Arg = &layoutId;
else if (!strcmp(argv[i], "-f"))
u32Arg = &layoutFlags;
else
fatalUsage(appName, "unknown argument", argv[i]);
} else {
if (u64Arg) {
uint64_t tmp = strtoull(argv[i], &end, 16);
if (*end == '\0')
*u64Arg = tmp;
u64Arg = NULL;
} else if (u32Arg) {
uint32_t tmp = strtoul(argv[i], &end, 16);
if (*end == '\0')
*u32Arg = tmp;
u32Arg = NULL;
} else if (strArg) {
*strArg = argv[i];
strArg = NULL;
} else {
if (posArgCnt < 2)
posArg[posArgCnt++] = argv[i];
else
fatalUsage(appName, "too many positional arguments", argv[i]);
}
prev = NULL;
}
}
if (prev)
fatalUsage(appName, "missing argument after", prev);
if (!posArgCnt)
fatalUsage(appName, "missing input file name", NULL);
if (!layoutId) {
if (strcmp(layoutName, "app") == 0)
layoutId = LAYOUT_APP;
else if (strcmp(layoutName, "os") == 0)
layoutId = LAYOUT_OS;
else if (strcmp(layoutName, "key") == 0)
layoutId = LAYOUT_KEY;
else
fatalUsage(appName, "Invalid layout name", layoutName);
}
if (layoutId == LAYOUT_APP && !appId)
fatalUsage(appName, "App layout requires app ID", NULL);
if (layoutId == LAYOUT_KEY && !keyId)
fatalUsage(appName, "Key layout requires key ID", NULL);
if (layoutId == LAYOUT_OS && (keyId || appId))
fatalUsage(appName, "OS layout does not need any ID", NULL);
if (!posArg[1]) {
out = stdout;
stdlog = stderr;
} else {
out = fopen(posArg[1], "w");
stdlog = stdout;
}
if (!out)
fatalUsage(appName, "failed to create/open output file", posArg[1]);
buf = loadFile(posArg[0], &bufUsed);
DBG("Read %" PRIu32 " bytes from %s", bufUsed, posArg[0]);
switch(layoutId) {
case LAYOUT_APP:
ret = handleApp(&buf, bufUsed, out, layoutFlags, appId, appVer, verbose);
break;
case LAYOUT_KEY:
ret = handleKey(&buf, bufUsed, out, layoutFlags, appId, keyId);
break;
case LAYOUT_OS:
ret = handleOs(&buf, bufUsed, out, layoutFlags, bareData);
break;
}
free(buf);
fclose(out);
return ret;
}