/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "floatRt.h"
#include <stdbool.h>
#include <stdio.h>
/*
* FLOAT:
* seeeeeee emmmmmmm mmmmmmmm mmmmmmmm
*
* s = negative
* e = exponent
* m = mantissa (with one bit removed)
*
* if (e == 0xFF)
* if (f) val = inf
* else val = nan
* goto valDone
* else if (e == 0x00)
* useLeadingOne = 0
* e = -126
* else
* e = e - 127
* useLeadingOne = 1
*
* val = ((useLeadingOne << 24) + m) / (2 ^ 23)
* val *= 2 ^ e
*
* valDone:
*
* if (s)
* val = -val;
*/
#define BIT_SIGN 0x80000000UL
#define MANTISSA_BITS 23
#define EXP_SHIFT MANTISSA_BITS
#define EXP_ADJUST 127
#ifdef USE_NANOHUB_FLOAT_RUNTIME
uint64_t floatToUint64(float f)
{
uint32_t e, word = *(const uint32_t*)&f;
uint64_t ret;
//all negatives become zero
if (word & BIT_SIGN)
return 0;
//all values with exponent < 0 are less than one and thus become zero
if (word < (EXP_ADJUST << EXP_SHIFT))
return 0;
//standard does not say what happens to NaNs, infs & other too-large values, we return a large value as an approximation (though a zero would be equally valid)
if (word >= (EXP_ADJUST + 64) << EXP_SHIFT)
return 0xFFFFFFFFFFFFFFFFULL;
//get mantissa and the implied leading one
ret = (word & ((1 << MANTISSA_BITS) - 1)) | (1 << MANTISSA_BITS);
e = ((word >> EXP_SHIFT) - EXP_ADJUST);
//shift it by the exp
if (e < MANTISSA_BITS)
ret >>= MANTISSA_BITS - e;
else
ret <<= e - MANTISSA_BITS;
return ret;
}
int64_t floatToInt64(float f)
{
uint32_t e, word = *(const uint32_t*)&f;
bool neg = (word & BIT_SIGN);
uint64_t ret;
//all negatives become positive for now
word &=~ BIT_SIGN;
//all values with exponent < 0 are less than one and thus become zero
if (word < (EXP_ADJUST << EXP_SHIFT))
return 0;
//standard does not say what happens to NaNs, infs & other too-large values, we return a large value as an approximation (though a zero would be equally valid)
if (word >= (EXP_ADJUST + 63) << EXP_SHIFT)
ret = 0x7FFFFFFFFFFFFFFFULL;
else {
//get mantissa and the implied leading one
ret = (word & ((1 << MANTISSA_BITS) - 1)) | (1 << MANTISSA_BITS);
e = ((word >> EXP_SHIFT) - EXP_ADJUST);
//shift it by the exp
if (e < MANTISSA_BITS)
ret >>= MANTISSA_BITS - e;
else
ret <<= e - MANTISSA_BITS;
}
if (neg)
ret = -ret;
return ret;
}
float floatFromUint64(uint64_t v)
{
uint32_t hi = v >> 32, lo = v;
if (!hi) //this is very fast for cases where we fit into a uint32_t
return(float)lo;
else {
return ((float)hi) * 4294967296.0f + (float)lo;
}
}
float floatFromInt64(int64_t v)
{
uint32_t hi = ((uint64_t)v) >> 32, lo = v;
if ((hi == 0x00000000 && !(lo >> 31)) || (hi == 0xffffffff && (lo >> 31))) //this complex test is a lot faster then the simpler ((v >> 33) == -1 || (v >> 33) == 0)
return (float)(int32_t)lo;
else if (hi >> 31) //the case of 0x8000000000000000 is handled here, as negated it remains the same
return -floatFromUint64(-v);
else
return floatFromUint64(v);
}
#endif // USE_NANOHUB_FLOAT_RUNTIME