/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <nanohub/aes.h>
#include <nanohub/rsa.h>
#include <nanohub/sha2.h>
#include <appSec.h>
#include <bl.h>
#include <heap.h>
#include <seos.h>
#define APP_HDR_SIZE (sizeof(struct ImageHeader))
#define APP_HDR_MAX_SIZE (sizeof(struct ImageHeader) + sizeof(struct AppSecSignHdr) + sizeof(struct AppSecEncrHdr))
#define APP_DATA_CHUNK_SIZE (AES_BLOCK_WORDS * sizeof(uint32_t)) //data blocks are this size
#define APP_SIG_SIZE RSA_BYTES
// verify block is SHA placed in integral number of encryption blocks (for SHA256 and AES256 happens to be exactly 2 AES blocks)
#define APP_VERIFY_BLOCK_SIZE ((SHA2_HASH_SIZE + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE) * AES_BLOCK_SIZE
#define APP_SEC_SIG_ALIGN APP_DATA_CHUNK_SIZE
#define APP_SEC_ENCR_ALIGN APP_DATA_CHUNK_SIZE
#define STATE_INIT 0 // nothing gotten yet
#define STATE_RXING_HEADERS 1 // variable size headers (min APP_HDR_SIZE, max APP_HDR_MAX_SIZE)
#define STATE_RXING_DATA 2 // each data block is AES_BLOCK_WORDS 32-bit words (for AES reasons)
#define STATE_RXING_SIG_HASH 3 // each is RSA_BYTES bytes
#define STATE_RXING_SIG_PUBKEY 4 // each is RSA_BYTES bytes
#define STATE_VERIFY 5 // decryption of ciphertext done; now decrypting and verifying the encrypted plaintext SHA2
#define STATE_DONE 6 // all is finished and well
#define STATE_BAD 7 // unrecoverable badness has happened. this will *NOT* fix itself. It is now ok to give up, start over, cry, or pray to your favourite deity for help
#define STATE_MAX 8 // total number of states
//#define DEBUG_FSM
struct AppSecState {
union { //we save some memory by reusing this space.
struct {
struct AesCbcContext cbc;
struct Sha2state sha;
struct Sha2state cbcSha;
};
struct {
struct RsaState rsa;
uint32_t rsaState1, rsaState2, rsaStep;
};
};
uint32_t rsaTmp[RSA_WORDS];
uint32_t lastHash[SHA2_HASH_WORDS];
AppSecWriteCbk writeCbk;
AppSecPubKeyFindCbk pubKeyFindCbk;
AppSecGetAesKeyCbk aesKeyAccessCbk;
union {
union { //make the compiler work to make sure we have enough space
uint8_t placeholderAppHdr[APP_HDR_MAX_SIZE];
uint8_t placeholderDataChunk[APP_DATA_CHUNK_SIZE];
uint8_t placeholderSigChunk[APP_SIG_SIZE];
uint8_t placeholderAesKey[AES_KEY_WORDS * sizeof(uint32_t)];
};
uint8_t dataBytes[0]; //we actually use these two for access
uint32_t dataWords[0];
};
uint32_t signedBytesIn;
uint32_t encryptedBytesIn;
uint32_t signedBytesOut;
uint32_t encryptedBytesOut;
uint16_t haveBytes; //in dataBytes...
uint16_t chunkSize;
uint8_t curState;
uint8_t needSig :1;
uint8_t haveSig :1;
uint8_t haveEncr :1;
uint8_t haveTrustedKey :1;
uint8_t doingRsa :1;
};
static void limitChunkSize(struct AppSecState *state)
{
if (state->haveSig && state->chunkSize > state->signedBytesIn)
state->chunkSize = state->signedBytesIn;
if (state->haveEncr && state->chunkSize > state->encryptedBytesIn)
state->chunkSize = state->signedBytesIn;
}
static void appSecSetCurState(struct AppSecState *state, uint32_t curState)
{
const static uint16_t chunkSize[STATE_MAX] = {
[STATE_RXING_HEADERS] = APP_HDR_SIZE,
[STATE_RXING_DATA] = APP_DATA_CHUNK_SIZE,
[STATE_VERIFY] = APP_VERIFY_BLOCK_SIZE,
[STATE_RXING_SIG_HASH] = APP_SIG_SIZE,
[STATE_RXING_SIG_PUBKEY] = APP_SIG_SIZE,
};
if (curState >= STATE_MAX)
curState = STATE_BAD;
if (curState != state->curState || curState == STATE_INIT) {
#ifdef DEBUG_FSM
osLog(LOG_INFO, "%s: oldState=%" PRIu8
"; new state=%" PRIu32
"; old chunk size=%" PRIu16
"; new chunk size=%" PRIu16
"; have bytes=%" PRIu16
"\n",
__func__, state->curState, curState,
state->chunkSize, chunkSize[curState],
state->haveBytes);
#endif
state->curState = curState;
state->chunkSize = chunkSize[curState];
}
}
static inline uint32_t appSecGetCurState(const struct AppSecState *state)
{
return state->curState;
}
//init/deinit
struct AppSecState *appSecInit(AppSecWriteCbk writeCbk, AppSecPubKeyFindCbk pubKeyFindCbk, AppSecGetAesKeyCbk aesKeyAccessCbk, bool mandateSigning)
{
struct AppSecState *state = heapAlloc(sizeof(struct AppSecState));
if (!state)
return NULL;
memset(state, 0, sizeof(struct AppSecState));
state->writeCbk = writeCbk;
state->pubKeyFindCbk = pubKeyFindCbk;
state->aesKeyAccessCbk = aesKeyAccessCbk;
appSecSetCurState(state, STATE_INIT);
if (mandateSigning)
state->needSig = 1;
return state;
}
void appSecDeinit(struct AppSecState *state)
{
heapFree(state);
}
//if needed, decrypt and hash incoming data
static AppSecErr appSecBlockRx(struct AppSecState *state)
{
//if signatures are on, hash it
if (state->haveSig) {
//make sure we do not get too much data & account for the data we got
if (state->haveBytes > state->signedBytesIn)
return APP_SEC_TOO_MUCH_DATA;
state->signedBytesIn -= state->haveBytes;
//make sure we do not produce too much data (discard padding) & make sure we account for it
if (state->signedBytesOut < state->haveBytes)
state->haveBytes = state->signedBytesOut;
state->signedBytesOut -= state->haveBytes;
//hash the data
BL.blSha2processBytes(&state->sha, state->dataBytes, state->haveBytes);
}
// decrypt if encryption is on
if (state->haveEncr) {
uint32_t *dataP = state->dataWords;
uint32_t i, numBlocks = state->haveBytes / APP_DATA_CHUNK_SIZE;
//we should not be called with partial encr blocks
if (state->haveBytes % APP_DATA_CHUNK_SIZE)
return APP_SEC_TOO_LITTLE_DATA;
// make sure we do not get too much data & account for the data we got
if (state->haveBytes > state->encryptedBytesIn)
return APP_SEC_TOO_MUCH_DATA;
state->encryptedBytesIn -= state->haveBytes;
// decrypt
for (i = 0; i < numBlocks; i++, dataP += AES_BLOCK_WORDS)
BL.blAesCbcDecr(&state->cbc, dataP, dataP);
// make sure we do not produce too much data (discard padding) & make sure we account for it
if (state->encryptedBytesOut < state->haveBytes)
state->haveBytes = state->encryptedBytesOut;
state->encryptedBytesOut -= state->haveBytes;
if (state->haveBytes)
BL.blSha2processBytes(&state->cbcSha, state->dataBytes, state->haveBytes);
}
limitChunkSize(state);
return APP_SEC_NO_ERROR;
}
static AppSecErr appSecProcessIncomingHdr(struct AppSecState *state, uint32_t *needBytesOut)
{
struct ImageHeader *image;
struct nano_app_binary_t *aosp;
uint32_t flags;
uint32_t needBytes;
struct AppSecSignHdr *signHdr = NULL;
struct AppSecEncrHdr *encrHdr = NULL;
uint8_t *hdr = state->dataBytes;
AppSecErr ret;
image = (struct ImageHeader *)hdr; hdr += sizeof(*image);
aosp = &image->aosp;
flags = aosp->flags;
if (aosp->header_version != 1 ||
aosp->magic != NANOAPP_AOSP_MAGIC ||
image->layout.version != 1 ||
image->layout.magic != GOOGLE_LAYOUT_MAGIC)
return APP_SEC_HEADER_ERROR;
needBytes = sizeof(*image);
if ((flags & NANOAPP_SIGNED_FLAG) != 0)
needBytes += sizeof(*signHdr);
if ((flags & NANOAPP_ENCRYPTED_FLAG) != 0)
needBytes += sizeof(*encrHdr);
*needBytesOut = needBytes;
if (needBytes > state->haveBytes)
return APP_SEC_NO_ERROR;
*needBytesOut = 0;
if ((flags & NANOAPP_SIGNED_FLAG) != 0) {
signHdr = (struct AppSecSignHdr *)hdr; hdr += sizeof(*signHdr);
osLog(LOG_INFO, "%s: signed size=%" PRIu32 "\n",
__func__, signHdr->appDataLen);
if (!signHdr->appDataLen) {
//no data bytes
return APP_SEC_INVALID_DATA;
}
state->signedBytesIn = state->signedBytesOut = signHdr->appDataLen;
state->haveSig = 1;
BL.blSha2init(&state->sha);
BL.blSha2processBytes(&state->sha, state->dataBytes, needBytes);
}
if ((flags & NANOAPP_ENCRYPTED_FLAG) != 0) {
uint32_t k[AES_KEY_WORDS];
encrHdr = (struct AppSecEncrHdr *)hdr; hdr += sizeof(*encrHdr);
osLog(LOG_INFO, "%s: encrypted data size=%" PRIu32
"; key ID=%016" PRIX64 "\n",
__func__, encrHdr->dataLen, encrHdr->keyID);
if (!encrHdr->dataLen || !encrHdr->keyID)
return APP_SEC_INVALID_DATA;
ret = state->aesKeyAccessCbk(encrHdr->keyID, k);
if (ret != APP_SEC_NO_ERROR) {
osLog(LOG_ERROR, "%s: Secret key not found\n", __func__);
return ret;
}
BL.blAesCbcInitForDecr(&state->cbc, k, encrHdr->IV);
BL.blSha2init(&state->cbcSha);
state->encryptedBytesOut = encrHdr->dataLen;
state->encryptedBytesIn = ((state->encryptedBytesOut + APP_SEC_ENCR_ALIGN - 1) / APP_SEC_ENCR_ALIGN) * APP_SEC_ENCR_ALIGN;
state->haveEncr = 1;
osLog(LOG_INFO, "%s: encrypted aligned data size=%" PRIu32 "\n",
__func__, state->encryptedBytesIn);
if (state->haveSig) {
state->signedBytesIn = state->signedBytesOut = signHdr->appDataLen - sizeof(*encrHdr);
// at this point, signedBytesOut must equal encryptedBytesIn
if (state->signedBytesOut != (state->encryptedBytesIn + SHA2_HASH_SIZE)) {
osLog(LOG_ERROR, "%s: sig data size does not match encrypted data\n", __func__);
return APP_SEC_INVALID_DATA;
}
}
}
//if we are in must-sign mode and no signature was provided, fail
if (!state->haveSig && state->needSig) {
osLog(LOG_ERROR, "%s: only signed images can be uploaded\n", __func__);
return APP_SEC_SIG_VERIFY_FAIL;
}
// now, transform AOSP header to FW common header
struct FwCommonHdr common = {
.magic = APP_HDR_MAGIC,
.appId = aosp->app_id,
.fwVer = APP_HDR_VER_CUR,
.fwFlags = image->layout.flags,
.appVer = aosp->app_version,
.payInfoType = image->layout.payload,
.chreApiMajor = 0xFF,
.chreApiMinor = 0xFF,
};
if (image->layout.flags & FL_APP_HDR_CHRE) {
if (aosp->chre_api_major || aosp->chre_api_minor) {
common.chreApiMajor = aosp->chre_api_major;
common.chreApiMinor = aosp->chre_api_minor;
} else {
// fields not defined prior to CHRE 1.1
common.chreApiMajor = 0x01;
common.chreApiMinor = 0x00;
}
}
// check to see if this is special system types of payload
switch(image->layout.payload) {
case LAYOUT_APP:
common.fwFlags = (common.fwFlags | FL_APP_HDR_APPLICATION) & ~FL_APP_HDR_INTERNAL;
common.payInfoSize = sizeof(struct AppInfo);
osLog(LOG_INFO, "App container found\n");
break;
case LAYOUT_KEY:
common.fwFlags |= FL_APP_HDR_SECURE;
common.payInfoSize = sizeof(struct KeyInfo);
osLog(LOG_INFO, "Key container found\n");
break;
case LAYOUT_OS:
common.payInfoSize = sizeof(struct OsUpdateHdr);
osLog(LOG_INFO, "OS update container found\n");
break;
default:
break;
}
memcpy(state->dataBytes, &common, sizeof(common));
state->haveBytes = sizeof(common);
//we're now in data-accepting state
appSecSetCurState(state, STATE_RXING_DATA);
return APP_SEC_NO_ERROR;
}
static AppSecErr appSecProcessIncomingData(struct AppSecState *state)
{
//check for data-ending conditions
if (state->haveSig && !state->signedBytesIn) {
// we're all done with the signed portion of the data, now come the signatures
appSecSetCurState(state, STATE_RXING_SIG_HASH);
//collect the hash
memcpy(state->lastHash, BL.blSha2finish(&state->sha), SHA2_HASH_SIZE);
} else if (state->haveEncr && !state->encryptedBytesIn) {
if (appSecGetCurState(state) == STATE_RXING_DATA) {
//we're all done with encrypted plaintext
state->encryptedBytesIn = sizeof(state->cbcSha);
appSecSetCurState(state, STATE_VERIFY);
}
}
//pass to caller
return state->haveBytes ? state->writeCbk(state->dataBytes, state->haveBytes) : APP_SEC_NO_ERROR;
}
AppSecErr appSecDoSomeProcessing(struct AppSecState *state)
{
const uint32_t *result;
if (!state->doingRsa) {
//shouldn't be calling us then...
return APP_SEC_BAD;
}
result = BL.blRsaPubOpIterative(&state->rsa, state->rsaTmp, state->dataWords, &state->rsaState1, &state->rsaState2, &state->rsaStep);
if (state->rsaStep)
return APP_SEC_NEED_MORE_TIME;
//we just finished the RSA-ing
state->doingRsa = 0;
//verify signature padding (and thus likely: correct decryption)
result = BL.blSigPaddingVerify(result);
if (!result)
return APP_SEC_SIG_DECODE_FAIL;
//check if hashes match
if (memcmp(state->lastHash, result, SHA2_HASH_SIZE))
return APP_SEC_SIG_VERIFY_FAIL;
//hash the provided pubkey
BL.blSha2init(&state->sha);
BL.blSha2processBytes(&state->sha, state->dataBytes, APP_SIG_SIZE);
memcpy(state->lastHash, BL.blSha2finish(&state->sha), SHA2_HASH_SIZE);
appSecSetCurState(state, STATE_RXING_SIG_HASH);
return APP_SEC_NO_ERROR;
}
static AppSecErr appSecProcessIncomingSigData(struct AppSecState *state)
{
bool keyFound = false;
//if we're RXing the hash, just stash it away and move on
if (appSecGetCurState(state) == STATE_RXING_SIG_HASH) {
state->haveTrustedKey = 0;
memcpy(state->rsaTmp, state->dataWords, APP_SIG_SIZE);
appSecSetCurState(state, STATE_RXING_SIG_PUBKEY);
return APP_SEC_NO_ERROR;
}
// verify it is a known root
state->pubKeyFindCbk(state->dataWords, &keyFound);
state->haveTrustedKey = keyFound;
//we now have the pubKey. decrypt over time
state->doingRsa = 1;
state->rsaStep = 0;
return APP_SEC_NEED_MORE_TIME;
}
static AppSecErr appSecVerifyEncryptedData(struct AppSecState *state)
{
const uint32_t *hash = BL.blSha2finish(&state->cbcSha);
bool verified = memcmp(hash, state->dataBytes, SHA2_BLOCK_SIZE) == 0;
osLog(LOG_INFO, "%s: decryption verification: %s\n", __func__, verified ? "passed" : "failed");
// TODO: fix verify logic
// return verified ? APP_SEC_NO_ERROR : APP_SEC_VERIFY_FAILED;
return APP_SEC_NO_ERROR;
}
AppSecErr appSecRxData(struct AppSecState *state, const void *dataP, uint32_t len, uint32_t *lenUnusedP)
{
const uint8_t *data = (const uint8_t*)dataP;
AppSecErr ret = APP_SEC_NO_ERROR;
uint32_t needBytes;
if (appSecGetCurState(state) == STATE_INIT)
appSecSetCurState(state, STATE_RXING_HEADERS);
while (len) {
len--;
state->dataBytes[state->haveBytes++] = *data++;
if (state->haveBytes < state->chunkSize)
continue;
switch (appSecGetCurState(state)) {
case STATE_RXING_HEADERS:
// AOSP header is never encrypted; if it is signed, it will hash itself
needBytes = 0;
ret = appSecProcessIncomingHdr(state, &needBytes);
if (ret != APP_SEC_NO_ERROR)
goto out;
if (needBytes > state->chunkSize) {
state->chunkSize = needBytes;
// get more data and try again
continue;
}
// done with parsing header(s); we might have something to write to flash
if (state->haveBytes) {
osLog(LOG_INFO, "%s: save converted header [%" PRIu16 " bytes] to flash\n", __func__, state->haveBytes);
ret = appSecProcessIncomingData(state);
state->haveBytes = 0;
}
limitChunkSize(state);
goto out;
case STATE_RXING_DATA:
ret = appSecBlockRx(state);
if (ret != APP_SEC_NO_ERROR)
goto out;
ret = appSecProcessIncomingData(state);
state->haveBytes = 0;
if (ret != APP_SEC_NO_ERROR)
goto out;
break;
case STATE_VERIFY:
ret = appSecBlockRx(state);
if (ret == APP_SEC_NO_ERROR)
ret = appSecProcessIncomingData(state);
if (ret == APP_SEC_NO_ERROR)
ret = appSecVerifyEncryptedData(state);
goto out;
case STATE_RXING_SIG_HASH:
case STATE_RXING_SIG_PUBKEY:
//no need for calling appSecBlockRx() as sigs are not signed, and encryption cannot be done after signing
ret = appSecProcessIncomingSigData(state);
state->haveBytes = 0;
goto out;
default:
appSecSetCurState(state, STATE_BAD);
state->haveBytes = 0;
len = 0;
ret = APP_SEC_BAD;
break;
}
}
out:
*lenUnusedP = len;
if (ret != APP_SEC_NO_ERROR && ret != APP_SEC_NEED_MORE_TIME) {
osLog(LOG_ERROR, "%s: failed: state=%" PRIu32 "; err=%" PRIu32 "\n",
__func__, appSecGetCurState(state), ret);
appSecSetCurState(state, STATE_BAD);
}
return ret;
}
AppSecErr appSecRxDataOver(struct AppSecState *state)
{
AppSecErr ret;
// Feed remaining data to data processor, if any
if (state->haveBytes) {
// if we are using encryption and/or signing, we are supposed to consume all data at this point.
if (state->haveSig || state->haveEncr) {
appSecSetCurState(state, STATE_BAD);
return APP_SEC_TOO_LITTLE_DATA;
}
// Not in data rx stage when the incoming data ends? This is not good (if we had encr or sign we'd not be here)
if (appSecGetCurState(state) != STATE_RXING_DATA) {
appSecSetCurState(state, STATE_BAD);
return APP_SEC_TOO_LITTLE_DATA;
}
// Feed the remaining data to the data processor
ret = appSecProcessIncomingData(state);
if (ret != APP_SEC_NO_ERROR) {
appSecSetCurState(state, STATE_BAD);
return ret;
}
} else {
// we don't know in advance how many signature packs we shall receive,
// so we evaluate every signature pack as if it is the last, but do not
// return error if public key is not trusted; only here we make the final
// determination
if (state->haveSig) {
// check the most recent key status
if (!state->haveTrustedKey) {
appSecSetCurState(state, STATE_BAD);
return APP_SEC_SIG_ROOT_UNKNOWN;
} else {
appSecSetCurState(state, STATE_DONE);
}
}
}
//for unsigned/unencrypted case we have no way to judge length, so we assume it is over when we're told it is
//this is potentially dangerous, but then again so is allowing unsigned uploads in general.
if (!state->haveSig && !state->haveEncr && appSecGetCurState(state) == STATE_RXING_DATA)
appSecSetCurState(state, STATE_DONE);
//Check the state and return our verdict
if(appSecGetCurState(state) == STATE_DONE)
return APP_SEC_NO_ERROR;
appSecSetCurState(state, STATE_BAD);
return APP_SEC_TOO_LITTLE_DATA;
}