/* ef_fmod.c -- float version of e_fmod.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmodf(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float one = 1.0, Zero[] = {0.0, -0.0,};
#else
static float one = 1.0, Zero[] = {0.0, -0.0,};
#endif
#ifdef __STDC__
float __ieee754_fmodf(float x, float y)
#else
float __ieee754_fmodf(x,y)
float x,y ;
#endif
{
__int32_t n,hx,hy,hz,ix,iy,sx,i;
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hy,y);
sx = hx&0x80000000; /* sign of x */
hx ^=sx; /* |x| */
hy &= 0x7fffffff; /* |y| */
/* purge off exception values */
if(FLT_UWORD_IS_ZERO(hy)||
!FLT_UWORD_IS_FINITE(hx)||
FLT_UWORD_IS_NAN(hy))
return (x*y)/(x*y);
if(hx<hy) return x; /* |x|<|y| return x */
if(hx==hy)
return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/
/* Note: y cannot be zero if we reach here. */
/* determine ix = ilogb(x) */
if(FLT_UWORD_IS_SUBNORMAL(hx)) { /* subnormal x */
for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
} else ix = (hx>>23)-127;
/* determine iy = ilogb(y) */
if(FLT_UWORD_IS_SUBNORMAL(hy)) { /* subnormal y */
for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
} else iy = (hy>>23)-127;
/* set up {hx,lx}, {hy,ly} and align y to x */
if(ix >= -126)
hx = 0x00800000|(0x007fffff&hx);
else { /* subnormal x, shift x to normal */
n = -126-ix;
hx = hx<<n;
}
if(iy >= -126)
hy = 0x00800000|(0x007fffff&hy);
else { /* subnormal y, shift y to normal */
n = -126-iy;
hy = hy<<n;
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;
if(hz<0){hx = hx+hx;}
else {
if(hz==0) /* return sign(x)*0 */
return Zero[(__uint32_t)sx>>31];
hx = hz+hz;
}
}
hz=hx-hy;
if(hz>=0) {hx=hz;}
/* convert back to floating value and restore the sign */
if(hx==0) /* return sign(x)*0 */
return Zero[(__uint32_t)sx>>31];
while(hx<0x00800000) { /* normalize x */
hx = hx+hx;
iy -= 1;
}
if(iy>= -126) { /* normalize output */
hx = ((hx-0x00800000)|((iy+127)<<23));
SET_FLOAT_WORD(x,hx|sx);
} else { /* subnormal output */
/* If denormals are not supported, this code will generate a
zero representation. */
n = -126 - iy;
hx >>= n;
SET_FLOAT_WORD(x,hx|sx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}