C++程序  |  2742行  |  100.76 KB

/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Contains implementation of a class EmulatedFakeCamera3 that encapsulates
 * functionality of an advanced fake camera.
 */

#include <inttypes.h>

//#define LOG_NDEBUG 0
//#define LOG_NNDEBUG 0
#define LOG_TAG "EmulatedCamera_FakeCamera3"
#include <cutils/properties.h>
#include <utils/Log.h>

#include "EmulatedFakeCamera3.h"
#include "EmulatedCameraFactory.h"
#include <ui/Fence.h>
#include "GrallocModule.h"

#include "fake-pipeline2/Sensor.h"
#include "fake-pipeline2/JpegCompressor.h"
#include <cmath>

#include <vector>
#include <algorithm>

#if defined(LOG_NNDEBUG) && LOG_NNDEBUG == 0
#define ALOGVV ALOGV
#else
#define ALOGVV(...) ((void)0)
#endif

namespace android {

/**
 * Constants for camera capabilities
 */

const int64_t USEC = 1000LL;
const int64_t MSEC = USEC * 1000LL;
const int64_t SEC = MSEC * 1000LL;

const int32_t EmulatedFakeCamera3::kAvailableFormats[] = {
        HAL_PIXEL_FORMAT_RAW16,
        HAL_PIXEL_FORMAT_BLOB,
        HAL_PIXEL_FORMAT_RGBA_8888,
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED,
        // These are handled by YCbCr_420_888
        //        HAL_PIXEL_FORMAT_YV12,
        //        HAL_PIXEL_FORMAT_YCrCb_420_SP,
        HAL_PIXEL_FORMAT_YCbCr_420_888,
        HAL_PIXEL_FORMAT_Y16
};

const uint32_t EmulatedFakeCamera3::kAvailableRawSizes[4] = {
    640, 480,
    1280, 720
    //    mSensorWidth, mSensorHeight
};


/**
 * 3A constants
 */

// Default exposure and gain targets for different scenarios
const nsecs_t EmulatedFakeCamera3::kNormalExposureTime       = 10 * MSEC;
const nsecs_t EmulatedFakeCamera3::kFacePriorityExposureTime = 30 * MSEC;
const int     EmulatedFakeCamera3::kNormalSensitivity        = 100;
const int     EmulatedFakeCamera3::kFacePrioritySensitivity  = 400;
//CTS requires 8 frames timeout in waitForAeStable
const float   EmulatedFakeCamera3::kExposureTrackRate        = 0.2;
const int     EmulatedFakeCamera3::kPrecaptureMinFrames      = 10;
const int     EmulatedFakeCamera3::kStableAeMaxFrames        = 100;
const float   EmulatedFakeCamera3::kExposureWanderMin        = -2;
const float   EmulatedFakeCamera3::kExposureWanderMax        = 1;

/**
 * Camera device lifecycle methods
 */

EmulatedFakeCamera3::EmulatedFakeCamera3(int cameraId, bool facingBack,
        struct hw_module_t* module) :
        EmulatedCamera3(cameraId, module),
        mFacingBack(facingBack) {
    ALOGI("Constructing emulated fake camera 3: ID %d, facing %s",
            mCameraID, facingBack ? "back" : "front");

    for (size_t i = 0; i < CAMERA3_TEMPLATE_COUNT; i++) {
        mDefaultTemplates[i] = NULL;
    }
}

EmulatedFakeCamera3::~EmulatedFakeCamera3() {
    for (size_t i = 0; i < CAMERA3_TEMPLATE_COUNT; i++) {
        if (mDefaultTemplates[i] != NULL) {
            free_camera_metadata(mDefaultTemplates[i]);
        }
    }
}

status_t EmulatedFakeCamera3::Initialize() {
    ALOGV("%s: E", __FUNCTION__);
    status_t res;

    if (mStatus != STATUS_ERROR) {
        ALOGE("%s: Already initialized!", __FUNCTION__);
        return INVALID_OPERATION;
    }

    res = getCameraCapabilities();
    if (res != OK) {
        ALOGE("%s: Unable to get camera capabilities: %s (%d)",
                __FUNCTION__, strerror(-res), res);
        return res;
    }

    res = constructStaticInfo();
    if (res != OK) {
        ALOGE("%s: Unable to allocate static info: %s (%d)",
                __FUNCTION__, strerror(-res), res);
        return res;
    }

    return EmulatedCamera3::Initialize();
}

status_t EmulatedFakeCamera3::connectCamera(hw_device_t** device) {
    ALOGV("%s: E", __FUNCTION__);
    Mutex::Autolock l(mLock);
    status_t res;

    if (mStatus != STATUS_CLOSED) {
        ALOGE("%s: Can't connect in state %d", __FUNCTION__, mStatus);
        return INVALID_OPERATION;
    }

    mSensor = new Sensor(mSensorWidth, mSensorHeight);
    mSensor->setSensorListener(this);

    res = mSensor->startUp();
    if (res != NO_ERROR) return res;

    mReadoutThread = new ReadoutThread(this);
    mJpegCompressor = new JpegCompressor();

    res = mReadoutThread->run("EmuCam3::readoutThread");
    if (res != NO_ERROR) return res;

    // Initialize fake 3A

    mControlMode  = ANDROID_CONTROL_MODE_AUTO;
    mFacePriority = false;
    mAeMode       = ANDROID_CONTROL_AE_MODE_ON;
    mAfMode       = ANDROID_CONTROL_AF_MODE_AUTO;
    mAwbMode      = ANDROID_CONTROL_AWB_MODE_AUTO;
    mAeState      = ANDROID_CONTROL_AE_STATE_INACTIVE;
    mAfState      = ANDROID_CONTROL_AF_STATE_INACTIVE;
    mAwbState     = ANDROID_CONTROL_AWB_STATE_INACTIVE;
    mAeCounter    = 0;
    mAeTargetExposureTime = kNormalExposureTime;
    mAeCurrentExposureTime = kNormalExposureTime;
    mAeCurrentSensitivity  = kNormalSensitivity;

    return EmulatedCamera3::connectCamera(device);
}

status_t EmulatedFakeCamera3::closeCamera() {
    ALOGV("%s: E", __FUNCTION__);
    status_t res;
    {
        Mutex::Autolock l(mLock);
        if (mStatus == STATUS_CLOSED) return OK;

        res = mSensor->shutDown();
        if (res != NO_ERROR) {
            ALOGE("%s: Unable to shut down sensor: %d", __FUNCTION__, res);
            return res;
        }
        mSensor.clear();

        mReadoutThread->requestExit();
    }

    mReadoutThread->join();

    {
        Mutex::Autolock l(mLock);
        // Clear out private stream information
        for (StreamIterator s = mStreams.begin(); s != mStreams.end(); s++) {
            PrivateStreamInfo *privStream =
                    static_cast<PrivateStreamInfo*>((*s)->priv);
            delete privStream;
            (*s)->priv = NULL;
        }
        mStreams.clear();
        mReadoutThread.clear();
    }

    return EmulatedCamera3::closeCamera();
}

status_t EmulatedFakeCamera3::getCameraInfo(struct camera_info *info) {
    info->facing = mFacingBack ? CAMERA_FACING_BACK : CAMERA_FACING_FRONT;
    info->orientation = gEmulatedCameraFactory.getFakeCameraOrientation();
    return EmulatedCamera3::getCameraInfo(info);
}

/**
 * Camera3 interface methods
 */

status_t EmulatedFakeCamera3::configureStreams(
        camera3_stream_configuration *streamList) {
    Mutex::Autolock l(mLock);
    ALOGV("%s: %d streams", __FUNCTION__, streamList->num_streams);

    if (mStatus != STATUS_OPEN && mStatus != STATUS_READY) {
        ALOGE("%s: Cannot configure streams in state %d",
                __FUNCTION__, mStatus);
        return NO_INIT;
    }

    /**
     * Sanity-check input list.
     */
    if (streamList == NULL) {
        ALOGE("%s: NULL stream configuration", __FUNCTION__);
        return BAD_VALUE;
    }

    if (streamList->streams == NULL) {
        ALOGE("%s: NULL stream list", __FUNCTION__);
        return BAD_VALUE;
    }

    if (streamList->num_streams < 1) {
        ALOGE("%s: Bad number of streams requested: %d", __FUNCTION__,
                streamList->num_streams);
        return BAD_VALUE;
    }

    camera3_stream_t *inputStream = NULL;
    for (size_t i = 0; i < streamList->num_streams; i++) {
        camera3_stream_t *newStream = streamList->streams[i];

        if (newStream == NULL) {
            ALOGE("%s: Stream index %zu was NULL",
                  __FUNCTION__, i);
            return BAD_VALUE;
        }

        ALOGV("%s: Stream %p (id %zu), type %d, usage 0x%x, format 0x%x "
              "width %d, height %d",
                __FUNCTION__, newStream, i, newStream->stream_type,
                newStream->usage,
                newStream->format,
                newStream->width,
                newStream->height);

        if (newStream->stream_type == CAMERA3_STREAM_INPUT ||
            newStream->stream_type == CAMERA3_STREAM_BIDIRECTIONAL) {
            if (inputStream != NULL) {

                ALOGE("%s: Multiple input streams requested!", __FUNCTION__);
                return BAD_VALUE;
            }
            inputStream = newStream;
        }

        if (newStream->stream_type != CAMERA3_STREAM_INPUT) {
            if (newStream->rotation < CAMERA3_STREAM_ROTATION_0 ||
                newStream->rotation > CAMERA3_STREAM_ROTATION_270) {
                ALOGE("%s: Unsupported stream rotation 0x%x requested",
                      __FUNCTION__, newStream->rotation);
                return BAD_VALUE;
            }
        }

        if (newStream->width <= 0 || newStream->width > mSensorWidth ||
            newStream->height <= 0 || newStream->height > mSensorHeight) {
            ALOGE("%s: Unsupported stream width 0x%x height 0x%x",
                  __FUNCTION__, newStream->width, newStream->height);
            return BAD_VALUE;
        }

        bool validFormat = false;
        for (size_t f = 0;
             f < sizeof(kAvailableFormats)/sizeof(kAvailableFormats[0]);
             f++) {
            if (newStream->format == kAvailableFormats[f]) {
                validFormat = true;
                break;
            }
        }
        if (!validFormat) {
            ALOGE("%s: Unsupported stream format 0x%x requested",
                    __FUNCTION__, newStream->format);
            return BAD_VALUE;
        }
    }
    mInputStream = inputStream;

    /**
     * Initially mark all existing streams as not alive
     */
    for (StreamIterator s = mStreams.begin(); s != mStreams.end(); ++s) {
        PrivateStreamInfo *privStream =
                static_cast<PrivateStreamInfo*>((*s)->priv);
        privStream->alive = false;
    }

    /**
     * Find new streams and mark still-alive ones
     */
    for (size_t i = 0; i < streamList->num_streams; i++) {
        camera3_stream_t *newStream = streamList->streams[i];
        if (newStream->priv == NULL) {
            // New stream, construct info
            PrivateStreamInfo *privStream = new PrivateStreamInfo();
            privStream->alive = true;

            newStream->max_buffers = kMaxBufferCount;
            newStream->priv = privStream;
            mStreams.push_back(newStream);
        } else {
            // Existing stream, mark as still alive.
            PrivateStreamInfo *privStream =
                    static_cast<PrivateStreamInfo*>(newStream->priv);
            privStream->alive = true;
        }
        // Always update usage and max buffers
        newStream->max_buffers = kMaxBufferCount;
        switch (newStream->stream_type) {
            case CAMERA3_STREAM_OUTPUT:
                newStream->usage |= GRALLOC_USAGE_HW_CAMERA_WRITE;
                break;
            case CAMERA3_STREAM_INPUT:
                newStream->usage |= GRALLOC_USAGE_HW_CAMERA_READ;
                break;
            case CAMERA3_STREAM_BIDIRECTIONAL:
                newStream->usage |= (GRALLOC_USAGE_HW_CAMERA_READ |
                        GRALLOC_USAGE_HW_CAMERA_WRITE);
                break;
        }
        // Set the buffer format, inline with gralloc implementation
        if (newStream->format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
            if (newStream->usage & GRALLOC_USAGE_HW_CAMERA_WRITE) {
                if (newStream->usage & GRALLOC_USAGE_HW_TEXTURE) {
                    newStream->format = HAL_PIXEL_FORMAT_RGBA_8888;
                }
                else if (newStream->usage & GRALLOC_USAGE_HW_VIDEO_ENCODER) {
                    newStream->format = HAL_PIXEL_FORMAT_YCbCr_420_888;
                }
                else {
                    newStream->format = HAL_PIXEL_FORMAT_RGB_888;
                }
            }
        }
    }

    /**
     * Reap the dead streams
     */
    for (StreamIterator s = mStreams.begin(); s != mStreams.end();) {
        PrivateStreamInfo *privStream =
                static_cast<PrivateStreamInfo*>((*s)->priv);
        if (!privStream->alive) {
            (*s)->priv = NULL;
            delete privStream;
            s = mStreams.erase(s);
        } else {
            ++s;
        }
    }

    /**
     * Can't reuse settings across configure call
     */
    mPrevSettings.clear();

    return OK;
}

status_t EmulatedFakeCamera3::registerStreamBuffers(
        const camera3_stream_buffer_set *bufferSet) {
    ALOGV("%s: E", __FUNCTION__);
    Mutex::Autolock l(mLock);

    // Should not be called in HAL versions >= 3.2

    ALOGE("%s: Should not be invoked on new HALs!",
            __FUNCTION__);
    return NO_INIT;
}

const camera_metadata_t* EmulatedFakeCamera3::constructDefaultRequestSettings(
        int type) {
    ALOGV("%s: E", __FUNCTION__);
    Mutex::Autolock l(mLock);

    if (type < 0 || type >= CAMERA3_TEMPLATE_COUNT) {
        ALOGE("%s: Unknown request settings template: %d",
                __FUNCTION__, type);
        return NULL;
    }

    if (!hasCapability(BACKWARD_COMPATIBLE) && type != CAMERA3_TEMPLATE_PREVIEW) {
        ALOGE("%s: Template %d not supported w/o BACKWARD_COMPATIBLE capability",
                __FUNCTION__, type);
        return NULL;
    }

    /**
     * Cache is not just an optimization - pointer returned has to live at
     * least as long as the camera device instance does.
     */
    if (mDefaultTemplates[type] != NULL) {
        return mDefaultTemplates[type];
    }

    CameraMetadata settings;

    /** android.request */

    static const uint8_t metadataMode = ANDROID_REQUEST_METADATA_MODE_FULL;
    settings.update(ANDROID_REQUEST_METADATA_MODE, &metadataMode, 1);

    static const int32_t id = 0;
    settings.update(ANDROID_REQUEST_ID, &id, 1);

    static const int32_t frameCount = 0;
    settings.update(ANDROID_REQUEST_FRAME_COUNT, &frameCount, 1);

    /** android.lens */

    static const float focalLength = 5.0f;
    settings.update(ANDROID_LENS_FOCAL_LENGTH, &focalLength, 1);

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const float focusDistance = 0;
        settings.update(ANDROID_LENS_FOCUS_DISTANCE, &focusDistance, 1);

        static const float aperture = 2.8f;
        settings.update(ANDROID_LENS_APERTURE, &aperture, 1);

        static const float filterDensity = 0;
        settings.update(ANDROID_LENS_FILTER_DENSITY, &filterDensity, 1);

        static const uint8_t opticalStabilizationMode =
                ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
        settings.update(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
                &opticalStabilizationMode, 1);

        // FOCUS_RANGE set only in frame
    }

    /** android.sensor */

    if (hasCapability(MANUAL_SENSOR)) {
        static const int64_t exposureTime = 10 * MSEC;
        settings.update(ANDROID_SENSOR_EXPOSURE_TIME, &exposureTime, 1);

        static const int64_t frameDuration = 33333333L; // 1/30 s
        settings.update(ANDROID_SENSOR_FRAME_DURATION, &frameDuration, 1);

        static const int32_t sensitivity = 100;
        settings.update(ANDROID_SENSOR_SENSITIVITY, &sensitivity, 1);
    }

    // TIMESTAMP set only in frame

    /** android.flash */

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
        settings.update(ANDROID_FLASH_MODE, &flashMode, 1);

        static const uint8_t flashPower = 10;
        settings.update(ANDROID_FLASH_FIRING_POWER, &flashPower, 1);

        static const int64_t firingTime = 0;
        settings.update(ANDROID_FLASH_FIRING_TIME, &firingTime, 1);
    }

    /** Processing block modes */
    if (hasCapability(MANUAL_POST_PROCESSING)) {
        uint8_t hotPixelMode = 0;
        uint8_t demosaicMode = 0;
        uint8_t noiseMode = 0;
        uint8_t shadingMode = 0;
        uint8_t colorMode = 0;
        uint8_t tonemapMode = 0;
        uint8_t edgeMode = 0;
        switch (type) {
            case CAMERA3_TEMPLATE_STILL_CAPTURE:
                // fall-through
            case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
                // fall-through
            case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
                hotPixelMode = ANDROID_HOT_PIXEL_MODE_HIGH_QUALITY;
                demosaicMode = ANDROID_DEMOSAIC_MODE_HIGH_QUALITY;
                noiseMode = ANDROID_NOISE_REDUCTION_MODE_HIGH_QUALITY;
                shadingMode = ANDROID_SHADING_MODE_HIGH_QUALITY;
                colorMode = ANDROID_COLOR_CORRECTION_MODE_HIGH_QUALITY;
                tonemapMode = ANDROID_TONEMAP_MODE_HIGH_QUALITY;
                edgeMode = ANDROID_EDGE_MODE_HIGH_QUALITY;
                break;
            case CAMERA3_TEMPLATE_PREVIEW:
                // fall-through
            case CAMERA3_TEMPLATE_VIDEO_RECORD:
                // fall-through
            default:
                hotPixelMode = ANDROID_HOT_PIXEL_MODE_FAST;
                demosaicMode = ANDROID_DEMOSAIC_MODE_FAST;
                noiseMode = ANDROID_NOISE_REDUCTION_MODE_FAST;
                shadingMode = ANDROID_SHADING_MODE_FAST;
                colorMode = ANDROID_COLOR_CORRECTION_MODE_FAST;
                tonemapMode = ANDROID_TONEMAP_MODE_FAST;
                edgeMode = ANDROID_EDGE_MODE_FAST;
                break;
        }
        settings.update(ANDROID_HOT_PIXEL_MODE, &hotPixelMode, 1);
        settings.update(ANDROID_DEMOSAIC_MODE, &demosaicMode, 1);
        settings.update(ANDROID_NOISE_REDUCTION_MODE, &noiseMode, 1);
        settings.update(ANDROID_SHADING_MODE, &shadingMode, 1);
        settings.update(ANDROID_COLOR_CORRECTION_MODE, &colorMode, 1);
        settings.update(ANDROID_TONEMAP_MODE, &tonemapMode, 1);
        settings.update(ANDROID_EDGE_MODE, &edgeMode, 1);
    }

    /** android.colorCorrection */

    if (hasCapability(MANUAL_POST_PROCESSING)) {
        static const camera_metadata_rational colorTransform[9] = {
            {1,1}, {0,1}, {0,1},
            {0,1}, {1,1}, {0,1},
            {0,1}, {0,1}, {1,1}
        };
        settings.update(ANDROID_COLOR_CORRECTION_TRANSFORM, colorTransform, 9);

        static const float colorGains[4] = {
            1.0f, 1.0f, 1.0f, 1.0f
        };
        settings.update(ANDROID_COLOR_CORRECTION_GAINS, colorGains, 4);
    }

    /** android.tonemap */

    if (hasCapability(MANUAL_POST_PROCESSING)) {
        static const float tonemapCurve[4] = {
            0.f, 0.f,
            1.f, 1.f
        };
        settings.update(ANDROID_TONEMAP_CURVE_RED, tonemapCurve, 4);
        settings.update(ANDROID_TONEMAP_CURVE_GREEN, tonemapCurve, 4);
        settings.update(ANDROID_TONEMAP_CURVE_BLUE, tonemapCurve, 4);
    }

    /** android.scaler */
    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const int32_t cropRegion[4] = {
            0, 0, mSensorWidth, mSensorHeight
        };
        settings.update(ANDROID_SCALER_CROP_REGION, cropRegion, 4);
    }

    /** android.jpeg */
    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t jpegQuality = 80;
        settings.update(ANDROID_JPEG_QUALITY, &jpegQuality, 1);

        static const int32_t thumbnailSize[2] = {
            320, 240
        };
        settings.update(ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);

        static const uint8_t thumbnailQuality = 80;
        settings.update(ANDROID_JPEG_THUMBNAIL_QUALITY, &thumbnailQuality, 1);

        static const double gpsCoordinates[3] = {
            0, 0, 0
        };
        settings.update(ANDROID_JPEG_GPS_COORDINATES, gpsCoordinates, 3);

        static const uint8_t gpsProcessingMethod[32] = "None";
        settings.update(ANDROID_JPEG_GPS_PROCESSING_METHOD, gpsProcessingMethod, 32);

        static const int64_t gpsTimestamp = 0;
        settings.update(ANDROID_JPEG_GPS_TIMESTAMP, &gpsTimestamp, 1);

        static const int32_t jpegOrientation = 0;
        settings.update(ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
    }

    /** android.stats */

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t faceDetectMode =
                ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
        settings.update(ANDROID_STATISTICS_FACE_DETECT_MODE, &faceDetectMode, 1);

        static const uint8_t hotPixelMapMode =
                ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
        settings.update(ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotPixelMapMode, 1);
    }

    // faceRectangles, faceScores, faceLandmarks, faceIds, histogram,
    // sharpnessMap only in frames

    /** android.control */

    uint8_t controlIntent = 0;
    switch (type) {
      case CAMERA3_TEMPLATE_PREVIEW:
        controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
        break;
      case CAMERA3_TEMPLATE_STILL_CAPTURE:
        controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
        break;
      case CAMERA3_TEMPLATE_VIDEO_RECORD:
        controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
        break;
      case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
        controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
        break;
      case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
        controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
        break;
      case CAMERA3_TEMPLATE_MANUAL:
        controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
        break;
      default:
        controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_CUSTOM;
        break;
    }
    settings.update(ANDROID_CONTROL_CAPTURE_INTENT, &controlIntent, 1);

    const uint8_t controlMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
            ANDROID_CONTROL_MODE_OFF :
            ANDROID_CONTROL_MODE_AUTO;
    settings.update(ANDROID_CONTROL_MODE, &controlMode, 1);

    int32_t aeTargetFpsRange[2] = {
        15, 30
    };
    if (type == CAMERA3_TEMPLATE_VIDEO_RECORD || type == CAMERA3_TEMPLATE_VIDEO_SNAPSHOT) {
        aeTargetFpsRange[0] = 30;
    }
    settings.update(ANDROID_CONTROL_AE_TARGET_FPS_RANGE, aeTargetFpsRange, 2);

    if (hasCapability(BACKWARD_COMPATIBLE)) {

        static const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
        settings.update(ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);

        static const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY;
        settings.update(ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);

        const uint8_t aeMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
                ANDROID_CONTROL_AE_MODE_OFF :
                ANDROID_CONTROL_AE_MODE_ON;
        settings.update(ANDROID_CONTROL_AE_MODE, &aeMode, 1);

        static const uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
        settings.update(ANDROID_CONTROL_AE_LOCK, &aeLock, 1);

        static const int32_t controlRegions[5] = {
            0, 0, 0, 0, 0
        };
        settings.update(ANDROID_CONTROL_AE_REGIONS, controlRegions, 5);

        static const int32_t aeExpCompensation = 0;
        settings.update(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &aeExpCompensation, 1);


        static const uint8_t aeAntibandingMode =
                ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
        settings.update(ANDROID_CONTROL_AE_ANTIBANDING_MODE, &aeAntibandingMode, 1);

        static const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
        settings.update(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);

        const uint8_t awbMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
                ANDROID_CONTROL_AWB_MODE_OFF :
                ANDROID_CONTROL_AWB_MODE_AUTO;
        settings.update(ANDROID_CONTROL_AWB_MODE, &awbMode, 1);

        static const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
        settings.update(ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);

        uint8_t afMode = 0;

        if (mFacingBack) {
            switch (type) {
                case CAMERA3_TEMPLATE_PREVIEW:
                    afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
                    break;
                case CAMERA3_TEMPLATE_STILL_CAPTURE:
                    afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
                    break;
                case CAMERA3_TEMPLATE_VIDEO_RECORD:
                    afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO;
                    break;
                case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
                    afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO;
                    break;
                case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
                    afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
                    break;
                case CAMERA3_TEMPLATE_MANUAL:
                    afMode = ANDROID_CONTROL_AF_MODE_OFF;
                    break;
                default:
                    afMode = ANDROID_CONTROL_AF_MODE_AUTO;
                    break;
            }
        } else {
            afMode = ANDROID_CONTROL_AF_MODE_OFF;
        }
        settings.update(ANDROID_CONTROL_AF_MODE, &afMode, 1);

        settings.update(ANDROID_CONTROL_AF_REGIONS, controlRegions, 5);

        static const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
        settings.update(ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);

        static const uint8_t vstabMode =
                ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
        settings.update(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &vstabMode, 1);

        static const uint8_t blackLevelLock = ANDROID_BLACK_LEVEL_LOCK_OFF;
        settings.update(ANDROID_BLACK_LEVEL_LOCK, &blackLevelLock, 1);

        static const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
        settings.update(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1);

        uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_FAST;
        if (type == CAMERA3_TEMPLATE_STILL_CAPTURE) {
            aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_HIGH_QUALITY;
        }
        settings.update(ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);

        static const int32_t testPatternMode = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
        settings.update(ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternMode, 1);
    }

    mDefaultTemplates[type] = settings.release();

    return mDefaultTemplates[type];
}

status_t EmulatedFakeCamera3::processCaptureRequest(
        camera3_capture_request *request) {

    Mutex::Autolock l(mLock);
    status_t res;

    /** Validation */

    if (mStatus < STATUS_READY) {
        ALOGE("%s: Can't submit capture requests in state %d", __FUNCTION__,
                mStatus);
        return INVALID_OPERATION;
    }

    if (request == NULL) {
        ALOGE("%s: NULL request!", __FUNCTION__);
        return BAD_VALUE;
    }

    uint32_t frameNumber = request->frame_number;

    if (request->settings == NULL && mPrevSettings.isEmpty()) {
        ALOGE("%s: Request %d: NULL settings for first request after"
                "configureStreams()", __FUNCTION__, frameNumber);
        return BAD_VALUE;
    }

    if (request->input_buffer != NULL &&
            request->input_buffer->stream != mInputStream) {
        ALOGE("%s: Request %d: Input buffer not from input stream!",
                __FUNCTION__, frameNumber);
        ALOGV("%s: Bad stream %p, expected: %p",
              __FUNCTION__, request->input_buffer->stream,
              mInputStream);
        ALOGV("%s: Bad stream type %d, expected stream type %d",
              __FUNCTION__, request->input_buffer->stream->stream_type,
              mInputStream ? mInputStream->stream_type : -1);

        return BAD_VALUE;
    }

    if (request->num_output_buffers < 1 || request->output_buffers == NULL) {
        ALOGE("%s: Request %d: No output buffers provided!",
                __FUNCTION__, frameNumber);
        return BAD_VALUE;
    }

    // Validate all buffers, starting with input buffer if it's given

    ssize_t idx;
    const camera3_stream_buffer_t *b;
    if (request->input_buffer != NULL) {
        idx = -1;
        b = request->input_buffer;
    } else {
        idx = 0;
        b = request->output_buffers;
    }
    do {
        PrivateStreamInfo *priv =
                static_cast<PrivateStreamInfo*>(b->stream->priv);
        if (priv == NULL) {
            ALOGE("%s: Request %d: Buffer %zu: Unconfigured stream!",
                    __FUNCTION__, frameNumber, idx);
            return BAD_VALUE;
        }
        if (!priv->alive) {
            ALOGE("%s: Request %d: Buffer %zu: Dead stream!",
                    __FUNCTION__, frameNumber, idx);
            return BAD_VALUE;
        }
        if (b->status != CAMERA3_BUFFER_STATUS_OK) {
            ALOGE("%s: Request %d: Buffer %zu: Status not OK!",
                    __FUNCTION__, frameNumber, idx);
            return BAD_VALUE;
        }
        if (b->release_fence != -1) {
            ALOGE("%s: Request %d: Buffer %zu: Has a release fence!",
                    __FUNCTION__, frameNumber, idx);
            return BAD_VALUE;
        }
        if (b->buffer == NULL) {
            ALOGE("%s: Request %d: Buffer %zu: NULL buffer handle!",
                    __FUNCTION__, frameNumber, idx);
            return BAD_VALUE;
        }
        idx++;
        b = &(request->output_buffers[idx]);
    } while (idx < (ssize_t)request->num_output_buffers);

    // TODO: Validate settings parameters

    /**
     * Start processing this request
     */

    mStatus = STATUS_ACTIVE;

    CameraMetadata settings;

    if (request->settings == NULL) {
        settings.acquire(mPrevSettings);
    } else {
        settings = request->settings;
    }

    res = process3A(settings);
    if (res != OK) {
        return res;
    }

    // TODO: Handle reprocessing

    /**
     * Get ready for sensor config
     */

    nsecs_t  exposureTime;
    nsecs_t  frameDuration;
    uint32_t sensitivity;
    bool     needJpeg = false;
    camera_metadata_entry_t entry;
    entry = settings.find(ANDROID_SENSOR_EXPOSURE_TIME);
    exposureTime = (entry.count > 0) ? entry.data.i64[0] : Sensor::kExposureTimeRange[0];
    entry = settings.find(ANDROID_SENSOR_FRAME_DURATION);
    frameDuration = (entry.count > 0)? entry.data.i64[0] : Sensor::kFrameDurationRange[0];
    entry = settings.find(ANDROID_SENSOR_SENSITIVITY);
    sensitivity = (entry.count > 0) ? entry.data.i32[0] : Sensor::kSensitivityRange[0];

    if (exposureTime > frameDuration) {
        frameDuration = exposureTime + Sensor::kMinVerticalBlank;
        settings.update(ANDROID_SENSOR_FRAME_DURATION, &frameDuration, 1);
    }

    Buffers *sensorBuffers = new Buffers();
    HalBufferVector *buffers = new HalBufferVector();

    sensorBuffers->setCapacity(request->num_output_buffers);
    buffers->setCapacity(request->num_output_buffers);

    // Process all the buffers we got for output, constructing internal buffer
    // structures for them, and lock them for writing.
    for (size_t i = 0; i < request->num_output_buffers; i++) {
        const camera3_stream_buffer &srcBuf = request->output_buffers[i];
        StreamBuffer destBuf;
        destBuf.streamId = kGenericStreamId;
        destBuf.width    = srcBuf.stream->width;
        destBuf.height   = srcBuf.stream->height;
        // inline with goldfish gralloc
        if (srcBuf.stream->format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
            if (srcBuf.stream->usage & GRALLOC_USAGE_HW_CAMERA_WRITE) {
                if (srcBuf.stream->usage & GRALLOC_USAGE_HW_TEXTURE) {
                    destBuf.format = HAL_PIXEL_FORMAT_RGBA_8888;
                }
                else if (srcBuf.stream->usage & GRALLOC_USAGE_HW_VIDEO_ENCODER) {
                    destBuf.format = HAL_PIXEL_FORMAT_YCbCr_420_888;
                }
                else if ((srcBuf.stream->usage & GRALLOC_USAGE_HW_CAMERA_MASK)
                         == GRALLOC_USAGE_HW_CAMERA_ZSL) {
                    destBuf.format = HAL_PIXEL_FORMAT_RGB_888;
                }
            }
        }
        else {
            destBuf.format = srcBuf.stream->format;
        }
        destBuf.stride   = srcBuf.stream->width;
        destBuf.dataSpace = srcBuf.stream->data_space;
        destBuf.buffer   = srcBuf.buffer;

        if (destBuf.format == HAL_PIXEL_FORMAT_BLOB) {
            needJpeg = true;
        }

        // Wait on fence
        sp<Fence> bufferAcquireFence = new Fence(srcBuf.acquire_fence);
        res = bufferAcquireFence->wait(kFenceTimeoutMs);
        if (res == TIMED_OUT) {
            ALOGE("%s: Request %d: Buffer %zu: Fence timed out after %d ms",
                    __FUNCTION__, frameNumber, i, kFenceTimeoutMs);
        }
        if (res == OK) {
            // Lock buffer for writing
            if (srcBuf.stream->format == HAL_PIXEL_FORMAT_YCbCr_420_888) {
                if (destBuf.format == HAL_PIXEL_FORMAT_YCbCr_420_888) {
                    android_ycbcr ycbcr = android_ycbcr();
                    res = GrallocModule::getInstance().lock_ycbcr(
                        *(destBuf.buffer),
                        GRALLOC_USAGE_HW_CAMERA_WRITE,
                        0, 0, destBuf.width, destBuf.height,
                        &ycbcr);
                    // This is only valid because we know that emulator's
                    // YCbCr_420_888 is really contiguous NV21 under the hood
                    destBuf.img = static_cast<uint8_t*>(ycbcr.y);
                } else {
                    ALOGE("Unexpected private format for flexible YUV: 0x%x",
                            destBuf.format);
                    res = INVALID_OPERATION;
                }
            } else {
                res = GrallocModule::getInstance().lock(
                    *(destBuf.buffer),
                    GRALLOC_USAGE_HW_CAMERA_WRITE,
                    0, 0, destBuf.width, destBuf.height,
                    (void**)&(destBuf.img));

            }
            if (res != OK) {
                ALOGE("%s: Request %d: Buffer %zu: Unable to lock buffer",
                        __FUNCTION__, frameNumber, i);
            } else {
                ALOGV("%s, stream format 0x%x width %d height %d buffer 0x%p img 0x%p",
                  __FUNCTION__, destBuf.format, destBuf.width, destBuf.height,
                  destBuf.buffer, destBuf.img);
            }
        }

        if (res != OK) {
            // Either waiting or locking failed. Unlock locked buffers and bail
            // out.
            for (size_t j = 0; j < i; j++) {
                GrallocModule::getInstance().unlock(
                        *(request->output_buffers[i].buffer));
            }
            delete sensorBuffers;
            delete buffers;
            return NO_INIT;
        }

        sensorBuffers->push_back(destBuf);
        buffers->push_back(srcBuf);
    }

    /**
     * Wait for JPEG compressor to not be busy, if needed
     */
    if (needJpeg) {
        bool ready = mJpegCompressor->waitForDone(kJpegTimeoutNs);
        if (!ready) {
            ALOGE("%s: Timeout waiting for JPEG compression to complete!",
                    __FUNCTION__);
            return NO_INIT;
        }
        res = mJpegCompressor->reserve();
        if (res != OK) {
            ALOGE("%s: Error managing JPEG compressor resources, can't reserve it!", __FUNCTION__);
            return NO_INIT;
        }
    }

    /**
     * Wait until the in-flight queue has room
     */
    res = mReadoutThread->waitForReadout();
    if (res != OK) {
        ALOGE("%s: Timeout waiting for previous requests to complete!",
                __FUNCTION__);
        return NO_INIT;
    }

    /**
     * Wait until sensor's ready. This waits for lengthy amounts of time with
     * mLock held, but the interface spec is that no other calls may by done to
     * the HAL by the framework while process_capture_request is happening.
     */
    int syncTimeoutCount = 0;
    while(!mSensor->waitForVSync(kSyncWaitTimeout)) {
        if (mStatus == STATUS_ERROR) {
            return NO_INIT;
        }
        if (syncTimeoutCount == kMaxSyncTimeoutCount) {
            ALOGE("%s: Request %d: Sensor sync timed out after %" PRId64 " ms",
                    __FUNCTION__, frameNumber,
                    kSyncWaitTimeout * kMaxSyncTimeoutCount / 1000000);
            return NO_INIT;
        }
        syncTimeoutCount++;
    }

    /**
     * Configure sensor and queue up the request to the readout thread
     */
    mSensor->setExposureTime(exposureTime);
    mSensor->setFrameDuration(frameDuration);
    mSensor->setSensitivity(sensitivity);
    mSensor->setDestinationBuffers(sensorBuffers);
    mSensor->setFrameNumber(request->frame_number);

    ReadoutThread::Request r;
    r.frameNumber = request->frame_number;
    r.settings = settings;
    r.sensorBuffers = sensorBuffers;
    r.buffers = buffers;

    mReadoutThread->queueCaptureRequest(r);
    ALOGVV("%s: Queued frame %d", __FUNCTION__, request->frame_number);

    // Cache the settings for next time
    mPrevSettings.acquire(settings);

    return OK;
}

status_t EmulatedFakeCamera3::flush() {
    ALOGW("%s: Not implemented; ignored", __FUNCTION__);
    return OK;
}

/** Debug methods */

void EmulatedFakeCamera3::dump(int fd) {

}

/**
 * Private methods
 */

status_t EmulatedFakeCamera3::getCameraCapabilities() {

    const char *key = mFacingBack ? "qemu.sf.back_camera_caps" : "qemu.sf.front_camera_caps";

    /* Defined by 'qemu.sf.*_camera_caps' boot property: if the
     * property doesn't exist, it is assumed to list FULL. */
    char prop[PROPERTY_VALUE_MAX];
    if (property_get(key, prop, NULL) > 0) {
        char *saveptr = nullptr;
        char *cap = strtok_r(prop, " ,", &saveptr);
        while (cap != NULL) {
            for (int i = 0; i < NUM_CAPABILITIES; i++) {
                if (!strcasecmp(cap, sAvailableCapabilitiesStrings[i])) {
                    mCapabilities.add(static_cast<AvailableCapabilities>(i));
                    break;
                }
            }
            cap = strtok_r(NULL, " ,", &saveptr);
        }
        if (mCapabilities.size() == 0) {
            ALOGE("qemu.sf.back_camera_caps had no valid capabilities: %s", prop);
        }
    }
    // Default to FULL_LEVEL plus RAW if nothing is defined
    if (mCapabilities.size() == 0) {
        mCapabilities.add(FULL_LEVEL);
        // "RAW" causes several CTS failures: b/68723953, disable it so far.
        // TODO: add "RAW" back when all failures are resolved.
        //mCapabilities.add(RAW);
    }

    // Add level-based caps
    if (hasCapability(FULL_LEVEL)) {
        mCapabilities.add(BURST_CAPTURE);
        mCapabilities.add(READ_SENSOR_SETTINGS);
        mCapabilities.add(MANUAL_SENSOR);
        mCapabilities.add(MANUAL_POST_PROCESSING);
    };

    // Backwards-compatible is required for most other caps
    // Not required for DEPTH_OUTPUT, though.
    if (hasCapability(BURST_CAPTURE) ||
            hasCapability(READ_SENSOR_SETTINGS) ||
            hasCapability(RAW) ||
            hasCapability(MANUAL_SENSOR) ||
            hasCapability(MANUAL_POST_PROCESSING) ||
            hasCapability(PRIVATE_REPROCESSING) ||
            hasCapability(YUV_REPROCESSING) ||
            hasCapability(CONSTRAINED_HIGH_SPEED_VIDEO)) {
        mCapabilities.add(BACKWARD_COMPATIBLE);
    }

    ALOGI("Camera %d capabilities:", mCameraID);
    for (size_t i = 0; i < mCapabilities.size(); i++) {
        ALOGI("  %s", sAvailableCapabilitiesStrings[mCapabilities[i]]);
    }

    return OK;
}

bool EmulatedFakeCamera3::hasCapability(AvailableCapabilities cap) {
    ssize_t idx = mCapabilities.indexOf(cap);
    return idx >= 0;
}

status_t EmulatedFakeCamera3::constructStaticInfo() {

    CameraMetadata info;
    Vector<int32_t> availableCharacteristicsKeys;
    status_t res;

    // Find max width/height
    int32_t width = 0, height = 0;
    size_t rawSizeCount = sizeof(kAvailableRawSizes)/sizeof(kAvailableRawSizes[0]);
    for (size_t index = 0; index + 1 < rawSizeCount; index += 2) {
        if (width <= kAvailableRawSizes[index] &&
            height <= kAvailableRawSizes[index+1]) {
            width = kAvailableRawSizes[index];
            height = kAvailableRawSizes[index+1];
        }
    }

    if (width < 640 || height < 480) {
        width = 640;
        height = 480;
    }
    mSensorWidth = width;
    mSensorHeight = height;

#define ADD_STATIC_ENTRY(name, varptr, count) \
        availableCharacteristicsKeys.add(name);   \
        res = info.update(name, varptr, count); \
        if (res != OK) return res

    // android.sensor

    if (hasCapability(MANUAL_SENSOR)) {

        ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
                Sensor::kExposureTimeRange, 2);

        ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
                &Sensor::kFrameDurationRange[1], 1);

        ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
                Sensor::kSensitivityRange,
                sizeof(Sensor::kSensitivityRange)
                /sizeof(int32_t));

        ADD_STATIC_ENTRY(ANDROID_SENSOR_MAX_ANALOG_SENSITIVITY,
                &Sensor::kSensitivityRange[1], 1);
    }

    static const uint8_t sensorColorFilterArrangement =
        ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_RGGB;
    ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
            &sensorColorFilterArrangement, 1);

    static const float sensorPhysicalSize[2] = {3.20f, 2.40f}; // mm
    ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
            sensorPhysicalSize, 2);

    const int32_t pixelArray[] = {mSensorWidth, mSensorHeight};
    ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
            pixelArray, 2);
    const int32_t activeArray[] = {0, 0, mSensorWidth, mSensorHeight};
    ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
            activeArray, 4);

    static const int32_t orientation = 90; // Aligned with 'long edge'
    ADD_STATIC_ENTRY(ANDROID_SENSOR_ORIENTATION, &orientation, 1);

    static const uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME;
    ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE, &timestampSource, 1);

    if (hasCapability(RAW) || hasCapability(MANUAL_SENSOR)) {
        ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_WHITE_LEVEL,
                (int32_t*)&Sensor::kMaxRawValue, 1);

        static const int32_t blackLevelPattern[4] = {
            (int32_t)Sensor::kBlackLevel, (int32_t)Sensor::kBlackLevel,
            (int32_t)Sensor::kBlackLevel, (int32_t)Sensor::kBlackLevel
        };
        ADD_STATIC_ENTRY(ANDROID_SENSOR_BLACK_LEVEL_PATTERN,
                blackLevelPattern, sizeof(blackLevelPattern)/sizeof(int32_t));
    }

    if (hasCapability(RAW)) {
        ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
                &Sensor::kColorFilterArrangement, 1);
    }

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const int32_t availableTestPatternModes[] = {
            ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
        };
        ADD_STATIC_ENTRY(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
                availableTestPatternModes, sizeof(availableTestPatternModes)/sizeof(int32_t));
    }

    // android.lens

    static const float focalLength = 5.0f; // mm
    ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
            &focalLength, 1);

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        // 5 cm min focus distance for back camera, infinity (fixed focus) for front
        const float minFocusDistance = mFacingBack ? 1.0/0.05 : 0.0;
        ADD_STATIC_ENTRY(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
                &minFocusDistance, 1);

        // 5 m hyperfocal distance for back camera, infinity (fixed focus) for front
        const float hyperFocalDistance = mFacingBack ? 1.0/5.0 : 0.0;
        ADD_STATIC_ENTRY(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
                &minFocusDistance, 1);

        static const float aperture = 2.8f;
        ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
                &aperture, 1);
        static const float filterDensity = 0;
        ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_FILTER_DENSITIES,
                &filterDensity, 1);
        static const uint8_t availableOpticalStabilization =
                ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
        ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
                &availableOpticalStabilization, 1);

        static const int32_t lensShadingMapSize[] = {1, 1};
        ADD_STATIC_ENTRY(ANDROID_LENS_INFO_SHADING_MAP_SIZE, lensShadingMapSize,
                sizeof(lensShadingMapSize)/sizeof(int32_t));

        static const uint8_t lensFocusCalibration =
                ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION_APPROXIMATE;
        ADD_STATIC_ENTRY(ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION, &lensFocusCalibration, 1);
    }

    if (hasCapability(DEPTH_OUTPUT)) {
        // These could be included for non-DEPTH capability as well, but making this variable for
        // testing coverage

        // 90 degree rotation to align with long edge of a phone device that's by default portrait
        static const float qO[] = { 0.707107f, 0.f, 0.f, 0.707107f};

        // Either a 180-degree rotation for back-facing, or no rotation for front-facing
        const float qF[] = {0, (mFacingBack ? 1.f : 0.f), 0, (mFacingBack ? 0.f : 1.f)};

        // Quarternion product, orientation change then facing
        const float lensPoseRotation[] = {qO[0]*qF[0] - qO[1]*qF[1] - qO[2]*qF[2] - qO[3]*qF[3],
                                          qO[0]*qF[1] + qO[1]*qF[0] + qO[2]*qF[3] - qO[3]*qF[2],
                                          qO[0]*qF[2] + qO[2]*qF[0] + qO[1]*qF[3] - qO[3]*qF[1],
                                          qO[0]*qF[3] + qO[3]*qF[0] + qO[1]*qF[2] - qO[2]*qF[1]};

        ADD_STATIC_ENTRY(ANDROID_LENS_POSE_ROTATION, lensPoseRotation,
                sizeof(lensPoseRotation)/sizeof(float));

        // Only one camera facing each way, so 0 translation needed to the center of the 'main'
        // camera
        static const float lensPoseTranslation[] = {0.f, 0.f, 0.f};

        ADD_STATIC_ENTRY(ANDROID_LENS_POSE_TRANSLATION, lensPoseTranslation,
                sizeof(lensPoseTranslation)/sizeof(float));

        // Intrinsics are 'ideal' (f_x, f_y, c_x, c_y, s) match focal length and active array size
        float f_x = focalLength * mSensorWidth / sensorPhysicalSize[0];
        float f_y = focalLength * mSensorHeight / sensorPhysicalSize[1];
        float c_x = mSensorWidth / 2.f;
        float c_y = mSensorHeight / 2.f;
        float s = 0.f;
        const float lensIntrinsics[] = { f_x, f_y, c_x, c_y, s };

        ADD_STATIC_ENTRY(ANDROID_LENS_INTRINSIC_CALIBRATION, lensIntrinsics,
                sizeof(lensIntrinsics)/sizeof(float));

        // No radial or tangential distortion

        float lensRadialDistortion[] = {1.0f, 0.f, 0.f, 0.f, 0.f, 0.f};

        ADD_STATIC_ENTRY(ANDROID_LENS_RADIAL_DISTORTION, lensRadialDistortion,
                sizeof(lensRadialDistortion)/sizeof(float));

    }


    static const uint8_t lensFacing = mFacingBack ?
            ANDROID_LENS_FACING_BACK : ANDROID_LENS_FACING_FRONT;
    ADD_STATIC_ENTRY(ANDROID_LENS_FACING, &lensFacing, 1);

    // android.flash

    static const uint8_t flashAvailable = 0;
    ADD_STATIC_ENTRY(ANDROID_FLASH_INFO_AVAILABLE, &flashAvailable, 1);

    // android.hotPixel

    if (hasCapability(MANUAL_POST_PROCESSING)) {
        static const uint8_t availableHotPixelModes[] = {
            ANDROID_HOT_PIXEL_MODE_FAST, ANDROID_HOT_PIXEL_MODE_HIGH_QUALITY
        };
        ADD_STATIC_ENTRY(ANDROID_HOT_PIXEL_AVAILABLE_HOT_PIXEL_MODES,
                availableHotPixelModes, sizeof(availableHotPixelModes));
    }

    // android.tonemap

    if (hasCapability(MANUAL_POST_PROCESSING)) {
        static const int32_t tonemapCurvePoints = 128;
        ADD_STATIC_ENTRY(ANDROID_TONEMAP_MAX_CURVE_POINTS, &tonemapCurvePoints, 1);

        static const uint8_t availableToneMapModes[] = {
            ANDROID_TONEMAP_MODE_CONTRAST_CURVE,  ANDROID_TONEMAP_MODE_FAST,
            ANDROID_TONEMAP_MODE_HIGH_QUALITY
        };
        ADD_STATIC_ENTRY(ANDROID_TONEMAP_AVAILABLE_TONE_MAP_MODES, availableToneMapModes,
                sizeof(availableToneMapModes));
    }

    // android.scaler

    const std::vector<int32_t> availableStreamConfigurationsBasic = {
        HAL_PIXEL_FORMAT_BLOB, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_BLOB, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 176, 144, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 176, 144, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_BLOB, 176, 144, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 1280, 720, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 1280, 720, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_BLOB, 1280, 720, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
    };

    // Always need to include 640x480 in basic formats
    const std::vector<int32_t> availableStreamConfigurationsBasic640 = {
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_BLOB, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT
    };

    const std::vector<int32_t> availableStreamConfigurationsRaw = {
        HAL_PIXEL_FORMAT_RAW16, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
    };

    const std::vector<int32_t> availableStreamConfigurationsBurst = {
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_YCbCr_420_888, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
        HAL_PIXEL_FORMAT_RGBA_8888, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
    };

    std::vector<int32_t> availableStreamConfigurations;

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        availableStreamConfigurations.insert(availableStreamConfigurations.end(),
                availableStreamConfigurationsBasic.begin(),
                availableStreamConfigurationsBasic.end());
        if (width > 640) {
            availableStreamConfigurations.insert(availableStreamConfigurations.end(),
                    availableStreamConfigurationsBasic640.begin(),
                    availableStreamConfigurationsBasic640.end());
        }
    }
    if (hasCapability(RAW)) {
        availableStreamConfigurations.insert(availableStreamConfigurations.end(),
                availableStreamConfigurationsRaw.begin(),
                availableStreamConfigurationsRaw.end());
    }
    if (hasCapability(BURST_CAPTURE)) {
        availableStreamConfigurations.insert(availableStreamConfigurations.end(),
                availableStreamConfigurationsBurst.begin(),
                availableStreamConfigurationsBurst.end());
    }

    if (availableStreamConfigurations.size() > 0) {
        ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
                &availableStreamConfigurations[0],
                availableStreamConfigurations.size());
    }

    const std::vector<int64_t> availableMinFrameDurationsBasic = {
        HAL_PIXEL_FORMAT_BLOB, width, height, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_BLOB, 320, 240, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 176, 144, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_YCbCr_420_888, 176, 144, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_BLOB, 176, 144, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 1280, 720, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_YCbCr_420_888, 1280, 720, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_BLOB, 1280, 720, Sensor::kFrameDurationRange[0],
    };

    // Always need to include 640x480 in basic formats
    const std::vector<int64_t> availableMinFrameDurationsBasic640 = {
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_BLOB, 640, 480, Sensor::kFrameDurationRange[0]
    };

    const std::vector<int64_t> availableMinFrameDurationsRaw = {
        HAL_PIXEL_FORMAT_RAW16, width, height, Sensor::kFrameDurationRange[0],
    };

    const std::vector<int64_t> availableMinFrameDurationsBurst = {
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, width, height, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_YCbCr_420_888, width, height, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_RGBA_8888, width, height, Sensor::kFrameDurationRange[0],
    };

    std::vector<int64_t> availableMinFrameDurations;

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        availableMinFrameDurations.insert(availableMinFrameDurations.end(),
                availableMinFrameDurationsBasic.begin(),
                availableMinFrameDurationsBasic.end());
        if (width > 640) {
            availableMinFrameDurations.insert(availableMinFrameDurations.end(),
                    availableMinFrameDurationsBasic640.begin(),
                    availableMinFrameDurationsBasic640.end());
        }
    }
    if (hasCapability(RAW)) {
        availableMinFrameDurations.insert(availableMinFrameDurations.end(),
                availableMinFrameDurationsRaw.begin(),
                availableMinFrameDurationsRaw.end());
    }
    if (hasCapability(BURST_CAPTURE)) {
        availableMinFrameDurations.insert(availableMinFrameDurations.end(),
                availableMinFrameDurationsBurst.begin(),
                availableMinFrameDurationsBurst.end());
    }

    if (availableMinFrameDurations.size() > 0) {
        ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
                &availableMinFrameDurations[0],
                availableMinFrameDurations.size());
    }

    const std::vector<int64_t> availableStallDurationsBasic = {
        HAL_PIXEL_FORMAT_BLOB, width, height, Sensor::kFrameDurationRange[0],
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, 0,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, 0,
        HAL_PIXEL_FORMAT_RGBA_8888, 320, 240, 0,
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 176, 144, 0,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 176, 144, 0,
        HAL_PIXEL_FORMAT_RGBA_8888, 176, 144, 0,
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 1280, 720, 0,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 1280, 720, 0,
        HAL_PIXEL_FORMAT_RGBA_8888, 1280, 720, 0,
    };

    // Always need to include 640x480 in basic formats
    const std::vector<int64_t> availableStallDurationsBasic640 = {
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, 0,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, 0,
        HAL_PIXEL_FORMAT_BLOB, 640, 480, Sensor::kFrameDurationRange[0]
    };

    const std::vector<int64_t> availableStallDurationsRaw = {
        HAL_PIXEL_FORMAT_RAW16, 640, 480, Sensor::kFrameDurationRange[0]
    };
    const std::vector<int64_t> availableStallDurationsBurst = {
        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, 0,
        HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, 0,
        HAL_PIXEL_FORMAT_RGBA_8888, 640, 480, 0
    };

    std::vector<int64_t> availableStallDurations;

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        availableStallDurations.insert(availableStallDurations.end(),
                availableStallDurationsBasic.begin(),
                availableStallDurationsBasic.end());
        if (width > 640) {
            availableStallDurations.insert(availableStallDurations.end(),
                    availableStallDurationsBasic640.begin(),
                    availableStallDurationsBasic640.end());
        }
    }
    if (hasCapability(RAW)) {
        availableStallDurations.insert(availableStallDurations.end(),
                availableStallDurationsRaw.begin(),
                availableStallDurationsRaw.end());
    }
    if (hasCapability(BURST_CAPTURE)) {
        availableStallDurations.insert(availableStallDurations.end(),
                availableStallDurationsBurst.begin(),
                availableStallDurationsBurst.end());
    }

    if (availableStallDurations.size() > 0) {
        ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
                &availableStallDurations[0],
                availableStallDurations.size());
    }

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_FREEFORM;
        ADD_STATIC_ENTRY(ANDROID_SCALER_CROPPING_TYPE,
                &croppingType, 1);

        static const float maxZoom = 10;
        ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
                &maxZoom, 1);
    }

    // android.jpeg

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const int32_t jpegThumbnailSizes[] = {
            0, 0,
            160, 120,
            320, 180,
            320, 240
        };
        ADD_STATIC_ENTRY(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
                jpegThumbnailSizes, sizeof(jpegThumbnailSizes)/sizeof(int32_t));

        static const int32_t jpegMaxSize = JpegCompressor::kMaxJpegSize;
        ADD_STATIC_ENTRY(ANDROID_JPEG_MAX_SIZE, &jpegMaxSize, 1);
    }

    // android.stats

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableFaceDetectModes[] = {
            ANDROID_STATISTICS_FACE_DETECT_MODE_OFF,
            ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE,
            ANDROID_STATISTICS_FACE_DETECT_MODE_FULL
        };
        ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
                availableFaceDetectModes,
                sizeof(availableFaceDetectModes));

        static const int32_t maxFaceCount = 8;
        ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
                &maxFaceCount, 1);


        static const uint8_t availableShadingMapModes[] = {
            ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF
        };
        ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
                availableShadingMapModes, sizeof(availableShadingMapModes));
    }

    // android.sync

    static const int32_t maxLatency =
            hasCapability(FULL_LEVEL) ? ANDROID_SYNC_MAX_LATENCY_PER_FRAME_CONTROL : 3;
    ADD_STATIC_ENTRY(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);

    // android.control

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableControlModes[] = {
            ANDROID_CONTROL_MODE_OFF, ANDROID_CONTROL_MODE_AUTO, ANDROID_CONTROL_MODE_USE_SCENE_MODE
        };
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_MODES,
                availableControlModes, sizeof(availableControlModes));
    } else {
        static const uint8_t availableControlModes[] = {
            ANDROID_CONTROL_MODE_AUTO
        };
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_MODES,
                availableControlModes, sizeof(availableControlModes));
    }

    static const uint8_t availableSceneModes[] = {
        hasCapability(BACKWARD_COMPATIBLE) ?
            ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY :
            ANDROID_CONTROL_SCENE_MODE_DISABLED
    };
    ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
            availableSceneModes, sizeof(availableSceneModes));

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableEffects[] = {
            ANDROID_CONTROL_EFFECT_MODE_OFF
        };
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_EFFECTS,
                availableEffects, sizeof(availableEffects));
    }

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const int32_t max3aRegions[] = {/*AE*/ 1,/*AWB*/ 0,/*AF*/ 1};
        ADD_STATIC_ENTRY(ANDROID_CONTROL_MAX_REGIONS,
                max3aRegions, sizeof(max3aRegions)/sizeof(max3aRegions[0]));

        static const uint8_t availableAeModes[] = {
            ANDROID_CONTROL_AE_MODE_OFF,
            ANDROID_CONTROL_AE_MODE_ON
        };
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_MODES,
                availableAeModes, sizeof(availableAeModes));

        static const camera_metadata_rational exposureCompensationStep = {
            0, 3
        };
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_COMPENSATION_STEP,
                &exposureCompensationStep, 1);

        int32_t exposureCompensationRange[] = {0, 0};
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
                exposureCompensationRange,
                sizeof(exposureCompensationRange)/sizeof(int32_t));
    }

    static const int32_t availableTargetFpsRanges[] = {
        15, 30, 30, 30
    };
    ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
            availableTargetFpsRanges,
            sizeof(availableTargetFpsRanges)/sizeof(int32_t));

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableAntibandingModes[] = {
            ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
            ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO
        };
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
                availableAntibandingModes, sizeof(availableAntibandingModes));
    }

    static const uint8_t aeLockAvailable = hasCapability(BACKWARD_COMPATIBLE) ?
            ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE : ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;

    ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
            &aeLockAvailable, 1);

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableAwbModes[] = {
            ANDROID_CONTROL_AWB_MODE_OFF,
            ANDROID_CONTROL_AWB_MODE_AUTO,
            ANDROID_CONTROL_AWB_MODE_INCANDESCENT,
            ANDROID_CONTROL_AWB_MODE_FLUORESCENT,
            ANDROID_CONTROL_AWB_MODE_DAYLIGHT,
            ANDROID_CONTROL_AWB_MODE_SHADE
        };
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
                availableAwbModes, sizeof(availableAwbModes));
    }

    static const uint8_t awbLockAvailable = hasCapability(BACKWARD_COMPATIBLE) ?
            ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE : ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;

    ADD_STATIC_ENTRY(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
            &awbLockAvailable, 1);

    static const uint8_t availableAfModesBack[] = {
            ANDROID_CONTROL_AF_MODE_OFF,
            ANDROID_CONTROL_AF_MODE_AUTO,
            ANDROID_CONTROL_AF_MODE_MACRO,
            ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO,
            ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE
    };

    static const uint8_t availableAfModesFront[] = {
            ANDROID_CONTROL_AF_MODE_OFF
    };

    if (mFacingBack && hasCapability(BACKWARD_COMPATIBLE)) {
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AF_AVAILABLE_MODES,
                availableAfModesBack, sizeof(availableAfModesBack));
    } else {
        ADD_STATIC_ENTRY(ANDROID_CONTROL_AF_AVAILABLE_MODES,
                availableAfModesFront, sizeof(availableAfModesFront));
    }

    static const uint8_t availableVstabModes[] = {
        ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF
    };
    ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
            availableVstabModes, sizeof(availableVstabModes));

    // android.colorCorrection

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableAberrationModes[] = {
            ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
            ANDROID_COLOR_CORRECTION_ABERRATION_MODE_FAST,
            ANDROID_COLOR_CORRECTION_ABERRATION_MODE_HIGH_QUALITY
        };
        ADD_STATIC_ENTRY(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
                availableAberrationModes, sizeof(availableAberrationModes));
    } else {
        static const uint8_t availableAberrationModes[] = {
            ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
        };
        ADD_STATIC_ENTRY(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
                availableAberrationModes, sizeof(availableAberrationModes));
    }
    // android.edge

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableEdgeModes[] = {
            ANDROID_EDGE_MODE_OFF, ANDROID_EDGE_MODE_FAST, ANDROID_EDGE_MODE_HIGH_QUALITY
        };
        ADD_STATIC_ENTRY(ANDROID_EDGE_AVAILABLE_EDGE_MODES,
                availableEdgeModes, sizeof(availableEdgeModes));
    } else {
        static const uint8_t availableEdgeModes[] = {
            ANDROID_EDGE_MODE_OFF
        };
        ADD_STATIC_ENTRY(ANDROID_EDGE_AVAILABLE_EDGE_MODES,
                availableEdgeModes, sizeof(availableEdgeModes));
    }

    // android.info

    static const uint8_t supportedHardwareLevel =
            hasCapability(FULL_LEVEL) ? ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL :
                    ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
    ADD_STATIC_ENTRY(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
                &supportedHardwareLevel,
                /*count*/1);

    // android.noiseReduction

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableNoiseReductionModes[] = {
            ANDROID_NOISE_REDUCTION_MODE_OFF,
            ANDROID_NOISE_REDUCTION_MODE_FAST,
            ANDROID_NOISE_REDUCTION_MODE_HIGH_QUALITY
        };
        ADD_STATIC_ENTRY(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
                availableNoiseReductionModes, sizeof(availableNoiseReductionModes));
    } else {
        static const uint8_t availableNoiseReductionModes[] = {
            ANDROID_NOISE_REDUCTION_MODE_OFF,
        };
        ADD_STATIC_ENTRY(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
                availableNoiseReductionModes, sizeof(availableNoiseReductionModes));
    }

    // android.depth

    if (hasCapability(DEPTH_OUTPUT)) {

        static const int32_t maxDepthSamples = 100;
        ADD_STATIC_ENTRY(ANDROID_DEPTH_MAX_DEPTH_SAMPLES,
                &maxDepthSamples, 1);

        static const int32_t availableDepthStreamConfigurations[] = {
            HAL_PIXEL_FORMAT_Y16, 160, 120, ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_OUTPUT,
            HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_OUTPUT
        };
        ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS,
                availableDepthStreamConfigurations,
                sizeof(availableDepthStreamConfigurations)/sizeof(int32_t));

        static const int64_t availableDepthMinFrameDurations[] = {
            HAL_PIXEL_FORMAT_Y16, 160, 120, Sensor::kFrameDurationRange[0],
            HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, Sensor::kFrameDurationRange[0]
        };
        ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_MIN_FRAME_DURATIONS,
                availableDepthMinFrameDurations,
                sizeof(availableDepthMinFrameDurations)/sizeof(int64_t));

        static const int64_t availableDepthStallDurations[] = {
            HAL_PIXEL_FORMAT_Y16, 160, 120, Sensor::kFrameDurationRange[0],
            HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, Sensor::kFrameDurationRange[0]
        };
        ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_STALL_DURATIONS,
                availableDepthStallDurations,
                sizeof(availableDepthStallDurations)/sizeof(int64_t));

        uint8_t depthIsExclusive = ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE_FALSE;
        ADD_STATIC_ENTRY(ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE,
                &depthIsExclusive, 1);
    }

    // android.shading

    if (hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t availableShadingModes[] = {
            ANDROID_SHADING_MODE_OFF, ANDROID_SHADING_MODE_FAST, ANDROID_SHADING_MODE_HIGH_QUALITY
        };
        ADD_STATIC_ENTRY(ANDROID_SHADING_AVAILABLE_MODES, availableShadingModes,
                sizeof(availableShadingModes));
    } else {
        static const uint8_t availableShadingModes[] = {
            ANDROID_SHADING_MODE_OFF
        };
        ADD_STATIC_ENTRY(ANDROID_SHADING_AVAILABLE_MODES, availableShadingModes,
                sizeof(availableShadingModes));
    }

    // android.request

    static const int32_t maxNumOutputStreams[] = {
            kMaxRawStreamCount, kMaxProcessedStreamCount, kMaxJpegStreamCount
    };
    ADD_STATIC_ENTRY(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS, maxNumOutputStreams, 3);

    static const uint8_t maxPipelineDepth = kMaxBufferCount;
    ADD_STATIC_ENTRY(ANDROID_REQUEST_PIPELINE_MAX_DEPTH, &maxPipelineDepth, 1);

    static const int32_t partialResultCount = 1;
    ADD_STATIC_ENTRY(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
            &partialResultCount, /*count*/1);

    SortedVector<uint8_t> caps;
    for (size_t i = 0; i < mCapabilities.size(); i++) {
        switch(mCapabilities[i]) {
            case BACKWARD_COMPATIBLE:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE);
                break;
            case MANUAL_SENSOR:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR);
                break;
            case MANUAL_POST_PROCESSING:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING);
                break;
            case RAW:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
                break;
            case PRIVATE_REPROCESSING:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_PRIVATE_REPROCESSING);
                break;
            case READ_SENSOR_SETTINGS:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_READ_SENSOR_SETTINGS);
                break;
            case BURST_CAPTURE:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE);
                break;
            case YUV_REPROCESSING:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_YUV_REPROCESSING);
                break;
            case DEPTH_OUTPUT:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DEPTH_OUTPUT);
                break;
            case CONSTRAINED_HIGH_SPEED_VIDEO:
                caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_CONSTRAINED_HIGH_SPEED_VIDEO);
                break;
            default:
                // Ignore LEVELs
                break;
        }
    }
    ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, caps.array(), caps.size());

    // Scan a default request template for included request keys
    Vector<int32_t> availableRequestKeys;
    const camera_metadata_t *previewRequest =
        constructDefaultRequestSettings(CAMERA3_TEMPLATE_PREVIEW);
    for (size_t i = 0; i < get_camera_metadata_entry_count(previewRequest); i++) {
        camera_metadata_ro_entry_t entry;
        get_camera_metadata_ro_entry(previewRequest, i, &entry);
        availableRequestKeys.add(entry.tag);
    }
    ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, availableRequestKeys.array(),
            availableRequestKeys.size());

    // Add a few more result keys. Must be kept up to date with the various places that add these

    Vector<int32_t> availableResultKeys(availableRequestKeys);
    if (hasCapability(BACKWARD_COMPATIBLE)) {
        availableResultKeys.add(ANDROID_CONTROL_AE_STATE);
        availableResultKeys.add(ANDROID_CONTROL_AF_STATE);
        availableResultKeys.add(ANDROID_CONTROL_AWB_STATE);
        availableResultKeys.add(ANDROID_FLASH_STATE);
        availableResultKeys.add(ANDROID_LENS_STATE);
        availableResultKeys.add(ANDROID_LENS_FOCUS_RANGE);
        availableResultKeys.add(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW);
        availableResultKeys.add(ANDROID_STATISTICS_SCENE_FLICKER);
    }

    if (hasCapability(DEPTH_OUTPUT)) {
        availableResultKeys.add(ANDROID_LENS_POSE_ROTATION);
        availableResultKeys.add(ANDROID_LENS_POSE_TRANSLATION);
        availableResultKeys.add(ANDROID_LENS_INTRINSIC_CALIBRATION);
        availableResultKeys.add(ANDROID_LENS_RADIAL_DISTORTION);
    }

    availableResultKeys.add(ANDROID_REQUEST_PIPELINE_DEPTH);
    availableResultKeys.add(ANDROID_SENSOR_TIMESTAMP);

    ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, availableResultKeys.array(),
            availableResultKeys.size());

    // Needs to be last, to collect all the keys set

    availableCharacteristicsKeys.add(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
    info.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
            availableCharacteristicsKeys);

    mCameraInfo = info.release();

#undef ADD_STATIC_ENTRY
    return OK;
}

status_t EmulatedFakeCamera3::process3A(CameraMetadata &settings) {
    /**
     * Extract top-level 3A controls
     */
    status_t res;

    bool facePriority = false;

    camera_metadata_entry e;

    e = settings.find(ANDROID_CONTROL_MODE);
    if (e.count == 0) {
        ALOGE("%s: No control mode entry!", __FUNCTION__);
        return BAD_VALUE;
    }
    uint8_t controlMode = e.data.u8[0];

    if (controlMode == ANDROID_CONTROL_MODE_OFF) {
        mAeMode   = ANDROID_CONTROL_AE_MODE_OFF;
        mAfMode   = ANDROID_CONTROL_AF_MODE_OFF;
        mAwbMode  = ANDROID_CONTROL_AWB_MODE_OFF;
        mAeState  = ANDROID_CONTROL_AE_STATE_INACTIVE;
        mAfState  = ANDROID_CONTROL_AF_STATE_INACTIVE;
        mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE;
        update3A(settings);
        return OK;
    } else if (controlMode == ANDROID_CONTROL_MODE_USE_SCENE_MODE) {
        if (!hasCapability(BACKWARD_COMPATIBLE)) {
            ALOGE("%s: Can't use scene mode when BACKWARD_COMPATIBLE not supported!",
                  __FUNCTION__);
            return BAD_VALUE;
        }

        e = settings.find(ANDROID_CONTROL_SCENE_MODE);
        if (e.count == 0) {
            ALOGE("%s: No scene mode entry!", __FUNCTION__);
            return BAD_VALUE;
        }
        uint8_t sceneMode = e.data.u8[0];

        switch(sceneMode) {
            case ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY:
                mFacePriority = true;
                break;
            default:
                ALOGE("%s: Emulator doesn't support scene mode %d",
                        __FUNCTION__, sceneMode);
                return BAD_VALUE;
        }
    } else {
        mFacePriority = false;
    }

    // controlMode == AUTO or sceneMode = FACE_PRIORITY
    // Process individual 3A controls

    res = doFakeAE(settings);
    if (res != OK) return res;

    res = doFakeAF(settings);
    if (res != OK) return res;

    res = doFakeAWB(settings);
    if (res != OK) return res;

    update3A(settings);
    return OK;
}

status_t EmulatedFakeCamera3::doFakeAE(CameraMetadata &settings) {
    camera_metadata_entry e;

    e = settings.find(ANDROID_CONTROL_AE_MODE);
    if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
        ALOGE("%s: No AE mode entry!", __FUNCTION__);
        return BAD_VALUE;
    }
    uint8_t aeMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AE_MODE_ON;
    mAeMode = aeMode;

    switch (aeMode) {
        case ANDROID_CONTROL_AE_MODE_OFF:
            // AE is OFF
            mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
            return OK;
        case ANDROID_CONTROL_AE_MODE_ON:
            // OK for AUTO modes
            break;
        default:
            // Mostly silently ignore unsupported modes
            ALOGV("%s: Emulator doesn't support AE mode %d, assuming ON",
                    __FUNCTION__, aeMode);
            break;
    }

    e = settings.find(ANDROID_CONTROL_AE_LOCK);
    bool aeLocked = (e.count > 0) ? (e.data.u8[0] == ANDROID_CONTROL_AE_LOCK_ON) : false;

    e = settings.find(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER);
    bool precaptureTrigger = false;
    if (e.count != 0) {
        precaptureTrigger =
                (e.data.u8[0] == ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_START);
    }

    if (precaptureTrigger) {
        ALOGV("%s: Pre capture trigger = %d", __FUNCTION__, precaptureTrigger);
    } else if (e.count > 0) {
        ALOGV("%s: Pre capture trigger was present? %zu",
              __FUNCTION__,
              e.count);
    }

    if (precaptureTrigger || mAeState == ANDROID_CONTROL_AE_STATE_PRECAPTURE) {
        // Run precapture sequence
        if (mAeState != ANDROID_CONTROL_AE_STATE_PRECAPTURE) {
            mAeCounter = 0;
        }

        if (mFacePriority) {
            mAeTargetExposureTime = kFacePriorityExposureTime;
        } else {
            mAeTargetExposureTime = kNormalExposureTime;
        }

        if (mAeCounter > kPrecaptureMinFrames &&
                (mAeTargetExposureTime - mAeCurrentExposureTime) <
                mAeTargetExposureTime / 10) {
            // Done with precapture
            mAeCounter = 0;
            mAeState = aeLocked ? ANDROID_CONTROL_AE_STATE_LOCKED :
                    ANDROID_CONTROL_AE_STATE_CONVERGED;
        } else {
            // Converge some more
            mAeCurrentExposureTime +=
                    (mAeTargetExposureTime - mAeCurrentExposureTime) *
                    kExposureTrackRate;
            mAeCounter++;
            mAeState = ANDROID_CONTROL_AE_STATE_PRECAPTURE;
        }

    } else if (!aeLocked) {
        // Run standard occasional AE scan
        switch (mAeState) {
            case ANDROID_CONTROL_AE_STATE_INACTIVE:
                mAeState = ANDROID_CONTROL_AE_STATE_SEARCHING;
                break;
            case ANDROID_CONTROL_AE_STATE_CONVERGED:
                mAeCounter++;
                if (mAeCounter > kStableAeMaxFrames) {
                    mAeTargetExposureTime =
                            mFacePriority ? kFacePriorityExposureTime :
                            kNormalExposureTime;
                    float exposureStep = ((double)rand() / RAND_MAX) *
                            (kExposureWanderMax - kExposureWanderMin) +
                            kExposureWanderMin;
                    mAeTargetExposureTime *= std::pow(2, exposureStep);
                    mAeState = ANDROID_CONTROL_AE_STATE_SEARCHING;
                }
                break;
            case ANDROID_CONTROL_AE_STATE_SEARCHING:
                mAeCurrentExposureTime +=
                        (mAeTargetExposureTime - mAeCurrentExposureTime) *
                        kExposureTrackRate;
                if (abs(mAeTargetExposureTime - mAeCurrentExposureTime) <
                        mAeTargetExposureTime / 10) {
                    // Close enough
                    mAeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
                    mAeCounter = 0;
                }
                break;
            case ANDROID_CONTROL_AE_STATE_LOCKED:
                mAeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
                mAeCounter = 0;
                break;
            default:
                ALOGE("%s: Emulator in unexpected AE state %d",
                        __FUNCTION__, mAeState);
                return INVALID_OPERATION;
        }
    } else {
        // AE is locked
        mAeState = ANDROID_CONTROL_AE_STATE_LOCKED;
    }

    return OK;
}

status_t EmulatedFakeCamera3::doFakeAF(CameraMetadata &settings) {
    camera_metadata_entry e;

    e = settings.find(ANDROID_CONTROL_AF_MODE);
    if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
        ALOGE("%s: No AF mode entry!", __FUNCTION__);
        return BAD_VALUE;
    }
    uint8_t afMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AF_MODE_OFF;

    e = settings.find(ANDROID_CONTROL_AF_TRIGGER);
    typedef camera_metadata_enum_android_control_af_trigger af_trigger_t;
    af_trigger_t afTrigger;
    if (e.count != 0) {
        afTrigger = static_cast<af_trigger_t>(e.data.u8[0]);

        ALOGV("%s: AF trigger set to 0x%x", __FUNCTION__, afTrigger);
        ALOGV("%s: AF mode is 0x%x", __FUNCTION__, afMode);
    } else {
        afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
    }

    switch (afMode) {
        case ANDROID_CONTROL_AF_MODE_OFF:
            mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;
            return OK;
        case ANDROID_CONTROL_AF_MODE_AUTO:
        case ANDROID_CONTROL_AF_MODE_MACRO:
        case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
        case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
            if (!mFacingBack) {
                ALOGE("%s: Front camera doesn't support AF mode %d",
                        __FUNCTION__, afMode);
                return BAD_VALUE;
            }
            // OK, handle transitions lower on
            break;
        default:
            ALOGE("%s: Emulator doesn't support AF mode %d",
                    __FUNCTION__, afMode);
            return BAD_VALUE;
    }

    bool afModeChanged = mAfMode != afMode;
    mAfMode = afMode;

    /**
     * Simulate AF triggers. Transition at most 1 state per frame.
     * - Focusing always succeeds (goes into locked, or PASSIVE_SCAN).
     */

    bool afTriggerStart = false;
    bool afTriggerCancel = false;
    switch (afTrigger) {
        case ANDROID_CONTROL_AF_TRIGGER_IDLE:
            break;
        case ANDROID_CONTROL_AF_TRIGGER_START:
            afTriggerStart = true;
            break;
        case ANDROID_CONTROL_AF_TRIGGER_CANCEL:
            afTriggerCancel = true;
            // Cancel trigger always transitions into INACTIVE
            mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;

            ALOGV("%s: AF State transition to STATE_INACTIVE", __FUNCTION__);

            // Stay in 'inactive' until at least next frame
            return OK;
        default:
            ALOGE("%s: Unknown af trigger value %d", __FUNCTION__, afTrigger);
            return BAD_VALUE;
    }

    // If we get down here, we're either in an autofocus mode
    //  or in a continuous focus mode (and no other modes)

    int oldAfState = mAfState;
    switch (mAfState) {
        case ANDROID_CONTROL_AF_STATE_INACTIVE:
            if (afTriggerStart) {
                switch (afMode) {
                    case ANDROID_CONTROL_AF_MODE_AUTO:
                        // fall-through
                    case ANDROID_CONTROL_AF_MODE_MACRO:
                        mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
                        break;
                    case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
                        // fall-through
                    case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
                        mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
                        break;
                }
            } else {
                // At least one frame stays in INACTIVE
                if (!afModeChanged) {
                    switch (afMode) {
                        case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
                            // fall-through
                        case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
                            mAfState = ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN;
                            break;
                    }
                }
            }
            break;
        case ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN:
            /**
             * When the AF trigger is activated, the algorithm should finish
             * its PASSIVE_SCAN if active, and then transition into AF_FOCUSED
             * or AF_NOT_FOCUSED as appropriate
             */
            if (afTriggerStart) {
                // Randomly transition to focused or not focused
                if (rand() % 3) {
                    mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
                } else {
                    mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
                }
            }
            /**
             * When the AF trigger is not involved, the AF algorithm should
             * start in INACTIVE state, and then transition into PASSIVE_SCAN
             * and PASSIVE_FOCUSED states
             */
            else if (!afTriggerCancel) {
               // Randomly transition to passive focus
                if (rand() % 3 == 0) {
                    mAfState = ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED;
                }
            }

            break;
        case ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED:
            if (afTriggerStart) {
                // Randomly transition to focused or not focused
                if (rand() % 3) {
                    mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
                } else {
                    mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
                }
            }
            // TODO: initiate passive scan (PASSIVE_SCAN)
            break;
        case ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN:
            // Simulate AF sweep completing instantaneously

            // Randomly transition to focused or not focused
            if (rand() % 3) {
                mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
            } else {
                mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
            }
            break;
        case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
            if (afTriggerStart) {
                switch (afMode) {
                    case ANDROID_CONTROL_AF_MODE_AUTO:
                        // fall-through
                    case ANDROID_CONTROL_AF_MODE_MACRO:
                        mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
                        break;
                    case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
                        // fall-through
                    case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
                        // continuous autofocus => trigger start has no effect
                        break;
                }
            }
            break;
        case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
            if (afTriggerStart) {
                switch (afMode) {
                    case ANDROID_CONTROL_AF_MODE_AUTO:
                        // fall-through
                    case ANDROID_CONTROL_AF_MODE_MACRO:
                        mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
                        break;
                    case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
                        // fall-through
                    case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
                        // continuous autofocus => trigger start has no effect
                        break;
                }
            }
            break;
        default:
            ALOGE("%s: Bad af state %d", __FUNCTION__, mAfState);
    }

    {
        char afStateString[100] = {0,};
        camera_metadata_enum_snprint(ANDROID_CONTROL_AF_STATE,
                oldAfState,
                afStateString,
                sizeof(afStateString));

        char afNewStateString[100] = {0,};
        camera_metadata_enum_snprint(ANDROID_CONTROL_AF_STATE,
                mAfState,
                afNewStateString,
                sizeof(afNewStateString));
        ALOGVV("%s: AF state transitioned from %s to %s",
              __FUNCTION__, afStateString, afNewStateString);
    }


    return OK;
}

status_t EmulatedFakeCamera3::doFakeAWB(CameraMetadata &settings) {
    camera_metadata_entry e;

    e = settings.find(ANDROID_CONTROL_AWB_MODE);
    if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
        ALOGE("%s: No AWB mode entry!", __FUNCTION__);
        return BAD_VALUE;
    }
    uint8_t awbMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AWB_MODE_AUTO;

    // TODO: Add white balance simulation

    e = settings.find(ANDROID_CONTROL_AWB_LOCK);
    bool awbLocked = (e.count > 0) ? (e.data.u8[0] == ANDROID_CONTROL_AWB_LOCK_ON) : false;

    switch (awbMode) {
        case ANDROID_CONTROL_AWB_MODE_OFF:
            mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE;
            break;
        case ANDROID_CONTROL_AWB_MODE_AUTO:
        case ANDROID_CONTROL_AWB_MODE_INCANDESCENT:
        case ANDROID_CONTROL_AWB_MODE_FLUORESCENT:
        case ANDROID_CONTROL_AWB_MODE_DAYLIGHT:
        case ANDROID_CONTROL_AWB_MODE_SHADE:
            // Always magically right, or locked
            mAwbState = awbLocked ? ANDROID_CONTROL_AWB_STATE_LOCKED :
                    ANDROID_CONTROL_AWB_STATE_CONVERGED;
            break;
        default:
            ALOGE("%s: Emulator doesn't support AWB mode %d",
                    __FUNCTION__, awbMode);
            return BAD_VALUE;
    }

    return OK;
}

// Update the 3A Region by calculating the intersection of AE/AF/AWB and CROP
// regions
static void update3ARegion(uint32_t tag, CameraMetadata &settings) {
    if (tag != ANDROID_CONTROL_AE_REGIONS &&
        tag != ANDROID_CONTROL_AF_REGIONS &&
        tag != ANDROID_CONTROL_AWB_REGIONS) {
        return;
    }
    camera_metadata_entry_t entry;
    entry = settings.find(ANDROID_SCALER_CROP_REGION);
    if (entry.count > 0) {
        int32_t cropRegion[4];
        cropRegion[0] =  entry.data.i32[0];
        cropRegion[1] =  entry.data.i32[1];
        cropRegion[2] =  entry.data.i32[2] + cropRegion[0];
        cropRegion[3] =  entry.data.i32[3] + cropRegion[1];
        entry = settings.find(tag);
        if (entry.count > 0) {
            int32_t* ARegion = entry.data.i32;
            // calculate the intersection of AE/AF/AWB and CROP regions
            if (ARegion[0] < cropRegion[2] && cropRegion[0] < ARegion[2] &&
                ARegion[1] < cropRegion[3] && cropRegion[1] < ARegion[3]) {
                int32_t interSect[5];
                interSect[0] = std::max(ARegion[0], cropRegion[0]);
                interSect[1] = std::max(ARegion[1], cropRegion[1]);
                interSect[2] = std::min(ARegion[2], cropRegion[2]);
                interSect[3] = std::min(ARegion[3], cropRegion[3]);
                interSect[4] = ARegion[4];
                settings.update(tag, &interSect[0], 5);
            }
        }
    }
}

void EmulatedFakeCamera3::update3A(CameraMetadata &settings) {
    if (mAeMode != ANDROID_CONTROL_AE_MODE_OFF) {
        settings.update(ANDROID_SENSOR_EXPOSURE_TIME,
                &mAeCurrentExposureTime, 1);
        settings.update(ANDROID_SENSOR_SENSITIVITY,
                &mAeCurrentSensitivity, 1);
    }

    settings.update(ANDROID_CONTROL_AE_STATE,
            &mAeState, 1);
    settings.update(ANDROID_CONTROL_AF_STATE,
            &mAfState, 1);
    settings.update(ANDROID_CONTROL_AWB_STATE,
            &mAwbState, 1);

    uint8_t lensState;
    switch (mAfState) {
        case ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN:
        case ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN:
            lensState = ANDROID_LENS_STATE_MOVING;
            break;
        case ANDROID_CONTROL_AF_STATE_INACTIVE:
        case ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED:
        case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
        case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
        case ANDROID_CONTROL_AF_STATE_PASSIVE_UNFOCUSED:
        default:
            lensState = ANDROID_LENS_STATE_STATIONARY;
            break;
    }
    settings.update(ANDROID_LENS_STATE, &lensState, 1);
    update3ARegion(ANDROID_CONTROL_AE_REGIONS, settings);
    update3ARegion(ANDROID_CONTROL_AF_REGIONS, settings);
    update3ARegion(ANDROID_CONTROL_AWB_REGIONS, settings);
}

void EmulatedFakeCamera3::signalReadoutIdle() {
    Mutex::Autolock l(mLock);
    // Need to chek isIdle again because waiting on mLock may have allowed
    // something to be placed in the in-flight queue.
    if (mStatus == STATUS_ACTIVE && mReadoutThread->isIdle()) {
        ALOGV("Now idle");
        mStatus = STATUS_READY;
    }
}

void EmulatedFakeCamera3::onSensorEvent(uint32_t frameNumber, Event e,
        nsecs_t timestamp) {
    switch(e) {
        case Sensor::SensorListener::EXPOSURE_START: {
            ALOGVV("%s: Frame %d: Sensor started exposure at %lld",
                    __FUNCTION__, frameNumber, timestamp);
            // Trigger shutter notify to framework
            camera3_notify_msg_t msg;
            msg.type = CAMERA3_MSG_SHUTTER;
            msg.message.shutter.frame_number = frameNumber;
            msg.message.shutter.timestamp = timestamp;
            sendNotify(&msg);
            break;
        }
        default:
            ALOGW("%s: Unexpected sensor event %d at %" PRId64, __FUNCTION__,
                    e, timestamp);
            break;
    }
}

EmulatedFakeCamera3::ReadoutThread::ReadoutThread(EmulatedFakeCamera3 *parent) :
        mParent(parent), mJpegWaiting(false) {
}

EmulatedFakeCamera3::ReadoutThread::~ReadoutThread() {
    for (List<Request>::iterator i = mInFlightQueue.begin();
         i != mInFlightQueue.end(); i++) {
        delete i->buffers;
        delete i->sensorBuffers;
    }
}

void EmulatedFakeCamera3::ReadoutThread::queueCaptureRequest(const Request &r) {
    Mutex::Autolock l(mLock);

    mInFlightQueue.push_back(r);
    mInFlightSignal.signal();
}

bool EmulatedFakeCamera3::ReadoutThread::isIdle() {
    Mutex::Autolock l(mLock);
    return mInFlightQueue.empty() && !mThreadActive;
}

status_t EmulatedFakeCamera3::ReadoutThread::waitForReadout() {
    status_t res;
    Mutex::Autolock l(mLock);
    int loopCount = 0;
    while (mInFlightQueue.size() >= kMaxQueueSize) {
        res = mInFlightSignal.waitRelative(mLock, kWaitPerLoop);
        if (res != OK && res != TIMED_OUT) {
            ALOGE("%s: Error waiting for in-flight queue to shrink",
                    __FUNCTION__);
            return INVALID_OPERATION;
        }
        if (loopCount == kMaxWaitLoops) {
            ALOGE("%s: Timed out waiting for in-flight queue to shrink",
                    __FUNCTION__);
            return TIMED_OUT;
        }
        loopCount++;
    }
    return OK;
}

bool EmulatedFakeCamera3::ReadoutThread::threadLoop() {
    status_t res;

    ALOGVV("%s: ReadoutThread waiting for request", __FUNCTION__);

    // First wait for a request from the in-flight queue

    if (mCurrentRequest.settings.isEmpty()) {
        Mutex::Autolock l(mLock);
        if (mInFlightQueue.empty()) {
            res = mInFlightSignal.waitRelative(mLock, kWaitPerLoop);
            if (res == TIMED_OUT) {
                ALOGVV("%s: ReadoutThread: Timed out waiting for request",
                        __FUNCTION__);
                return true;
            } else if (res != NO_ERROR) {
                ALOGE("%s: Error waiting for capture requests: %d",
                        __FUNCTION__, res);
                return false;
            }
        }
        mCurrentRequest.frameNumber = mInFlightQueue.begin()->frameNumber;
        mCurrentRequest.settings.acquire(mInFlightQueue.begin()->settings);
        mCurrentRequest.buffers = mInFlightQueue.begin()->buffers;
        mCurrentRequest.sensorBuffers = mInFlightQueue.begin()->sensorBuffers;
        mInFlightQueue.erase(mInFlightQueue.begin());
        mInFlightSignal.signal();
        mThreadActive = true;
        ALOGVV("%s: Beginning readout of frame %d", __FUNCTION__,
                mCurrentRequest.frameNumber);
    }

    // Then wait for it to be delivered from the sensor
    ALOGVV("%s: ReadoutThread: Wait for frame to be delivered from sensor",
            __FUNCTION__);

    nsecs_t captureTime;
    bool gotFrame =
            mParent->mSensor->waitForNewFrame(kWaitPerLoop, &captureTime);
    if (!gotFrame) {
        ALOGVV("%s: ReadoutThread: Timed out waiting for sensor frame",
                __FUNCTION__);
        return true;
    }

    ALOGVV("Sensor done with readout for frame %d, captured at %lld ",
            mCurrentRequest.frameNumber, captureTime);

    // Check if we need to JPEG encode a buffer, and send it for async
    // compression if so. Otherwise prepare the buffer for return.
    bool needJpeg = false;
    HalBufferVector::iterator buf = mCurrentRequest.buffers->begin();
    while(buf != mCurrentRequest.buffers->end()) {
        bool goodBuffer = true;
        if ( buf->stream->format ==
                HAL_PIXEL_FORMAT_BLOB && buf->stream->data_space != HAL_DATASPACE_DEPTH) {
            Mutex::Autolock jl(mJpegLock);
            if (mJpegWaiting) {
                // This shouldn't happen, because processCaptureRequest should
                // be stalling until JPEG compressor is free.
                ALOGE("%s: Already processing a JPEG!", __FUNCTION__);
                goodBuffer = false;
            }
            if (goodBuffer) {
                // Compressor takes ownership of sensorBuffers here
                res = mParent->mJpegCompressor->start(mCurrentRequest.sensorBuffers,
                        this, &(mCurrentRequest.settings));
                goodBuffer = (res == OK);
            }
            if (goodBuffer) {
                needJpeg = true;

                mJpegHalBuffer = *buf;
                mJpegFrameNumber = mCurrentRequest.frameNumber;
                mJpegWaiting = true;

                mCurrentRequest.sensorBuffers = NULL;
                buf = mCurrentRequest.buffers->erase(buf);

                continue;
            }
            ALOGE("%s: Error compressing output buffer: %s (%d)",
                        __FUNCTION__, strerror(-res), res);
            // fallthrough for cleanup
        }
        GrallocModule::getInstance().unlock(*(buf->buffer));

        buf->status = goodBuffer ? CAMERA3_BUFFER_STATUS_OK :
                CAMERA3_BUFFER_STATUS_ERROR;
        buf->acquire_fence = -1;
        buf->release_fence = -1;

        ++buf;
    } // end while

    // Construct result for all completed buffers and results

    camera3_capture_result result;

    if (mParent->hasCapability(BACKWARD_COMPATIBLE)) {
        static const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
        mCurrentRequest.settings.update(ANDROID_STATISTICS_SCENE_FLICKER,
                &sceneFlicker, 1);

        static const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE;
        mCurrentRequest.settings.update(ANDROID_FLASH_STATE,
                &flashState, 1);

        nsecs_t rollingShutterSkew = Sensor::kFrameDurationRange[0];
        mCurrentRequest.settings.update(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
                &rollingShutterSkew, 1);

        float focusRange[] = { 1.0f/5.0f, 0 }; // 5 m to infinity in focus
        mCurrentRequest.settings.update(ANDROID_LENS_FOCUS_RANGE,
                focusRange, sizeof(focusRange)/sizeof(float));
    }

    if (mParent->hasCapability(DEPTH_OUTPUT)) {
        camera_metadata_entry_t entry;

        find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_POSE_TRANSLATION, &entry);
        mCurrentRequest.settings.update(ANDROID_LENS_POSE_TRANSLATION,
                entry.data.f, entry.count);

        find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_POSE_ROTATION, &entry);
        mCurrentRequest.settings.update(ANDROID_LENS_POSE_ROTATION,
                entry.data.f, entry.count);

        find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_INTRINSIC_CALIBRATION, &entry);
        mCurrentRequest.settings.update(ANDROID_LENS_INTRINSIC_CALIBRATION,
                entry.data.f, entry.count);

        find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_RADIAL_DISTORTION, &entry);
        mCurrentRequest.settings.update(ANDROID_LENS_RADIAL_DISTORTION,
                entry.data.f, entry.count);
    }

    mCurrentRequest.settings.update(ANDROID_SENSOR_TIMESTAMP,
            &captureTime, 1);


    // JPEGs take a stage longer
    const uint8_t pipelineDepth = needJpeg ? kMaxBufferCount : kMaxBufferCount - 1;
    mCurrentRequest.settings.update(ANDROID_REQUEST_PIPELINE_DEPTH,
            &pipelineDepth, 1);

    result.frame_number = mCurrentRequest.frameNumber;
    result.result = mCurrentRequest.settings.getAndLock();
    result.num_output_buffers = mCurrentRequest.buffers->size();
    result.output_buffers = mCurrentRequest.buffers->array();
    result.input_buffer = nullptr;
    result.partial_result = 1;

    // Go idle if queue is empty, before sending result
    bool signalIdle = false;
    {
        Mutex::Autolock l(mLock);
        if (mInFlightQueue.empty()) {
            mThreadActive = false;
            signalIdle = true;
        }
    }
    if (signalIdle) mParent->signalReadoutIdle();

    // Send it off to the framework
    ALOGVV("%s: ReadoutThread: Send result to framework",
            __FUNCTION__);
    mParent->sendCaptureResult(&result);

    // Clean up
    mCurrentRequest.settings.unlock(result.result);

    delete mCurrentRequest.buffers;
    mCurrentRequest.buffers = NULL;
    if (!needJpeg) {
        delete mCurrentRequest.sensorBuffers;
        mCurrentRequest.sensorBuffers = NULL;
    }
    mCurrentRequest.settings.clear();

    return true;
}

void EmulatedFakeCamera3::ReadoutThread::onJpegDone(
        const StreamBuffer &jpegBuffer, bool success) {
    Mutex::Autolock jl(mJpegLock);

    GrallocModule::getInstance().unlock(*(jpegBuffer.buffer));

    mJpegHalBuffer.status = success ?
            CAMERA3_BUFFER_STATUS_OK : CAMERA3_BUFFER_STATUS_ERROR;
    mJpegHalBuffer.acquire_fence = -1;
    mJpegHalBuffer.release_fence = -1;
    mJpegWaiting = false;

    camera3_capture_result result;

    result.frame_number = mJpegFrameNumber;
    result.result = NULL;
    result.num_output_buffers = 1;
    result.output_buffers = &mJpegHalBuffer;
    result.input_buffer = nullptr;
    result.partial_result = 0;

    if (!success) {
        ALOGE("%s: Compression failure, returning error state buffer to"
                " framework", __FUNCTION__);
    } else {
        ALOGV("%s: Compression complete, returning buffer to framework",
                __FUNCTION__);
    }

    mParent->sendCaptureResult(&result);
}

void EmulatedFakeCamera3::ReadoutThread::onJpegInputDone(
        const StreamBuffer &inputBuffer) {
    // Should never get here, since the input buffer has to be returned
    // by end of processCaptureRequest
    ALOGE("%s: Unexpected input buffer from JPEG compressor!", __FUNCTION__);
}


}; // namespace android