/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <functional>
#include <memory>
#include "base/macros.h"
#include "base/utils.h"
#include "builder.h"
#include "codegen_test_utils.h"
#include "dex/dex_file.h"
#include "dex/dex_instruction.h"
#include "driver/compiler_options.h"
#include "nodes.h"
#include "optimizing_unit_test.h"
#include "register_allocator_linear_scan.h"
#include "utils/arm/assembler_arm_vixl.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/mips/managed_register_mips.h"
#include "utils/mips64/managed_register_mips64.h"
#include "utils/x86/managed_register_x86.h"
#include "gtest/gtest.h"
namespace art {
// Return all combinations of ISA and code generator that are executable on
// hardware, or on simulator, and that we'd like to test.
static ::std::vector<CodegenTargetConfig> GetTargetConfigs() {
::std::vector<CodegenTargetConfig> v;
::std::vector<CodegenTargetConfig> test_config_candidates = {
#ifdef ART_ENABLE_CODEGEN_arm
// TODO: Should't this be `kThumb2` instead of `kArm` here?
CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32),
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64),
#endif
#ifdef ART_ENABLE_CODEGEN_x86
CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86),
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64),
#endif
#ifdef ART_ENABLE_CODEGEN_mips
CodegenTargetConfig(InstructionSet::kMips, create_codegen_mips),
#endif
#ifdef ART_ENABLE_CODEGEN_mips64
CodegenTargetConfig(InstructionSet::kMips64, create_codegen_mips64)
#endif
};
for (const CodegenTargetConfig& test_config : test_config_candidates) {
if (CanExecute(test_config.GetInstructionSet())) {
v.push_back(test_config);
}
}
return v;
}
class CodegenTest : public OptimizingUnitTest {
protected:
void TestCode(const std::vector<uint16_t>& data, bool has_result = false, int32_t expected = 0);
void TestCodeLong(const std::vector<uint16_t>& data, bool has_result, int64_t expected);
void TestComparison(IfCondition condition,
int64_t i,
int64_t j,
DataType::Type type,
const CodegenTargetConfig target_config);
};
void CodegenTest::TestCode(const std::vector<uint16_t>& data, bool has_result, int32_t expected) {
for (const CodegenTargetConfig& target_config : GetTargetConfigs()) {
ResetPoolAndAllocator();
HGraph* graph = CreateCFG(data);
// Remove suspend checks, they cannot be executed in this context.
RemoveSuspendChecks(graph);
RunCode(target_config, graph, [](HGraph*) {}, has_result, expected);
}
}
void CodegenTest::TestCodeLong(const std::vector<uint16_t>& data,
bool has_result, int64_t expected) {
for (const CodegenTargetConfig& target_config : GetTargetConfigs()) {
ResetPoolAndAllocator();
HGraph* graph = CreateCFG(data, DataType::Type::kInt64);
// Remove suspend checks, they cannot be executed in this context.
RemoveSuspendChecks(graph);
RunCode(target_config, graph, [](HGraph*) {}, has_result, expected);
}
}
TEST_F(CodegenTest, ReturnVoid) {
const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID);
TestCode(data);
}
TEST_F(CodegenTest, CFG1) {
const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO | 0x100,
Instruction::RETURN_VOID);
TestCode(data);
}
TEST_F(CodegenTest, CFG2) {
const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO | 0x100,
Instruction::GOTO | 0x100,
Instruction::RETURN_VOID);
TestCode(data);
}
TEST_F(CodegenTest, CFG3) {
const std::vector<uint16_t> data1 = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO | 0x200,
Instruction::RETURN_VOID,
Instruction::GOTO | 0xFF00);
TestCode(data1);
const std::vector<uint16_t> data2 = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO_16, 3,
Instruction::RETURN_VOID,
Instruction::GOTO_16, 0xFFFF);
TestCode(data2);
const std::vector<uint16_t> data3 = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO_32, 4, 0,
Instruction::RETURN_VOID,
Instruction::GOTO_32, 0xFFFF, 0xFFFF);
TestCode(data3);
}
TEST_F(CodegenTest, CFG4) {
const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(
Instruction::RETURN_VOID,
Instruction::GOTO | 0x100,
Instruction::GOTO | 0xFE00);
TestCode(data);
}
TEST_F(CodegenTest, CFG5) {
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::IF_EQ, 3,
Instruction::GOTO | 0x100,
Instruction::RETURN_VOID);
TestCode(data);
}
TEST_F(CodegenTest, IntConstant) {
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::RETURN_VOID);
TestCode(data);
}
TEST_F(CodegenTest, Return1) {
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::RETURN | 0);
TestCode(data, true, 0);
}
TEST_F(CodegenTest, Return2) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 0 | 1 << 8,
Instruction::RETURN | 1 << 8);
TestCode(data, true, 0);
}
TEST_F(CodegenTest, Return3) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 1 << 8 | 1 << 12,
Instruction::RETURN | 1 << 8);
TestCode(data, true, 1);
}
TEST_F(CodegenTest, ReturnIf1) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 1 << 8 | 1 << 12,
Instruction::IF_EQ, 3,
Instruction::RETURN | 0 << 8,
Instruction::RETURN | 1 << 8);
TestCode(data, true, 1);
}
TEST_F(CodegenTest, ReturnIf2) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 1 << 8 | 1 << 12,
Instruction::IF_EQ | 0 << 4 | 1 << 8, 3,
Instruction::RETURN | 0 << 8,
Instruction::RETURN | 1 << 8);
TestCode(data, true, 0);
}
// Exercise bit-wise (one's complement) not-int instruction.
#define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
TEST_F(CodegenTest, TEST_NAME) { \
const int32_t input = INPUT; \
const uint16_t input_lo = Low16Bits(input); \
const uint16_t input_hi = High16Bits(input); \
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( \
Instruction::CONST | 0 << 8, input_lo, input_hi, \
Instruction::NOT_INT | 1 << 8 | 0 << 12 , \
Instruction::RETURN | 1 << 8); \
\
TestCode(data, true, EXPECTED_OUTPUT); \
}
NOT_INT_TEST(ReturnNotIntMinus2, -2, 1)
NOT_INT_TEST(ReturnNotIntMinus1, -1, 0)
NOT_INT_TEST(ReturnNotInt0, 0, -1)
NOT_INT_TEST(ReturnNotInt1, 1, -2)
NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1
NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2
NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1
NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31)
#undef NOT_INT_TEST
// Exercise bit-wise (one's complement) not-long instruction.
#define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
TEST_F(CodegenTest, TEST_NAME) { \
const int64_t input = INPUT; \
const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \
const uint16_t word1 = High16Bits(Low32Bits(input)); \
const uint16_t word2 = Low16Bits(High32Bits(input)); \
const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \
const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( \
Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \
Instruction::NOT_LONG | 2 << 8 | 0 << 12, \
Instruction::RETURN_WIDE | 2 << 8); \
\
TestCodeLong(data, true, EXPECTED_OUTPUT); \
}
NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1))
NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0))
NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1))
NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2))
NOT_LONG_TEST(ReturnNotLongINT32_MIN,
INT64_C(-2147483648),
INT64_C(2147483647)) // (2^31) - 1
NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1,
INT64_C(-2147483647),
INT64_C(2147483646)) // (2^31) - 2
NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1,
INT64_C(2147483646),
INT64_C(-2147483647)) // -(2^31) - 1
NOT_LONG_TEST(ReturnNotLongINT32_MAX,
INT64_C(2147483647),
INT64_C(-2147483648)) // -(2^31)
// Note that the C++ compiler won't accept
// INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid
// int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead.
NOT_LONG_TEST(ReturnNotINT64_MIN,
INT64_C(-9223372036854775807)-1,
INT64_C(9223372036854775807)); // (2^63) - 1
NOT_LONG_TEST(ReturnNotINT64_MINPlus1,
INT64_C(-9223372036854775807),
INT64_C(9223372036854775806)); // (2^63) - 2
NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1,
INT64_C(9223372036854775806),
INT64_C(-9223372036854775807)); // -(2^63) - 1
NOT_LONG_TEST(ReturnNotLongINT64_MAX,
INT64_C(9223372036854775807),
INT64_C(-9223372036854775807)-1); // -(2^63)
#undef NOT_LONG_TEST
TEST_F(CodegenTest, IntToLongOfLongToInt) {
const int64_t input = INT64_C(4294967296); // 2^32
const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW.
const uint16_t word1 = High16Bits(Low32Bits(input));
const uint16_t word2 = Low16Bits(High32Bits(input));
const uint16_t word3 = High16Bits(High32Bits(input)); // MSW.
const std::vector<uint16_t> data = FIVE_REGISTERS_CODE_ITEM(
Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,
Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0,
Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1
Instruction::LONG_TO_INT | 4 << 8 | 0 << 12,
Instruction::INT_TO_LONG | 2 << 8 | 4 << 12,
Instruction::RETURN_WIDE | 2 << 8);
TestCodeLong(data, true, 1);
}
TEST_F(CodegenTest, ReturnAdd1) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 3 << 12 | 0,
Instruction::CONST_4 | 4 << 12 | 1 << 8,
Instruction::ADD_INT, 1 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 7);
}
TEST_F(CodegenTest, ReturnAdd2) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 3 << 12 | 0,
Instruction::CONST_4 | 4 << 12 | 1 << 8,
Instruction::ADD_INT_2ADDR | 1 << 12,
Instruction::RETURN);
TestCode(data, true, 7);
}
TEST_F(CodegenTest, ReturnAdd3) {
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::ADD_INT_LIT8, 3 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 7);
}
TEST_F(CodegenTest, ReturnAdd4) {
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::ADD_INT_LIT16, 3,
Instruction::RETURN);
TestCode(data, true, 7);
}
TEST_F(CodegenTest, ReturnMulInt) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 3 << 12 | 0,
Instruction::CONST_4 | 4 << 12 | 1 << 8,
Instruction::MUL_INT, 1 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 12);
}
TEST_F(CodegenTest, ReturnMulInt2addr) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 3 << 12 | 0,
Instruction::CONST_4 | 4 << 12 | 1 << 8,
Instruction::MUL_INT_2ADDR | 1 << 12,
Instruction::RETURN);
TestCode(data, true, 12);
}
TEST_F(CodegenTest, ReturnMulLong) {
const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM(
Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0,
Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0,
Instruction::MUL_LONG, 2 << 8 | 0,
Instruction::RETURN_WIDE);
TestCodeLong(data, true, 12);
}
TEST_F(CodegenTest, ReturnMulLong2addr) {
const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM(
Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0,
Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0,
Instruction::MUL_LONG_2ADDR | 2 << 12,
Instruction::RETURN_WIDE);
TestCodeLong(data, true, 12);
}
TEST_F(CodegenTest, ReturnMulIntLit8) {
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::MUL_INT_LIT8, 3 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 12);
}
TEST_F(CodegenTest, ReturnMulIntLit16) {
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::MUL_INT_LIT16, 3,
Instruction::RETURN);
TestCode(data, true, 12);
}
TEST_F(CodegenTest, NonMaterializedCondition) {
for (CodegenTargetConfig target_config : GetTargetConfigs()) {
HGraph* graph = CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry);
graph->SetEntryBlock(entry);
entry->AddInstruction(new (GetAllocator()) HGoto());
HBasicBlock* first_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(first_block);
entry->AddSuccessor(first_block);
HIntConstant* constant0 = graph->GetIntConstant(0);
HIntConstant* constant1 = graph->GetIntConstant(1);
HEqual* equal = new (GetAllocator()) HEqual(constant0, constant0);
first_block->AddInstruction(equal);
first_block->AddInstruction(new (GetAllocator()) HIf(equal));
HBasicBlock* then_block = new (GetAllocator()) HBasicBlock(graph);
HBasicBlock* else_block = new (GetAllocator()) HBasicBlock(graph);
HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
graph->SetExitBlock(exit_block);
graph->AddBlock(then_block);
graph->AddBlock(else_block);
graph->AddBlock(exit_block);
first_block->AddSuccessor(then_block);
first_block->AddSuccessor(else_block);
then_block->AddSuccessor(exit_block);
else_block->AddSuccessor(exit_block);
exit_block->AddInstruction(new (GetAllocator()) HExit());
then_block->AddInstruction(new (GetAllocator()) HReturn(constant0));
else_block->AddInstruction(new (GetAllocator()) HReturn(constant1));
ASSERT_FALSE(equal->IsEmittedAtUseSite());
graph->BuildDominatorTree();
PrepareForRegisterAllocation(graph).Run();
ASSERT_TRUE(equal->IsEmittedAtUseSite());
auto hook_before_codegen = [](HGraph* graph_in) {
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator());
block->InsertInstructionBefore(move, block->GetLastInstruction());
};
RunCode(target_config, graph, hook_before_codegen, true, 0);
}
}
TEST_F(CodegenTest, MaterializedCondition1) {
for (CodegenTargetConfig target_config : GetTargetConfigs()) {
// Check that condition are materialized correctly. A materialized condition
// should yield `1` if it evaluated to true, and `0` otherwise.
// We force the materialization of comparisons for different combinations of
// inputs and check the results.
int lhs[] = {1, 2, -1, 2, 0xabc};
int rhs[] = {2, 1, 2, -1, 0xabc};
for (size_t i = 0; i < arraysize(lhs); i++) {
HGraph* graph = CreateGraph();
HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry_block);
graph->SetEntryBlock(entry_block);
entry_block->AddInstruction(new (GetAllocator()) HGoto());
HBasicBlock* code_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(code_block);
HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(exit_block);
exit_block->AddInstruction(new (GetAllocator()) HExit());
entry_block->AddSuccessor(code_block);
code_block->AddSuccessor(exit_block);
graph->SetExitBlock(exit_block);
HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]);
HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]);
HLessThan cmp_lt(cst_lhs, cst_rhs);
code_block->AddInstruction(&cmp_lt);
HReturn ret(&cmp_lt);
code_block->AddInstruction(&ret);
graph->BuildDominatorTree();
auto hook_before_codegen = [](HGraph* graph_in) {
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
HParallelMove* move =
new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator());
block->InsertInstructionBefore(move, block->GetLastInstruction());
};
RunCode(target_config, graph, hook_before_codegen, true, lhs[i] < rhs[i]);
}
}
}
TEST_F(CodegenTest, MaterializedCondition2) {
for (CodegenTargetConfig target_config : GetTargetConfigs()) {
// Check that HIf correctly interprets a materialized condition.
// We force the materialization of comparisons for different combinations of
// inputs. An HIf takes the materialized combination as input and returns a
// value that we verify.
int lhs[] = {1, 2, -1, 2, 0xabc};
int rhs[] = {2, 1, 2, -1, 0xabc};
for (size_t i = 0; i < arraysize(lhs); i++) {
HGraph* graph = CreateGraph();
HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry_block);
graph->SetEntryBlock(entry_block);
entry_block->AddInstruction(new (GetAllocator()) HGoto());
HBasicBlock* if_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(if_block);
HBasicBlock* if_true_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(if_true_block);
HBasicBlock* if_false_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(if_false_block);
HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(exit_block);
exit_block->AddInstruction(new (GetAllocator()) HExit());
graph->SetEntryBlock(entry_block);
entry_block->AddSuccessor(if_block);
if_block->AddSuccessor(if_true_block);
if_block->AddSuccessor(if_false_block);
if_true_block->AddSuccessor(exit_block);
if_false_block->AddSuccessor(exit_block);
graph->SetExitBlock(exit_block);
HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]);
HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]);
HLessThan cmp_lt(cst_lhs, cst_rhs);
if_block->AddInstruction(&cmp_lt);
// We insert a dummy instruction to separate the HIf from the HLessThan
// and force the materialization of the condition.
HMemoryBarrier force_materialization(MemBarrierKind::kAnyAny, 0);
if_block->AddInstruction(&force_materialization);
HIf if_lt(&cmp_lt);
if_block->AddInstruction(&if_lt);
HIntConstant* cst_lt = graph->GetIntConstant(1);
HReturn ret_lt(cst_lt);
if_true_block->AddInstruction(&ret_lt);
HIntConstant* cst_ge = graph->GetIntConstant(0);
HReturn ret_ge(cst_ge);
if_false_block->AddInstruction(&ret_ge);
graph->BuildDominatorTree();
auto hook_before_codegen = [](HGraph* graph_in) {
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
HParallelMove* move =
new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator());
block->InsertInstructionBefore(move, block->GetLastInstruction());
};
RunCode(target_config, graph, hook_before_codegen, true, lhs[i] < rhs[i]);
}
}
}
TEST_F(CodegenTest, ReturnDivIntLit8) {
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::DIV_INT_LIT8, 3 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 1);
}
TEST_F(CodegenTest, ReturnDivInt2Addr) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0,
Instruction::CONST_4 | 2 << 12 | 1 << 8,
Instruction::DIV_INT_2ADDR | 1 << 12,
Instruction::RETURN);
TestCode(data, true, 2);
}
// Helper method.
void CodegenTest::TestComparison(IfCondition condition,
int64_t i,
int64_t j,
DataType::Type type,
const CodegenTargetConfig target_config) {
HGraph* graph = CreateGraph();
HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry_block);
graph->SetEntryBlock(entry_block);
entry_block->AddInstruction(new (GetAllocator()) HGoto());
HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(block);
HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(exit_block);
graph->SetExitBlock(exit_block);
exit_block->AddInstruction(new (GetAllocator()) HExit());
entry_block->AddSuccessor(block);
block->AddSuccessor(exit_block);
HInstruction* op1;
HInstruction* op2;
if (type == DataType::Type::kInt32) {
op1 = graph->GetIntConstant(i);
op2 = graph->GetIntConstant(j);
} else {
DCHECK_EQ(type, DataType::Type::kInt64);
op1 = graph->GetLongConstant(i);
op2 = graph->GetLongConstant(j);
}
HInstruction* comparison = nullptr;
bool expected_result = false;
const uint64_t x = i;
const uint64_t y = j;
switch (condition) {
case kCondEQ:
comparison = new (GetAllocator()) HEqual(op1, op2);
expected_result = (i == j);
break;
case kCondNE:
comparison = new (GetAllocator()) HNotEqual(op1, op2);
expected_result = (i != j);
break;
case kCondLT:
comparison = new (GetAllocator()) HLessThan(op1, op2);
expected_result = (i < j);
break;
case kCondLE:
comparison = new (GetAllocator()) HLessThanOrEqual(op1, op2);
expected_result = (i <= j);
break;
case kCondGT:
comparison = new (GetAllocator()) HGreaterThan(op1, op2);
expected_result = (i > j);
break;
case kCondGE:
comparison = new (GetAllocator()) HGreaterThanOrEqual(op1, op2);
expected_result = (i >= j);
break;
case kCondB:
comparison = new (GetAllocator()) HBelow(op1, op2);
expected_result = (x < y);
break;
case kCondBE:
comparison = new (GetAllocator()) HBelowOrEqual(op1, op2);
expected_result = (x <= y);
break;
case kCondA:
comparison = new (GetAllocator()) HAbove(op1, op2);
expected_result = (x > y);
break;
case kCondAE:
comparison = new (GetAllocator()) HAboveOrEqual(op1, op2);
expected_result = (x >= y);
break;
}
block->AddInstruction(comparison);
block->AddInstruction(new (GetAllocator()) HReturn(comparison));
graph->BuildDominatorTree();
RunCode(target_config, graph, [](HGraph*) {}, true, expected_result);
}
TEST_F(CodegenTest, ComparisonsInt) {
for (CodegenTargetConfig target_config : GetTargetConfigs()) {
for (int64_t i = -1; i <= 1; i++) {
for (int64_t j = -1; j <= 1; j++) {
for (int cond = kCondFirst; cond <= kCondLast; cond++) {
TestComparison(
static_cast<IfCondition>(cond), i, j, DataType::Type::kInt32, target_config);
}
}
}
}
}
TEST_F(CodegenTest, ComparisonsLong) {
for (CodegenTargetConfig target_config : GetTargetConfigs()) {
for (int64_t i = -1; i <= 1; i++) {
for (int64_t j = -1; j <= 1; j++) {
for (int cond = kCondFirst; cond <= kCondLast; cond++) {
TestComparison(
static_cast<IfCondition>(cond), i, j, DataType::Type::kInt64, target_config);
}
}
}
}
}
#ifdef ART_ENABLE_CODEGEN_arm
TEST_F(CodegenTest, ARMVIXLParallelMoveResolver) {
std::unique_ptr<const ArmInstructionSetFeatures> features(
ArmInstructionSetFeatures::FromCppDefines());
HGraph* graph = CreateGraph();
arm::CodeGeneratorARMVIXL codegen(graph, *features.get(), CompilerOptions());
codegen.Initialize();
// This will result in calling EmitSwap -> void ParallelMoveResolverARMVIXL::Exchange(int mem1,
// int mem2) which was faulty (before the fix). So previously GPR and FP scratch registers were
// used as temps; however GPR scratch register is required for big stack offsets which don't fit
// LDR encoding. So the following code is a regression test for that situation.
HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator());
move->AddMove(Location::StackSlot(0), Location::StackSlot(8192), DataType::Type::kInt32, nullptr);
move->AddMove(Location::StackSlot(8192), Location::StackSlot(0), DataType::Type::kInt32, nullptr);
codegen.GetMoveResolver()->EmitNativeCode(move);
InternalCodeAllocator code_allocator;
codegen.Finalize(&code_allocator);
}
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
// Regression test for b/34760542.
TEST_F(CodegenTest, ARM64ParallelMoveResolverB34760542) {
std::unique_ptr<const Arm64InstructionSetFeatures> features(
Arm64InstructionSetFeatures::FromCppDefines());
HGraph* graph = CreateGraph();
arm64::CodeGeneratorARM64 codegen(graph, *features.get(), CompilerOptions());
codegen.Initialize();
// The following ParallelMove used to fail this assertion:
//
// Assertion failed (!available->IsEmpty())
//
// in vixl::aarch64::UseScratchRegisterScope::AcquireNextAvailable,
// because of the following situation:
//
// 1. a temp register (IP0) is allocated as a scratch register by
// the parallel move resolver to solve a cycle (swap):
//
// [ source=DS0 destination=DS257 type=PrimDouble instruction=null ]
// [ source=DS257 destination=DS0 type=PrimDouble instruction=null ]
//
// 2. within CodeGeneratorARM64::MoveLocation, another temp
// register (IP1) is allocated to generate the swap between two
// double stack slots;
//
// 3. VIXL requires a third temp register to emit the `Ldr` or
// `Str` operation from CodeGeneratorARM64::MoveLocation (as
// one of the stack slots' offsets cannot be encoded as an
// immediate), but the pool of (core) temp registers is now
// empty.
//
// The solution used so far is to use a floating-point temp register
// (D31) in step #2, so that IP1 is available for step #3.
HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator());
move->AddMove(Location::DoubleStackSlot(0),
Location::DoubleStackSlot(257),
DataType::Type::kFloat64,
nullptr);
move->AddMove(Location::DoubleStackSlot(257),
Location::DoubleStackSlot(0),
DataType::Type::kFloat64,
nullptr);
codegen.GetMoveResolver()->EmitNativeCode(move);
InternalCodeAllocator code_allocator;
codegen.Finalize(&code_allocator);
}
// Check that ParallelMoveResolver works fine for ARM64 for both cases when SIMD is on and off.
TEST_F(CodegenTest, ARM64ParallelMoveResolverSIMD) {
std::unique_ptr<const Arm64InstructionSetFeatures> features(
Arm64InstructionSetFeatures::FromCppDefines());
HGraph* graph = CreateGraph();
arm64::CodeGeneratorARM64 codegen(graph, *features.get(), CompilerOptions());
codegen.Initialize();
graph->SetHasSIMD(true);
for (int i = 0; i < 2; i++) {
HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator());
move->AddMove(Location::SIMDStackSlot(0),
Location::SIMDStackSlot(257),
DataType::Type::kFloat64,
nullptr);
move->AddMove(Location::SIMDStackSlot(257),
Location::SIMDStackSlot(0),
DataType::Type::kFloat64,
nullptr);
move->AddMove(Location::FpuRegisterLocation(0),
Location::FpuRegisterLocation(1),
DataType::Type::kFloat64,
nullptr);
move->AddMove(Location::FpuRegisterLocation(1),
Location::FpuRegisterLocation(0),
DataType::Type::kFloat64,
nullptr);
codegen.GetMoveResolver()->EmitNativeCode(move);
graph->SetHasSIMD(false);
}
InternalCodeAllocator code_allocator;
codegen.Finalize(&code_allocator);
}
#endif
#ifdef ART_ENABLE_CODEGEN_mips
TEST_F(CodegenTest, MipsClobberRA) {
std::unique_ptr<const MipsInstructionSetFeatures> features_mips(
MipsInstructionSetFeatures::FromCppDefines());
if (!CanExecute(InstructionSet::kMips) || features_mips->IsR6()) {
// HMipsComputeBaseMethodAddress and the NAL instruction behind it
// should only be generated on non-R6.
return;
}
HGraph* graph = CreateGraph();
HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry_block);
graph->SetEntryBlock(entry_block);
entry_block->AddInstruction(new (GetAllocator()) HGoto());
HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(block);
HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(exit_block);
graph->SetExitBlock(exit_block);
exit_block->AddInstruction(new (GetAllocator()) HExit());
entry_block->AddSuccessor(block);
block->AddSuccessor(exit_block);
// To simplify matters, don't create PC-relative HLoadClass or HLoadString.
// Instead, generate HMipsComputeBaseMethodAddress directly.
HMipsComputeBaseMethodAddress* base = new (GetAllocator()) HMipsComputeBaseMethodAddress();
block->AddInstruction(base);
// HMipsComputeBaseMethodAddress is defined as int, so just make the
// compiled method return it.
block->AddInstruction(new (GetAllocator()) HReturn(base));
graph->BuildDominatorTree();
mips::CodeGeneratorMIPS codegenMIPS(graph, *features_mips.get(), CompilerOptions());
// Since there isn't HLoadClass or HLoadString, we need to manually indicate
// that RA is clobbered and the method entry code should generate a stack frame
// and preserve RA in it. And this is what we're testing here.
codegenMIPS.ClobberRA();
// Without ClobberRA() the code would be:
// nal # Sets RA to point to the jr instruction below
// move v0, ra # and the CPU falls into an infinite loop.
// jr ra
// nop
// The expected code is:
// addiu sp, sp, -16
// sw ra, 12(sp)
// sw a0, 0(sp)
// nal # Sets RA to point to the lw instruction below.
// move v0, ra
// lw ra, 12(sp)
// jr ra
// addiu sp, sp, 16
RunCode(&codegenMIPS, graph, [](HGraph*) {}, false, 0);
}
#endif
} // namespace art