/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "DnsTlsSocket" //#define LOG_NDEBUG 0 #include "dns/DnsTlsSocket.h" #include <algorithm> #include <arpa/inet.h> #include <arpa/nameser.h> #include <errno.h> #include <linux/tcp.h> #include <openssl/err.h> #include <sys/poll.h> #include "dns/DnsTlsSessionCache.h" #include "dns/IDnsTlsSocketObserver.h" #include "log/log.h" #include "netdutils/SocketOption.h" #include "Fwmark.h" #undef ADD // already defined in nameser.h #include "NetdConstants.h" #include "Permission.h" namespace android { using netdutils::enableSockopt; using netdutils::enableTcpKeepAlives; using netdutils::isOk; using netdutils::Status; namespace net { namespace { constexpr const char kCaCertDir[] = "/system/etc/security/cacerts"; int waitForReading(int fd) { struct pollfd fds = { .fd = fd, .events = POLLIN }; const int ret = TEMP_FAILURE_RETRY(poll(&fds, 1, -1)); return ret; } int waitForWriting(int fd) { struct pollfd fds = { .fd = fd, .events = POLLOUT }; const int ret = TEMP_FAILURE_RETRY(poll(&fds, 1, -1)); return ret; } } // namespace Status DnsTlsSocket::tcpConnect() { ALOGV("%u connecting TCP socket", mMark); int type = SOCK_NONBLOCK | SOCK_CLOEXEC; switch (mServer.protocol) { case IPPROTO_TCP: type |= SOCK_STREAM; break; default: return Status(EPROTONOSUPPORT); } mSslFd.reset(socket(mServer.ss.ss_family, type, mServer.protocol)); if (mSslFd.get() == -1) { ALOGE("Failed to create socket"); return Status(errno); } const socklen_t len = sizeof(mMark); if (setsockopt(mSslFd.get(), SOL_SOCKET, SO_MARK, &mMark, len) == -1) { ALOGE("Failed to set socket mark"); mSslFd.reset(); return Status(errno); } const Status tfo = enableSockopt(mSslFd.get(), SOL_TCP, TCP_FASTOPEN_CONNECT); if (!isOk(tfo) && tfo.code() != ENOPROTOOPT) { ALOGI("Failed to enable TFO: %s", tfo.msg().c_str()); } // Send 5 keepalives, 3 seconds apart, after 15 seconds of inactivity. enableTcpKeepAlives(mSslFd.get(), 15U, 5U, 3U); if (connect(mSslFd.get(), reinterpret_cast<const struct sockaddr *>(&mServer.ss), sizeof(mServer.ss)) != 0 && errno != EINPROGRESS) { ALOGV("Socket failed to connect"); mSslFd.reset(); return Status(errno); } return netdutils::status::ok; } bool getSPKIDigest(const X509* cert, std::vector<uint8_t>* out) { int spki_len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL); unsigned char spki[spki_len]; unsigned char* temp = spki; if (spki_len != i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &temp)) { ALOGW("SPKI length mismatch"); return false; } out->resize(SHA256_SIZE); unsigned int digest_len = 0; int ret = EVP_Digest(spki, spki_len, out->data(), &digest_len, EVP_sha256(), NULL); if (ret != 1) { ALOGW("Server cert digest extraction failed"); return false; } if (digest_len != out->size()) { ALOGW("Wrong digest length: %d", digest_len); return false; } return true; } bool DnsTlsSocket::initialize() { // This method should only be called once, at the beginning, so locking should be // unnecessary. This lock only serves to help catch bugs in code that calls this method. std::lock_guard<std::mutex> guard(mLock); if (mSslCtx) { // This is a bug in the caller. return false; } mSslCtx.reset(SSL_CTX_new(TLS_method())); if (!mSslCtx) { return false; } // Load system CA certs for hostname verification. // // For discussion of alternative, sustainable approaches see b/71909242. if (SSL_CTX_load_verify_locations(mSslCtx.get(), nullptr, kCaCertDir) != 1) { ALOGE("Failed to load CA cert dir: %s", kCaCertDir); return false; } // Enable TLS false start SSL_CTX_set_false_start_allowed_without_alpn(mSslCtx.get(), 1); SSL_CTX_set_mode(mSslCtx.get(), SSL_MODE_ENABLE_FALSE_START); // Enable session cache mCache->prepareSslContext(mSslCtx.get()); // Connect Status status = tcpConnect(); if (!status.ok()) { return false; } mSsl = sslConnect(mSslFd.get()); if (!mSsl) { return false; } int sv[2]; if (socketpair(AF_LOCAL, SOCK_SEQPACKET, 0, sv)) { return false; } // The two sockets are perfectly symmetrical, so the choice of which one is // "in" and which one is "out" is arbitrary. mIpcInFd.reset(sv[0]); mIpcOutFd.reset(sv[1]); // Start the I/O loop. mLoopThread.reset(new std::thread(&DnsTlsSocket::loop, this)); return true; } bssl::UniquePtr<SSL> DnsTlsSocket::sslConnect(int fd) { if (!mSslCtx) { ALOGE("Internal error: context is null in sslConnect"); return nullptr; } if (!SSL_CTX_set_min_proto_version(mSslCtx.get(), TLS1_2_VERSION)) { ALOGE("Failed to set minimum TLS version"); return nullptr; } bssl::UniquePtr<SSL> ssl(SSL_new(mSslCtx.get())); // This file descriptor is owned by mSslFd, so don't let libssl close it. bssl::UniquePtr<BIO> bio(BIO_new_socket(fd, BIO_NOCLOSE)); SSL_set_bio(ssl.get(), bio.get(), bio.get()); bio.release(); if (!mCache->prepareSsl(ssl.get())) { return nullptr; } if (!mServer.name.empty()) { if (SSL_set_tlsext_host_name(ssl.get(), mServer.name.c_str()) != 1) { ALOGE("Failed to set SNI to %s", mServer.name.c_str()); return nullptr; } X509_VERIFY_PARAM* param = SSL_get0_param(ssl.get()); if (X509_VERIFY_PARAM_set1_host(param, mServer.name.data(), mServer.name.size()) != 1) { ALOGE("Failed to set verify host param to %s", mServer.name.c_str()); return nullptr; } // This will cause the handshake to fail if certificate verification fails. SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, nullptr); } bssl::UniquePtr<SSL_SESSION> session = mCache->getSession(); if (session) { ALOGV("Setting session"); SSL_set_session(ssl.get(), session.get()); } else { ALOGV("No session available"); } for (;;) { ALOGV("%u Calling SSL_connect", mMark); int ret = SSL_connect(ssl.get()); ALOGV("%u SSL_connect returned %d", mMark, ret); if (ret == 1) break; // SSL handshake complete; const int ssl_err = SSL_get_error(ssl.get(), ret); switch (ssl_err) { case SSL_ERROR_WANT_READ: if (waitForReading(fd) != 1) { ALOGW("SSL_connect read error: %d", errno); return nullptr; } break; case SSL_ERROR_WANT_WRITE: if (waitForWriting(fd) != 1) { ALOGW("SSL_connect write error"); return nullptr; } break; default: ALOGW("SSL_connect error %d, errno=%d", ssl_err, errno); return nullptr; } } // TODO: Call SSL_shutdown before discarding the session if validation fails. if (!mServer.fingerprints.empty()) { ALOGV("Checking DNS over TLS fingerprint"); // We only care that the chain is internally self-consistent, not that // it chains to a trusted root, so we can ignore some kinds of errors. // TODO: Add a CA root verification mode that respects these errors. int verify_result = SSL_get_verify_result(ssl.get()); switch (verify_result) { case X509_V_OK: case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: case X509_V_ERR_CERT_UNTRUSTED: break; default: ALOGW("Invalid certificate chain, error %d", verify_result); return nullptr; } STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl.get()); if (!chain) { ALOGW("Server has null certificate"); return nullptr; } // Chain and its contents are owned by ssl, so we don't need to free explicitly. bool matched = false; for (size_t i = 0; i < sk_X509_num(chain); ++i) { // This appears to be O(N^2), but there doesn't seem to be a straightforward // way to walk a STACK_OF nondestructively in linear time. X509* cert = sk_X509_value(chain, i); std::vector<uint8_t> digest; if (!getSPKIDigest(cert, &digest)) { ALOGE("Digest computation failed"); return nullptr; } if (mServer.fingerprints.count(digest) > 0) { matched = true; break; } } if (!matched) { ALOGW("No matching fingerprint"); return nullptr; } ALOGV("DNS over TLS fingerprint is correct"); } ALOGV("%u handshake complete", mMark); return ssl; } void DnsTlsSocket::sslDisconnect() { if (mSsl) { SSL_shutdown(mSsl.get()); mSsl.reset(); } mSslFd.reset(); } bool DnsTlsSocket::sslWrite(const Slice buffer) { ALOGV("%u Writing %zu bytes", mMark, buffer.size()); for (;;) { int ret = SSL_write(mSsl.get(), buffer.base(), buffer.size()); if (ret == int(buffer.size())) break; // SSL write complete; if (ret < 1) { const int ssl_err = SSL_get_error(mSsl.get(), ret); switch (ssl_err) { case SSL_ERROR_WANT_WRITE: if (waitForWriting(mSslFd.get()) != 1) { ALOGV("SSL_write error"); return false; } continue; case 0: break; // SSL write complete; default: ALOGV("SSL_write error %d", ssl_err); return false; } } } ALOGV("%u Wrote %zu bytes", mMark, buffer.size()); return true; } void DnsTlsSocket::loop() { std::lock_guard<std::mutex> guard(mLock); // Buffer at most one query. Query q; const int timeout_msecs = DnsTlsSocket::kIdleTimeout.count() * 1000; while (true) { // poll() ignores negative fds struct pollfd fds[2] = { { .fd = -1 }, { .fd = -1 } }; enum { SSLFD = 0, IPCFD = 1 }; // Always listen for a response from server. fds[SSLFD].fd = mSslFd.get(); fds[SSLFD].events = POLLIN; // If we have a pending query, also wait for space // to write it, otherwise listen for a new query. if (!q.query.empty()) { fds[SSLFD].events |= POLLOUT; } else { fds[IPCFD].fd = mIpcOutFd.get(); fds[IPCFD].events = POLLIN; } const int s = TEMP_FAILURE_RETRY(poll(fds, ARRAY_SIZE(fds), timeout_msecs)); if (s == 0) { ALOGV("Idle timeout"); break; } if (s < 0) { ALOGV("Poll failed: %d", errno); break; } if (fds[SSLFD].revents & (POLLIN | POLLERR)) { if (!readResponse()) { ALOGV("SSL remote close or read error."); break; } } if (fds[IPCFD].revents & (POLLIN | POLLERR)) { int res = read(mIpcOutFd.get(), &q, sizeof(q)); if (res < 0) { ALOGW("Error during IPC read"); break; } else if (res == 0) { ALOGV("IPC channel closed; disconnecting"); break; } else if (res != sizeof(q)) { ALOGE("Struct size mismatch: %d != %zu", res, sizeof(q)); break; } } else if (fds[SSLFD].revents & POLLOUT) { // query cannot be null here. if (!sendQuery(q)) { break; } q = Query(); // Reset q to empty } } ALOGV("Closing IPC read FD"); mIpcOutFd.reset(); ALOGV("Disconnecting"); sslDisconnect(); ALOGV("Calling onClosed"); mObserver->onClosed(); ALOGV("Ending loop"); } DnsTlsSocket::~DnsTlsSocket() { ALOGV("Destructor"); // This will trigger an orderly shutdown in loop(). mIpcInFd.reset(); { // Wait for the orderly shutdown to complete. std::lock_guard<std::mutex> guard(mLock); if (mLoopThread && std::this_thread::get_id() == mLoopThread->get_id()) { ALOGE("Violation of re-entrance precondition"); return; } } if (mLoopThread) { ALOGV("Waiting for loop thread to terminate"); mLoopThread->join(); mLoopThread.reset(); } ALOGV("Destructor completed"); } bool DnsTlsSocket::query(uint16_t id, const Slice query) { const Query q = { .id = id, .query = query }; if (!mIpcInFd) { return false; } int written = write(mIpcInFd.get(), &q, sizeof(q)); return written == sizeof(q); } // Read exactly len bytes into buffer or fail with an SSL error code int DnsTlsSocket::sslRead(const Slice buffer, bool wait) { size_t remaining = buffer.size(); while (remaining > 0) { int ret = SSL_read(mSsl.get(), buffer.limit() - remaining, remaining); if (ret == 0) { ALOGW_IF(remaining < buffer.size(), "SSL closed with %zu of %zu bytes remaining", remaining, buffer.size()); return SSL_ERROR_ZERO_RETURN; } if (ret < 0) { const int ssl_err = SSL_get_error(mSsl.get(), ret); if (wait && ssl_err == SSL_ERROR_WANT_READ) { if (waitForReading(mSslFd.get()) != 1) { ALOGV("Poll failed in sslRead: %d", errno); return SSL_ERROR_SYSCALL; } continue; } else { ALOGV("SSL_read error %d", ssl_err); return ssl_err; } } remaining -= ret; wait = true; // Once a read is started, try to finish. } return SSL_ERROR_NONE; } bool DnsTlsSocket::sendQuery(const Query& q) { ALOGV("sending query"); // Compose the entire message in a single buffer, so that it can be // sent as a single TLS record. std::vector<uint8_t> buf(q.query.size() + 4); // Write 2-byte length uint16_t len = q.query.size() + 2; // + 2 for the ID. buf[0] = len >> 8; buf[1] = len; // Write 2-byte ID buf[2] = q.id >> 8; buf[3] = q.id; // Copy body std::memcpy(buf.data() + 4, q.query.base(), q.query.size()); if (!sslWrite(netdutils::makeSlice(buf))) { return false; } ALOGV("%u SSL_write complete", mMark); return true; } bool DnsTlsSocket::readResponse() { ALOGV("reading response"); uint8_t responseHeader[2]; int err = sslRead(Slice(responseHeader, 2), false); if (err == SSL_ERROR_WANT_READ) { ALOGV("Ignoring spurious wakeup from server"); return true; } if (err != SSL_ERROR_NONE) { return false; } // Truncate responses larger than MAX_SIZE. This is safe because a DNS packet is // always invalid when truncated, so the response will be treated as an error. constexpr uint16_t MAX_SIZE = 8192; const uint16_t responseSize = (responseHeader[0] << 8) | responseHeader[1]; ALOGV("%u Expecting response of size %i", mMark, responseSize); std::vector<uint8_t> response(std::min(responseSize, MAX_SIZE)); if (sslRead(netdutils::makeSlice(response), true) != SSL_ERROR_NONE) { ALOGV("%u Failed to read %zu bytes", mMark, response.size()); return false; } uint16_t remainingBytes = responseSize - response.size(); while (remainingBytes > 0) { constexpr uint16_t CHUNK_SIZE = 2048; std::vector<uint8_t> discard(std::min(remainingBytes, CHUNK_SIZE)); if (sslRead(netdutils::makeSlice(discard), true) != SSL_ERROR_NONE) { ALOGV("%u Failed to discard %zu bytes", mMark, discard.size()); return false; } remainingBytes -= discard.size(); } ALOGV("%u SSL_read complete", mMark); mObserver->onResponse(std::move(response)); return true; } } // end of namespace net } // end of namespace android