/* ** Copyright 2011, The Android Open-Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "echo_reference" #include <errno.h> #include <inttypes.h> #include <pthread.h> #include <stdlib.h> #include <log/log.h> #include <system/audio.h> #include <audio_utils/resampler.h> #include <audio_utils/echo_reference.h> // echo reference state: bit field indicating if read, write or both are active. enum state { ECHOREF_IDLE = 0x00, // idle ECHOREF_READING = 0x01, // reading is active ECHOREF_WRITING = 0x02 // writing is active }; struct echo_reference { struct echo_reference_itfe itfe; int status; // init status uint32_t state; // active state: reading, writing or both audio_format_t rd_format; // read sample format uint32_t rd_channel_count; // read number of channels uint32_t rd_sampling_rate; // read sampling rate in Hz size_t rd_frame_size; // read frame size (bytes per sample) audio_format_t wr_format; // write sample format uint32_t wr_channel_count; // write number of channels uint32_t wr_sampling_rate; // write sampling rate in Hz size_t wr_frame_size; // write frame size (bytes per sample) void *buffer; // main buffer size_t buf_size; // main buffer size in frames size_t frames_in; // number of frames in main buffer void *wr_buf; // buffer for input conversions size_t wr_buf_size; // size of conversion buffer in frames size_t wr_frames_in; // number of frames in conversion buffer size_t wr_curr_frame_size; // number of frames given to current write() function void *wr_src_buf; // resampler input buf (either wr_buf or buffer used by write()) struct timespec wr_render_time; // latest render time indicated by write() // default ALSA gettimeofday() format int32_t playback_delay; // playback buffer delay indicated by last write() int16_t prev_delta_sign; // sign of previous delay difference: // 1: positive, -1: negative, 0: unknown uint16_t delta_count; // number of consecutive delay differences with same sign pthread_mutex_t lock; // mutex protecting read/write concurrency pthread_cond_t cond; // condition signaled when data is ready to read struct resampler_itfe *resampler; // input resampler struct resampler_buffer_provider provider; // resampler buffer provider }; int echo_reference_get_next_buffer(struct resampler_buffer_provider *buffer_provider, struct resampler_buffer* buffer) { struct echo_reference *er; if (buffer_provider == NULL) { return -EINVAL; } er = (struct echo_reference *)((char *)buffer_provider - offsetof(struct echo_reference, provider)); if (er->wr_src_buf == NULL || er->wr_frames_in == 0) { buffer->raw = NULL; buffer->frame_count = 0; return -ENODATA; } buffer->frame_count = (buffer->frame_count > er->wr_frames_in) ? er->wr_frames_in : buffer->frame_count; // this is er->rd_channel_count here as we resample after stereo to mono conversion if any buffer->i16 = (int16_t *)er->wr_src_buf + (er->wr_curr_frame_size - er->wr_frames_in) * er->rd_channel_count; return 0; } void echo_reference_release_buffer(struct resampler_buffer_provider *buffer_provider, struct resampler_buffer* buffer) { struct echo_reference *er; if (buffer_provider == NULL) { return; } er = (struct echo_reference *)((char *)buffer_provider - offsetof(struct echo_reference, provider)); er->wr_frames_in -= buffer->frame_count; } static void echo_reference_reset_l(struct echo_reference *er) { ALOGV("echo_reference_reset_l()"); free(er->buffer); er->buffer = NULL; er->buf_size = 0; er->frames_in = 0; free(er->wr_buf); er->wr_buf = NULL; er->wr_buf_size = 0; er->wr_render_time.tv_sec = 0; er->wr_render_time.tv_nsec = 0; er->delta_count = 0; er->prev_delta_sign = 0; } /* additional space in resampler buffer allowing for extra samples to be returned * by speex resampler when sample rates ratio is not an integer. */ #define RESAMPLER_HEADROOM_SAMPLES 10 static int echo_reference_write(struct echo_reference_itfe *echo_reference, struct echo_reference_buffer *buffer) { struct echo_reference *er = (struct echo_reference *)echo_reference; int status = 0; if (er == NULL) { return -EINVAL; } pthread_mutex_lock(&er->lock); if (buffer == NULL) { ALOGV("echo_reference_write() stop write"); er->state &= ~ECHOREF_WRITING; echo_reference_reset_l(er); goto exit; } ALOGV("echo_reference_write() START trying to write %zu frames", buffer->frame_count); ALOGV("echo_reference_write() playbackTimestamp:[%d].[%d], er->playback_delay:[%" PRId32 "]", (int)buffer->time_stamp.tv_sec, (int)buffer->time_stamp.tv_nsec, er->playback_delay); //ALOGV("echo_reference_write() %d frames", buffer->frame_count); // discard writes until a valid time stamp is provided. if ((buffer->time_stamp.tv_sec == 0) && (buffer->time_stamp.tv_nsec == 0) && (er->wr_render_time.tv_sec == 0) && (er->wr_render_time.tv_nsec == 0)) { goto exit; } if ((er->state & ECHOREF_WRITING) == 0) { ALOGV("echo_reference_write() start write"); if (er->resampler != NULL) { er->resampler->reset(er->resampler); } er->state |= ECHOREF_WRITING; } if ((er->state & ECHOREF_READING) == 0) { goto exit; } er->wr_render_time.tv_sec = buffer->time_stamp.tv_sec; er->wr_render_time.tv_nsec = buffer->time_stamp.tv_nsec; er->playback_delay = buffer->delay_ns; // this will be used in the get_next_buffer, to support variable input buffer sizes er->wr_curr_frame_size = buffer->frame_count; void *srcBuf; size_t inFrames; // do stereo to mono and down sampling if necessary if (er->rd_channel_count != er->wr_channel_count || er->rd_sampling_rate != er->wr_sampling_rate) { size_t wrBufSize = buffer->frame_count; inFrames = buffer->frame_count; if (er->rd_sampling_rate != er->wr_sampling_rate) { inFrames = (buffer->frame_count * er->rd_sampling_rate) / er->wr_sampling_rate + RESAMPLER_HEADROOM_SAMPLES; // wr_buf is not only used as resampler output but also for stereo to mono conversion // output so buffer size is driven by both write and read sample rates if (inFrames > wrBufSize) { wrBufSize = inFrames; } } if (er->wr_buf_size < wrBufSize) { ALOGV("echo_reference_write() increasing write buffer size from %zu to %zu", er->wr_buf_size, wrBufSize); er->wr_buf_size = wrBufSize; er->wr_buf = realloc(er->wr_buf, er->wr_buf_size * er->rd_frame_size); } if (er->rd_channel_count != er->wr_channel_count) { // must be stereo to mono int16_t *src16 = (int16_t *)buffer->raw; int16_t *dst16 = (int16_t *)er->wr_buf; size_t frames = buffer->frame_count; while (frames--) { *dst16++ = (int16_t)(((int32_t)*src16 + (int32_t)*(src16 + 1)) >> 1); src16 += 2; } } if (er->wr_sampling_rate != er->rd_sampling_rate) { if (er->resampler == NULL) { int rc; ALOGV("echo_reference_write() new ReSampler(%d, %d)", er->wr_sampling_rate, er->rd_sampling_rate); er->provider.get_next_buffer = echo_reference_get_next_buffer; er->provider.release_buffer = echo_reference_release_buffer; rc = create_resampler(er->wr_sampling_rate, er->rd_sampling_rate, er->rd_channel_count, RESAMPLER_QUALITY_DEFAULT, &er->provider, &er->resampler); if (rc != 0) { er->resampler = NULL; ALOGV("echo_reference_write() failure to create resampler %d", rc); status = -ENODEV; goto exit; } } // er->wr_src_buf and er->wr_frames_in are used by getNexBuffer() called by the // resampler to get new frames if (er->rd_channel_count != er->wr_channel_count) { er->wr_src_buf = er->wr_buf; } else { er->wr_src_buf = buffer->raw; } er->wr_frames_in = buffer->frame_count; // inFrames is always more than we need here to get frames remaining from previous runs // inFrames is updated by resample() with the number of frames produced ALOGV("echo_reference_write() ReSampling(%d, %d)", er->wr_sampling_rate, er->rd_sampling_rate); er->resampler->resample_from_provider(er->resampler, (int16_t *)er->wr_buf, &inFrames); ALOGV_IF(er->wr_frames_in != 0, "echo_reference_write() er->wr_frames_in not 0 (%d) after resampler", er->wr_frames_in); } srcBuf = er->wr_buf; } else { inFrames = buffer->frame_count; srcBuf = buffer->raw; } if (er->frames_in + inFrames > er->buf_size) { ALOGV("echo_reference_write() increasing buffer size from %zu to %zu", er->buf_size, er->frames_in + inFrames); er->buf_size = er->frames_in + inFrames; er->buffer = realloc(er->buffer, er->buf_size * er->rd_frame_size); } memcpy((char *)er->buffer + er->frames_in * er->rd_frame_size, srcBuf, inFrames * er->rd_frame_size); er->frames_in += inFrames; ALOGV("echo_reference_write() frames written:[%zu], frames total:[%zu] buffer size:[%zu]\n" " er->wr_render_time:[%d].[%d], er->playback_delay:[%" PRId32 "]", inFrames, er->frames_in, er->buf_size, (int)er->wr_render_time.tv_sec, (int)er->wr_render_time.tv_nsec, er->playback_delay); pthread_cond_signal(&er->cond); exit: pthread_mutex_unlock(&er->lock); ALOGV("echo_reference_write() END"); return status; } // delay jump threshold to update ref buffer: 6 samples at 8kHz in nsecs #define MIN_DELAY_DELTA_NS (375000*2) // number of consecutive delta with same sign between expected and actual delay before adjusting // the buffer #define MIN_DELTA_NUM 4 static int echo_reference_read(struct echo_reference_itfe *echo_reference, struct echo_reference_buffer *buffer) { struct echo_reference *er = (struct echo_reference *)echo_reference; if (er == NULL) { return -EINVAL; } pthread_mutex_lock(&er->lock); if (buffer == NULL) { ALOGV("echo_reference_read() stop read"); er->state &= ~ECHOREF_READING; goto exit; } ALOGV("echo_reference_read() START, delayCapture:[%" PRId32 "], " "er->frames_in:[%zu],buffer->frame_count:[%zu]", buffer->delay_ns, er->frames_in, buffer->frame_count); if ((er->state & ECHOREF_READING) == 0) { ALOGV("echo_reference_read() start read"); echo_reference_reset_l(er); er->state |= ECHOREF_READING; } if ((er->state & ECHOREF_WRITING) == 0) { memset(buffer->raw, 0, er->rd_frame_size * buffer->frame_count); buffer->delay_ns = 0; goto exit; } // ALOGV("echo_reference_read() %d frames", buffer->frame_count); // allow some time for new frames to arrive if not enough frames are ready for read if (er->frames_in < buffer->frame_count) { uint32_t timeoutMs = (uint32_t)((1000 * buffer->frame_count) / er->rd_sampling_rate / 2); struct timespec ts = {0, 0}; clock_gettime(CLOCK_REALTIME, &ts); ts.tv_sec += timeoutMs/1000; ts.tv_nsec += (timeoutMs%1000) * 1000000; if (ts.tv_nsec >= 1000000000) { ts.tv_nsec -= 1000000000; ts.tv_sec += 1; } pthread_cond_timedwait(&er->cond, &er->lock, &ts); ALOGV_IF((er->frames_in < buffer->frame_count), "echo_reference_read() waited %d ms but still not enough frames"\ " er->frames_in: %d, buffer->frame_count = %d", timeoutMs, er->frames_in, buffer->frame_count); } int64_t timeDiff; struct timespec tmp; if ((er->wr_render_time.tv_sec == 0 && er->wr_render_time.tv_nsec == 0) || (buffer->time_stamp.tv_sec == 0 && buffer->time_stamp.tv_nsec == 0)) { ALOGV("echo_reference_read(): NEW:timestamp is zero---------setting timeDiff = 0, "\ "not updating delay this time"); timeDiff = 0; } else { if (buffer->time_stamp.tv_nsec < er->wr_render_time.tv_nsec) { tmp.tv_sec = buffer->time_stamp.tv_sec - er->wr_render_time.tv_sec - 1; tmp.tv_nsec = 1000000000 + buffer->time_stamp.tv_nsec - er->wr_render_time.tv_nsec; } else { tmp.tv_sec = buffer->time_stamp.tv_sec - er->wr_render_time.tv_sec; tmp.tv_nsec = buffer->time_stamp.tv_nsec - er->wr_render_time.tv_nsec; } timeDiff = (((int64_t)tmp.tv_sec * 1000000000 + tmp.tv_nsec)); int64_t expectedDelayNs = er->playback_delay + buffer->delay_ns - timeDiff; if (er->resampler != NULL) { // Resampler already compensates part of the delay int32_t rsmp_delay = er->resampler->delay_ns(er->resampler); expectedDelayNs -= rsmp_delay; } ALOGV("echo_reference_read(): expectedDelayNs[%" PRId64 "] = " "er->playback_delay[%" PRId32 "] + delayCapture[%" PRId32 "] - timeDiff[%" PRId64 "]", expectedDelayNs, er->playback_delay, buffer->delay_ns, timeDiff); if (expectedDelayNs > 0) { int64_t delayNs = ((int64_t)er->frames_in * 1000000000) / er->rd_sampling_rate; int64_t deltaNs = delayNs - expectedDelayNs; ALOGV("echo_reference_read(): EchoPathDelayDeviation between reference and DMA [%" PRId64 "]", deltaNs); if (llabs(deltaNs) >= MIN_DELAY_DELTA_NS) { // smooth the variation and update the reference buffer only // if a deviation in the same direction is observed for more than MIN_DELTA_NUM // consecutive reads. int16_t delay_sign = (deltaNs >= 0) ? 1 : -1; if (delay_sign == er->prev_delta_sign) { er->delta_count++; } else { er->delta_count = 1; } er->prev_delta_sign = delay_sign; if (er->delta_count > MIN_DELTA_NUM) { size_t previousFrameIn = er->frames_in; er->frames_in = (size_t)((expectedDelayNs * er->rd_sampling_rate)/1000000000); int offset = er->frames_in - previousFrameIn; ALOGV("echo_reference_read(): deltaNs ENOUGH and %s: " "er->frames_in: %zu, previousFrameIn = %zu", delay_sign ? "positive" : "negative", er->frames_in, previousFrameIn); if (deltaNs < 0) { // Less data available in the reference buffer than expected if (er->frames_in > er->buf_size) { er->buf_size = er->frames_in; er->buffer = realloc(er->buffer, er->buf_size * er->rd_frame_size); ALOGV("echo_reference_read(): increasing buffer size to %zu", er->buf_size); } if (offset > 0) { memset((char *)er->buffer + previousFrameIn * er->rd_frame_size, 0, offset * er->rd_frame_size); ALOGV("echo_reference_read(): pushing ref buffer by [%d]", offset); } } else { // More data available in the reference buffer than expected offset = -offset; if (offset > 0) { memcpy(er->buffer, (char *)er->buffer + (offset * er->rd_frame_size), er->frames_in * er->rd_frame_size); ALOGV("echo_reference_read(): shifting ref buffer by [%zu]", er->frames_in); } } } } else { er->delta_count = 0; er->prev_delta_sign = 0; ALOGV("echo_reference_read(): Constant EchoPathDelay - difference " "between reference and DMA %" PRId64, deltaNs); } } else { ALOGV("echo_reference_read(): NEGATIVE expectedDelayNs[%" PRId64 "] = er->playback_delay[%" PRId32 "] + delayCapture[%" PRId32 "] - timeDiff[%" PRId64 "]", expectedDelayNs, er->playback_delay, buffer->delay_ns, timeDiff); } } if (er->frames_in < buffer->frame_count) { if (buffer->frame_count > er->buf_size) { er->buf_size = buffer->frame_count; er->buffer = realloc(er->buffer, er->buf_size * er->rd_frame_size); ALOGV("echo_reference_read(): increasing buffer size to %zu", er->buf_size); } // filling up the reference buffer with 0s to match the expected delay. memset((char *)er->buffer + er->frames_in * er->rd_frame_size, 0, (buffer->frame_count - er->frames_in) * er->rd_frame_size); er->frames_in = buffer->frame_count; } memcpy(buffer->raw, (char *)er->buffer, buffer->frame_count * er->rd_frame_size); er->frames_in -= buffer->frame_count; memcpy(er->buffer, (char *)er->buffer + buffer->frame_count * er->rd_frame_size, er->frames_in * er->rd_frame_size); // As the reference buffer is now time aligned to the microphone signal there is a zero delay buffer->delay_ns = 0; ALOGV("echo_reference_read() END %zu frames, total frames in %zu", buffer->frame_count, er->frames_in); pthread_cond_signal(&er->cond); exit: pthread_mutex_unlock(&er->lock); return 0; } int create_echo_reference(audio_format_t rdFormat, uint32_t rdChannelCount, uint32_t rdSamplingRate, audio_format_t wrFormat, uint32_t wrChannelCount, uint32_t wrSamplingRate, struct echo_reference_itfe **echo_reference) { struct echo_reference *er; ALOGV("create_echo_reference()"); if (echo_reference == NULL) { return -EINVAL; } *echo_reference = NULL; if (rdFormat != AUDIO_FORMAT_PCM_16_BIT || rdFormat != wrFormat) { ALOGW("create_echo_reference bad format rd %d, wr %d", rdFormat, wrFormat); return -EINVAL; } if ((rdChannelCount != 1 && rdChannelCount != 2) || wrChannelCount != 2) { ALOGW("create_echo_reference bad channel count rd %d, wr %d", rdChannelCount, wrChannelCount); return -EINVAL; } er = (struct echo_reference *)calloc(1, sizeof(struct echo_reference)); er->itfe.read = echo_reference_read; er->itfe.write = echo_reference_write; er->state = ECHOREF_IDLE; er->rd_format = rdFormat; er->rd_channel_count = rdChannelCount; er->rd_sampling_rate = rdSamplingRate; er->wr_format = wrFormat; er->wr_channel_count = wrChannelCount; er->wr_sampling_rate = wrSamplingRate; er->rd_frame_size = audio_bytes_per_sample(rdFormat) * rdChannelCount; er->wr_frame_size = audio_bytes_per_sample(wrFormat) * wrChannelCount; *echo_reference = &er->itfe; return 0; } void release_echo_reference(struct echo_reference_itfe *echo_reference) { struct echo_reference *er = (struct echo_reference *)echo_reference; if (er == NULL) { return; } ALOGV("EchoReference dstor"); echo_reference_reset_l(er); if (er->resampler != NULL) { release_resampler(er->resampler); } free(er); }