/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "hw-Parcel" //#define LOG_NDEBUG 0 #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <pthread.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/resource.h> #include <unistd.h> #include <hwbinder/Binder.h> #include <hwbinder/BpHwBinder.h> #include <hwbinder/IPCThreadState.h> #include <hwbinder/Parcel.h> #include <hwbinder/ProcessState.h> #include <hwbinder/TextOutput.h> #include <hwbinder/binder_kernel.h> #include <cutils/ashmem.h> #include <utils/Debug.h> #include <utils/Log.h> #include <utils/misc.h> #include <utils/String8.h> #include <utils/String16.h> #include <private/binder/binder_module.h> #include <hwbinder/Static.h> #ifndef INT32_MAX #define INT32_MAX ((int32_t)(2147483647)) #endif #define LOG_REFS(...) //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__) #define LOG_ALLOC(...) //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__) #define LOG_BUFFER(...) // #define LOG_BUFFER(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__) // --------------------------------------------------------------------------- // This macro should never be used at runtime, as a too large value // of s could cause an integer overflow. Instead, you should always // use the wrapper function pad_size() #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3) static size_t pad_size(size_t s) { if (s > (SIZE_T_MAX - 3)) { abort(); } return PAD_SIZE_UNSAFE(s); } // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER #define STRICT_MODE_PENALTY_GATHER (0x40 << 16) // XXX This can be made public if we want to provide // support for typed data. struct small_flat_data { uint32_t type; uint32_t data; }; namespace android { namespace hardware { static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER; static size_t gParcelGlobalAllocSize = 0; static size_t gParcelGlobalAllocCount = 0; static size_t gMaxFds = 0; static const size_t PARCEL_REF_CAP = 1024; void acquire_binder_object(const sp<ProcessState>& proc, const flat_binder_object& obj, const void* who) { switch (obj.hdr.type) { case BINDER_TYPE_BINDER: if (obj.binder) { LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie); reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who); } return; case BINDER_TYPE_WEAK_BINDER: if (obj.binder) reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who); return; case BINDER_TYPE_HANDLE: { const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle); if (b != NULL) { LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get()); b->incStrong(who); } return; } case BINDER_TYPE_WEAK_HANDLE: { const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle); if (b != NULL) b.get_refs()->incWeak(who); return; } } ALOGD("Invalid object type 0x%08x", obj.hdr.type); } void acquire_object(const sp<ProcessState>& proc, const binder_object_header& obj, const void *who) { switch (obj.type) { case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: { const flat_binder_object& fbo = reinterpret_cast<const flat_binder_object&>(obj); acquire_binder_object(proc, fbo, who); break; } } } void release_object(const sp<ProcessState>& proc, const flat_binder_object& obj, const void* who) { switch (obj.hdr.type) { case BINDER_TYPE_BINDER: if (obj.binder) { LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie); reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who); } return; case BINDER_TYPE_WEAK_BINDER: if (obj.binder) reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who); return; case BINDER_TYPE_HANDLE: { const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle); if (b != NULL) { LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get()); b->decStrong(who); } return; } case BINDER_TYPE_WEAK_HANDLE: { const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle); if (b != NULL) b.get_refs()->decWeak(who); return; } case BINDER_TYPE_FD: { if (obj.cookie != 0) { // owned close(obj.handle); } return; } case BINDER_TYPE_PTR: { // The relevant buffer is part of the transaction buffer and will be freed that way return; } case BINDER_TYPE_FDA: { // The enclosed file descriptors are closed in the kernel return; } } ALOGE("Invalid object type 0x%08x", obj.hdr.type); } inline static status_t finish_flatten_binder( const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out) { return out->writeObject(flat); } status_t flatten_binder(const sp<ProcessState>& /*proc*/, const sp<IBinder>& binder, Parcel* out) { flat_binder_object obj; if (binder != NULL) { BHwBinder *local = binder->localBinder(); if (!local) { BpHwBinder *proxy = binder->remoteBinder(); if (proxy == NULL) { ALOGE("null proxy"); } const int32_t handle = proxy ? proxy->handle() : 0; obj.hdr.type = BINDER_TYPE_HANDLE; obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS; obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */ obj.handle = handle; obj.cookie = 0; } else { // Get policy and convert it int policy = local->getMinSchedulingPolicy(); int priority = local->getMinSchedulingPriority(); obj.flags = priority & FLAT_BINDER_FLAG_PRIORITY_MASK; obj.flags |= FLAT_BINDER_FLAG_ACCEPTS_FDS | FLAT_BINDER_FLAG_INHERIT_RT; obj.flags |= (policy & 3) << FLAT_BINDER_FLAG_SCHEDPOLICY_SHIFT; obj.hdr.type = BINDER_TYPE_BINDER; obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs()); obj.cookie = reinterpret_cast<uintptr_t>(local); } } else { obj.hdr.type = BINDER_TYPE_BINDER; obj.binder = 0; obj.cookie = 0; } return finish_flatten_binder(binder, obj, out); } status_t flatten_binder(const sp<ProcessState>& /*proc*/, const wp<IBinder>& binder, Parcel* out) { flat_binder_object obj; obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; if (binder != NULL) { sp<IBinder> real = binder.promote(); if (real != NULL) { IBinder *local = real->localBinder(); if (!local) { BpHwBinder *proxy = real->remoteBinder(); if (proxy == NULL) { ALOGE("null proxy"); } const int32_t handle = proxy ? proxy->handle() : 0; obj.hdr.type = BINDER_TYPE_WEAK_HANDLE; obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */ obj.handle = handle; obj.cookie = 0; } else { obj.hdr.type = BINDER_TYPE_WEAK_BINDER; obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs()); obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get()); } return finish_flatten_binder(real, obj, out); } // XXX How to deal? In order to flatten the given binder, // we need to probe it for information, which requires a primary // reference... but we don't have one. // // The OpenBinder implementation uses a dynamic_cast<> here, // but we can't do that with the different reference counting // implementation we are using. ALOGE("Unable to unflatten Binder weak reference!"); obj.hdr.type = BINDER_TYPE_BINDER; obj.binder = 0; obj.cookie = 0; return finish_flatten_binder(NULL, obj, out); } else { obj.hdr.type = BINDER_TYPE_BINDER; obj.binder = 0; obj.cookie = 0; return finish_flatten_binder(NULL, obj, out); } } inline static status_t finish_unflatten_binder( BpHwBinder* /*proxy*/, const flat_binder_object& /*flat*/, const Parcel& /*in*/) { return NO_ERROR; } status_t unflatten_binder(const sp<ProcessState>& proc, const Parcel& in, sp<IBinder>* out) { const flat_binder_object* flat = in.readObject<flat_binder_object>(); if (flat) { switch (flat->hdr.type) { case BINDER_TYPE_BINDER: *out = reinterpret_cast<IBinder*>(flat->cookie); return finish_unflatten_binder(NULL, *flat, in); case BINDER_TYPE_HANDLE: *out = proc->getStrongProxyForHandle(flat->handle); return finish_unflatten_binder( static_cast<BpHwBinder*>(out->get()), *flat, in); } } return BAD_TYPE; } status_t unflatten_binder(const sp<ProcessState>& proc, const Parcel& in, wp<IBinder>* out) { const flat_binder_object* flat = in.readObject<flat_binder_object>(); if (flat) { switch (flat->hdr.type) { case BINDER_TYPE_BINDER: *out = reinterpret_cast<IBinder*>(flat->cookie); return finish_unflatten_binder(NULL, *flat, in); case BINDER_TYPE_WEAK_BINDER: if (flat->binder != 0) { out->set_object_and_refs( reinterpret_cast<IBinder*>(flat->cookie), reinterpret_cast<RefBase::weakref_type*>(flat->binder)); } else { *out = NULL; } return finish_unflatten_binder(NULL, *flat, in); case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: *out = proc->getWeakProxyForHandle(flat->handle); return finish_unflatten_binder( static_cast<BpHwBinder*>(out->unsafe_get()), *flat, in); } } return BAD_TYPE; } /* * Return true iff: * 1. obj is indeed a binder_buffer_object (type is BINDER_TYPE_PTR), and * 2. obj does NOT have the flag BINDER_BUFFER_FLAG_REF (it is not a reference, but * an actual buffer.) */ static inline bool isBuffer(const binder_buffer_object& obj) { return obj.hdr.type == BINDER_TYPE_PTR && (obj.flags & BINDER_BUFFER_FLAG_REF) == 0; } // --------------------------------------------------------------------------- Parcel::Parcel() { LOG_ALLOC("Parcel %p: constructing", this); initState(); } Parcel::~Parcel() { freeDataNoInit(); LOG_ALLOC("Parcel %p: destroyed", this); } size_t Parcel::getGlobalAllocSize() { pthread_mutex_lock(&gParcelGlobalAllocSizeLock); size_t size = gParcelGlobalAllocSize; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); return size; } size_t Parcel::getGlobalAllocCount() { pthread_mutex_lock(&gParcelGlobalAllocSizeLock); size_t count = gParcelGlobalAllocCount; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); return count; } const uint8_t* Parcel::data() const { return mData; } size_t Parcel::dataSize() const { return (mDataSize > mDataPos ? mDataSize : mDataPos); } size_t Parcel::dataAvail() const { size_t result = dataSize() - dataPosition(); if (result > INT32_MAX) { abort(); } return result; } size_t Parcel::dataPosition() const { return mDataPos; } size_t Parcel::dataCapacity() const { return mDataCapacity; } status_t Parcel::setDataSize(size_t size) { if (size > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } status_t err; err = continueWrite(size); if (err == NO_ERROR) { mDataSize = size; ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize); } return err; } void Parcel::setDataPosition(size_t pos) const { if (pos > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. abort(); } mDataPos = pos; mNextObjectHint = 0; } status_t Parcel::setDataCapacity(size_t size) { if (size > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if (size > mDataCapacity) return continueWrite(size); return NO_ERROR; } status_t Parcel::setData(const uint8_t* buffer, size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } status_t err = restartWrite(len); if (err == NO_ERROR) { memcpy(const_cast<uint8_t*>(data()), buffer, len); mDataSize = len; mFdsKnown = false; } return err; } // Write RPC headers. (previously just the interface token) status_t Parcel::writeInterfaceToken(const char* interface) { // currently the interface identification token is just its name as a string return writeCString(interface); } bool Parcel::enforceInterface(const char* interface) const { const char* str = readCString(); if (strcmp(str, interface) == 0) { return true; } else { ALOGW("**** enforceInterface() expected '%s' but read '%s'", String8(interface).string(), String8(str).string()); return false; } } const binder_size_t* Parcel::objects() const { return mObjects; } size_t Parcel::objectsCount() const { return mObjectsSize; } status_t Parcel::errorCheck() const { return mError; } void Parcel::setError(status_t err) { mError = err; } status_t Parcel::finishWrite(size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } //printf("Finish write of %d\n", len); mDataPos += len; ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos); if (mDataPos > mDataSize) { mDataSize = mDataPos; ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize); } //printf("New pos=%d, size=%d\n", mDataPos, mDataSize); return NO_ERROR; } status_t Parcel::writeUnpadded(const void* data, size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } size_t end = mDataPos + len; if (end < mDataPos) { // integer overflow return BAD_VALUE; } if (end <= mDataCapacity) { restart_write: memcpy(mData+mDataPos, data, len); return finishWrite(len); } status_t err = growData(len); if (err == NO_ERROR) goto restart_write; return err; } status_t Parcel::write(const void* data, size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } void* const d = writeInplace(len); if (d) { memcpy(d, data, len); return NO_ERROR; } return mError; } void* Parcel::writeInplace(size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return NULL; } const size_t padded = pad_size(len); // sanity check for integer overflow if (mDataPos+padded < mDataPos) { return NULL; } if ((mDataPos+padded) <= mDataCapacity) { restart_write: //printf("Writing %ld bytes, padded to %ld\n", len, padded); uint8_t* const data = mData+mDataPos; // Need to pad at end? if (padded != len) { #if BYTE_ORDER == BIG_ENDIAN static const uint32_t mask[4] = { 0x00000000, 0xffffff00, 0xffff0000, 0xff000000 }; #endif #if BYTE_ORDER == LITTLE_ENDIAN static const uint32_t mask[4] = { 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff }; #endif //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len], // *reinterpret_cast<void**>(data+padded-4)); *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len]; } finishWrite(padded); return data; } status_t err = growData(padded); if (err == NO_ERROR) goto restart_write; return NULL; } status_t Parcel::writeInt8(int8_t val) { return write(&val, sizeof(val)); } status_t Parcel::writeUint8(uint8_t val) { return write(&val, sizeof(val)); } status_t Parcel::writeInt16(int16_t val) { return write(&val, sizeof(val)); } status_t Parcel::writeUint16(uint16_t val) { return write(&val, sizeof(val)); } status_t Parcel::writeInt32(int32_t val) { return writeAligned(val); } status_t Parcel::writeUint32(uint32_t val) { return writeAligned(val); } status_t Parcel::writeBool(bool val) { return writeInt8(int8_t(val)); } status_t Parcel::writeInt64(int64_t val) { return writeAligned(val); } status_t Parcel::writeUint64(uint64_t val) { return writeAligned(val); } status_t Parcel::writePointer(uintptr_t val) { return writeAligned<binder_uintptr_t>(val); } status_t Parcel::writeFloat(float val) { return writeAligned(val); } #if defined(__mips__) && defined(__mips_hard_float) status_t Parcel::writeDouble(double val) { union { double d; unsigned long long ll; } u; u.d = val; return writeAligned(u.ll); } #else status_t Parcel::writeDouble(double val) { return writeAligned(val); } #endif status_t Parcel::writeCString(const char* str) { return write(str, strlen(str)+1); } status_t Parcel::writeString16(const std::unique_ptr<String16>& str) { if (!str) { return writeInt32(-1); } return writeString16(*str); } status_t Parcel::writeString16(const String16& str) { return writeString16(str.string(), str.size()); } status_t Parcel::writeString16(const char16_t* str, size_t len) { if (str == NULL) return writeInt32(-1); status_t err = writeInt32(len); if (err == NO_ERROR) { len *= sizeof(char16_t); uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t)); if (data) { memcpy(data, str, len); *reinterpret_cast<char16_t*>(data+len) = 0; return NO_ERROR; } err = mError; } return err; } status_t Parcel::writeStrongBinder(const sp<IBinder>& val) { return flatten_binder(ProcessState::self(), val, this); } status_t Parcel::writeWeakBinder(const wp<IBinder>& val) { return flatten_binder(ProcessState::self(), val, this); } template <typename T> status_t Parcel::writeObject(const T& val) { const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity; const bool enoughObjects = mObjectsSize < mObjectsCapacity; if (enoughData && enoughObjects) { restart_write: *reinterpret_cast<T*>(mData+mDataPos) = val; const binder_object_header* hdr = reinterpret_cast<binder_object_header*>(mData+mDataPos); switch (hdr->type) { case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: { const flat_binder_object *fbo = reinterpret_cast<const flat_binder_object*>(hdr); if (fbo->binder != 0) { mObjects[mObjectsSize++] = mDataPos; acquire_binder_object(ProcessState::self(), *fbo, this); } break; } case BINDER_TYPE_FD: { // remember if it's a file descriptor if (!mAllowFds) { // fail before modifying our object index return FDS_NOT_ALLOWED; } mHasFds = mFdsKnown = true; mObjects[mObjectsSize++] = mDataPos; break; } case BINDER_TYPE_FDA: mObjects[mObjectsSize++] = mDataPos; break; case BINDER_TYPE_PTR: { const binder_buffer_object *buffer_obj = reinterpret_cast< const binder_buffer_object*>(hdr); if ((void *)buffer_obj->buffer != nullptr) { mObjects[mObjectsSize++] = mDataPos; } break; } default: { ALOGE("writeObject: unknown type %d", hdr->type); break; } } return finishWrite(sizeof(val)); } if (!enoughData) { const status_t err = growData(sizeof(val)); if (err != NO_ERROR) return err; } if (!enoughObjects) { size_t newSize = ((mObjectsSize+2)*3)/2; if (newSize * sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY; // overflow binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t)); if (objects == NULL) return NO_MEMORY; mObjects = objects; mObjectsCapacity = newSize; } goto restart_write; } template status_t Parcel::writeObject<flat_binder_object>(const flat_binder_object& val); template status_t Parcel::writeObject<binder_fd_object>(const binder_fd_object& val); template status_t Parcel::writeObject<binder_buffer_object>(const binder_buffer_object& val); template status_t Parcel::writeObject<binder_fd_array_object>(const binder_fd_array_object& val); // TODO merge duplicated code in writeEmbeddedBuffer, writeEmbeddedReference, and writeEmbeddedNullReference // TODO merge duplicated code in writeBuffer, writeReference, and writeNullReference bool Parcel::validateBufferChild(size_t child_buffer_handle, size_t child_offset) const { if (child_buffer_handle >= mObjectsSize) return false; binder_buffer_object *child = reinterpret_cast<binder_buffer_object*> (mData + mObjects[child_buffer_handle]); if (!isBuffer(*child) || child_offset > child->length) { // Parent object not a buffer, or not large enough LOG_BUFFER("writeEmbeddedReference found wierd child. " "child_offset = %zu, child->length = %zu", child_offset, (size_t)child->length); return false; } return true; } bool Parcel::validateBufferParent(size_t parent_buffer_handle, size_t parent_offset) const { if (parent_buffer_handle >= mObjectsSize) return false; binder_buffer_object *parent = reinterpret_cast<binder_buffer_object*> (mData + mObjects[parent_buffer_handle]); if (!isBuffer(*parent) || sizeof(binder_uintptr_t) > parent->length || parent_offset > parent->length - sizeof(binder_uintptr_t)) { // Parent object not a buffer, or not large enough return false; } return true; } status_t Parcel::writeEmbeddedBuffer( const void *buffer, size_t length, size_t *handle, size_t parent_buffer_handle, size_t parent_offset) { LOG_BUFFER("writeEmbeddedBuffer(%p, %zu, parent = (%zu, %zu)) -> %zu", buffer, length, parent_buffer_handle, parent_offset, mObjectsSize); binder_buffer_object obj; obj.hdr.type = BINDER_TYPE_PTR; obj.buffer = reinterpret_cast<binder_uintptr_t>(buffer); obj.length = length; obj.flags = BINDER_BUFFER_FLAG_HAS_PARENT; if(!validateBufferParent(parent_buffer_handle, parent_offset)) return BAD_VALUE; obj.parent = parent_buffer_handle; obj.parent_offset = parent_offset; if (handle != nullptr) { // We use an index into mObjects as a handle *handle = mObjectsSize; } return writeObject(obj); } status_t Parcel::writeBuffer(const void *buffer, size_t length, size_t *handle) { LOG_BUFFER("writeBuffer(%p, %zu) -> %zu", buffer, length, mObjectsSize); binder_buffer_object obj; obj.hdr.type = BINDER_TYPE_PTR; obj.buffer = reinterpret_cast<binder_uintptr_t>(buffer); obj.length = length; obj.flags = 0; if (handle != nullptr) { // We use an index into mObjects as a handle *handle = mObjectsSize; } return writeObject(obj); } status_t Parcel::incrementNumReferences() { ++mNumRef; LOG_BUFFER("incrementNumReferences: %zu", mNumRef); return mNumRef <= PARCEL_REF_CAP ? OK : NO_MEMORY; } status_t Parcel::writeReference(size_t *handle, size_t child_buffer_handle, size_t child_offset) { LOG_BUFFER("writeReference(child = (%zu, %zu)) -> %zu", child_buffer_handle, child_offset, mObjectsSize); status_t status = incrementNumReferences(); if (status != OK) return status; binder_buffer_object obj; obj.hdr.type = BINDER_TYPE_PTR; obj.flags = BINDER_BUFFER_FLAG_REF; if (!validateBufferChild(child_buffer_handle, child_offset)) return BAD_VALUE; // The current binder.h does not have child and child_offset names yet. // Use the buffer and length parameters. obj.buffer = child_buffer_handle; obj.length = child_offset; if (handle != nullptr) // We use an index into mObjects as a handle *handle = mObjectsSize; return writeObject(obj); } /* Write an object that describes a pointer from parent to child. * Output the handle of that object in the size_t *handle variable. */ status_t Parcel::writeEmbeddedReference(size_t *handle, size_t child_buffer_handle, size_t child_offset, size_t parent_buffer_handle, size_t parent_offset) { LOG_BUFFER("writeEmbeddedReference(child = (%zu, %zu), parent = (%zu, %zu)) -> %zu", child_buffer_handle, child_offset, parent_buffer_handle, parent_offset, mObjectsSize); status_t status = incrementNumReferences(); if (status != OK) return status; binder_buffer_object obj; obj.hdr.type = BINDER_TYPE_PTR; obj.flags = BINDER_BUFFER_FLAG_REF | BINDER_BUFFER_FLAG_HAS_PARENT; if (!validateBufferChild(child_buffer_handle, child_offset)) return BAD_VALUE; // The current binder.h does not have child and child_offset names yet. // Use the buffer and length parameters. obj.buffer = child_buffer_handle; obj.length = child_offset; if(!validateBufferParent(parent_buffer_handle, parent_offset)) return BAD_VALUE; obj.parent = parent_buffer_handle; obj.parent_offset = parent_offset; if (handle != nullptr) { // We use an index into mObjects as a handle *handle = mObjectsSize; } return writeObject(obj); } status_t Parcel::writeNullReference(size_t * handle) { LOG_BUFFER("writeNullReference -> %zu", mObjectsSize); status_t status = incrementNumReferences(); if (status != OK) return status; binder_buffer_object obj; obj.hdr.type = BINDER_TYPE_PTR; obj.flags = BINDER_BUFFER_FLAG_REF; if (handle != nullptr) // We use an index into mObjects as a handle *handle = mObjectsSize; return writeObject(obj); } status_t Parcel::writeEmbeddedNullReference(size_t * handle, size_t parent_buffer_handle, size_t parent_offset) { LOG_BUFFER("writeEmbeddedNullReference(parent = (%zu, %zu)) -> %zu", parent_buffer_handle, parent_offset, mObjectsSize); status_t status = incrementNumReferences(); if (status != OK) return status; binder_buffer_object obj; obj.hdr.type = BINDER_TYPE_PTR; obj.flags = BINDER_BUFFER_FLAG_REF | BINDER_BUFFER_FLAG_HAS_PARENT; // parent_buffer_handle and parent_offset needs to be checked. if(!validateBufferParent(parent_buffer_handle, parent_offset)) return BAD_VALUE; obj.parent = parent_buffer_handle; obj.parent_offset = parent_offset; if (handle != nullptr) { // We use an index into mObjects as a handle *handle = mObjectsSize; } return writeObject(obj); } void Parcel::clearCache() const { LOG_BUFFER("clearing cache."); mBufCachePos = 0; mBufCache.clear(); } void Parcel::updateCache() const { if(mBufCachePos == mObjectsSize) return; LOG_BUFFER("updating cache from %zu to %zu", mBufCachePos, mObjectsSize); for(size_t i = mBufCachePos; i < mObjectsSize; i++) { binder_size_t dataPos = mObjects[i]; binder_buffer_object *obj = reinterpret_cast<binder_buffer_object*>(mData+dataPos); if(!isBuffer(*obj)) continue; BufferInfo ifo; ifo.index = i; ifo.buffer = obj->buffer; ifo.bufend = obj->buffer + obj->length; mBufCache.push_back(ifo); } mBufCachePos = mObjectsSize; } /* O(n) (n=#buffers) to find a buffer that contains the given addr */ status_t Parcel::findBuffer(const void *ptr, size_t length, bool *found, size_t *handle, size_t *offset) const { if(found == nullptr) return UNKNOWN_ERROR; updateCache(); binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr); // true if the pointer is in some buffer, but the length is too big // so that ptr + length doesn't fit into the buffer. bool suspectRejectBadPointer = false; LOG_BUFFER("findBuffer examining %zu objects.", mObjectsSize); for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) { if(entry->buffer <= ptrVal && ptrVal < entry->bufend) { // might have found it. if(ptrVal + length <= entry->bufend) { *found = true; if(handle != nullptr) *handle = entry->index; if(offset != nullptr) *offset = ptrVal - entry->buffer; LOG_BUFFER(" findBuffer has a match at %zu!", entry->index); return OK; } else { suspectRejectBadPointer = true; } } } LOG_BUFFER("findBuffer did not find for ptr = %p.", ptr); *found = false; return suspectRejectBadPointer ? BAD_VALUE : OK; } /* findBuffer with the assumption that ptr = .buffer (so it points to top * of the buffer, aka offset 0). * */ status_t Parcel::quickFindBuffer(const void *ptr, size_t *handle) const { updateCache(); binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr); LOG_BUFFER("quickFindBuffer examining %zu objects.", mObjectsSize); for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) { if(entry->buffer == ptrVal) { if(handle != nullptr) *handle = entry->index; return OK; } } LOG_BUFFER("quickFindBuffer did not find for ptr = %p.", ptr); return NO_INIT; } status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle, bool embedded, size_t parent_buffer_handle, size_t parent_offset) { struct binder_fd_array_object fd_array; size_t buffer_handle; status_t status = OK; if (handle == nullptr) { status = writeUint64(0); return status; } size_t native_handle_size = sizeof(native_handle_t) + handle->numFds * sizeof(int) + handle->numInts * sizeof(int); writeUint64(native_handle_size); if (embedded) { status = writeEmbeddedBuffer((void*) handle, native_handle_size, &buffer_handle, parent_buffer_handle, parent_offset); } else { status = writeBuffer((void*) handle, native_handle_size, &buffer_handle); } if (status != OK) { return status; } fd_array.hdr.type = BINDER_TYPE_FDA; fd_array.num_fds = handle->numFds; fd_array.parent = buffer_handle; fd_array.parent_offset = offsetof(native_handle_t, data); return writeObject(fd_array); } status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle) { return writeNativeHandleNoDup(handle, false /* embedded */); } status_t Parcel::writeEmbeddedNativeHandle(const native_handle_t *handle, size_t parent_buffer_handle, size_t parent_offset) { return writeNativeHandleNoDup(handle, true /* embedded */, parent_buffer_handle, parent_offset); } void Parcel::remove(size_t /*start*/, size_t /*amt*/) { LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!"); } status_t Parcel::read(void* outData, size_t len) const { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize && len <= pad_size(len)) { memcpy(outData, mData+mDataPos, len); mDataPos += pad_size(len); ALOGV("read Setting data pos of %p to %zu", this, mDataPos); return NO_ERROR; } return NOT_ENOUGH_DATA; } const void* Parcel::readInplace(size_t len) const { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return NULL; } if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize && len <= pad_size(len)) { const void* data = mData+mDataPos; mDataPos += pad_size(len); ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos); return data; } return NULL; } template<class T> status_t Parcel::readAligned(T *pArg) const { COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T)); if ((mDataPos+sizeof(T)) <= mDataSize) { const void* data = mData+mDataPos; mDataPos += sizeof(T); *pArg = *reinterpret_cast<const T*>(data); return NO_ERROR; } else { return NOT_ENOUGH_DATA; } } template<class T> T Parcel::readAligned() const { T result; if (readAligned(&result) != NO_ERROR) { result = 0; } return result; } template<class T> status_t Parcel::writeAligned(T val) { COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T)); if ((mDataPos+sizeof(val)) <= mDataCapacity) { restart_write: *reinterpret_cast<T*>(mData+mDataPos) = val; return finishWrite(sizeof(val)); } status_t err = growData(sizeof(val)); if (err == NO_ERROR) goto restart_write; return err; } status_t Parcel::readInt8(int8_t *pArg) const { return read(pArg, sizeof(*pArg)); } status_t Parcel::readUint8(uint8_t *pArg) const { return read(pArg, sizeof(*pArg)); } status_t Parcel::readInt16(int16_t *pArg) const { return read(pArg, sizeof(*pArg)); } status_t Parcel::readUint16(uint16_t *pArg) const { return read(pArg, sizeof(*pArg)); } status_t Parcel::readInt32(int32_t *pArg) const { return readAligned(pArg); } int32_t Parcel::readInt32() const { return readAligned<int32_t>(); } status_t Parcel::readUint32(uint32_t *pArg) const { return readAligned(pArg); } uint32_t Parcel::readUint32() const { return readAligned<uint32_t>(); } status_t Parcel::readInt64(int64_t *pArg) const { return readAligned(pArg); } int64_t Parcel::readInt64() const { return readAligned<int64_t>(); } status_t Parcel::readUint64(uint64_t *pArg) const { return readAligned(pArg); } uint64_t Parcel::readUint64() const { return readAligned<uint64_t>(); } status_t Parcel::readPointer(uintptr_t *pArg) const { status_t ret; binder_uintptr_t ptr; ret = readAligned(&ptr); if (!ret) *pArg = ptr; return ret; } uintptr_t Parcel::readPointer() const { return readAligned<binder_uintptr_t>(); } status_t Parcel::readFloat(float *pArg) const { return readAligned(pArg); } float Parcel::readFloat() const { return readAligned<float>(); } #if defined(__mips__) && defined(__mips_hard_float) status_t Parcel::readDouble(double *pArg) const { union { double d; unsigned long long ll; } u; u.d = 0; status_t status; status = readAligned(&u.ll); *pArg = u.d; return status; } double Parcel::readDouble() const { union { double d; unsigned long long ll; } u; u.ll = readAligned<unsigned long long>(); return u.d; } #else status_t Parcel::readDouble(double *pArg) const { return readAligned(pArg); } double Parcel::readDouble() const { return readAligned<double>(); } #endif status_t Parcel::readBool(bool *pArg) const { int8_t tmp; status_t ret = readInt8(&tmp); *pArg = (tmp != 0); return ret; } bool Parcel::readBool() const { int8_t tmp; status_t err = readInt8(&tmp); if (err != OK) { return 0; } return tmp != 0; } const char* Parcel::readCString() const { const size_t avail = mDataSize-mDataPos; if (avail > 0) { const char* str = reinterpret_cast<const char*>(mData+mDataPos); // is the string's trailing NUL within the parcel's valid bounds? const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail)); if (eos) { const size_t len = eos - str; mDataPos += pad_size(len+1); ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos); return str; } } return NULL; } String16 Parcel::readString16() const { size_t len; const char16_t* str = readString16Inplace(&len); if (str) return String16(str, len); ALOGE("Reading a NULL string not supported here."); return String16(); } status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const { const int32_t start = dataPosition(); int32_t size; status_t status = readInt32(&size); pArg->reset(); if (status != OK || size < 0) { return status; } setDataPosition(start); pArg->reset(new (std::nothrow) String16()); status = readString16(pArg->get()); if (status != OK) { pArg->reset(); } return status; } status_t Parcel::readString16(String16* pArg) const { size_t len; const char16_t* str = readString16Inplace(&len); if (str) { pArg->setTo(str, len); return 0; } else { *pArg = String16(); return UNEXPECTED_NULL; } } const char16_t* Parcel::readString16Inplace(size_t* outLen) const { int32_t size = readInt32(); // watch for potential int overflow from size+1 if (size >= 0 && size < INT32_MAX) { *outLen = size; const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t)); if (str != NULL) { return str; } } *outLen = 0; return NULL; } status_t Parcel::readStrongBinder(sp<IBinder>* val) const { status_t status = readNullableStrongBinder(val); if (status == OK && !val->get()) { status = UNEXPECTED_NULL; } return status; } status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const { return unflatten_binder(ProcessState::self(), *this, val); } sp<IBinder> Parcel::readStrongBinder() const { sp<IBinder> val; // Note that a lot of code in Android reads binders by hand with this // method, and that code has historically been ok with getting nullptr // back (while ignoring error codes). readNullableStrongBinder(&val); return val; } wp<IBinder> Parcel::readWeakBinder() const { wp<IBinder> val; unflatten_binder(ProcessState::self(), *this, &val); return val; } template<typename T> const T* Parcel::readObject(size_t *objects_offset) const { const size_t DPOS = mDataPos; if (objects_offset != nullptr) { *objects_offset = 0; } if ((DPOS+sizeof(T)) <= mDataSize) { const T* obj = reinterpret_cast<const T*>(mData+DPOS); mDataPos = DPOS + sizeof(T); const binder_object_header *hdr = reinterpret_cast<const binder_object_header*>(obj); switch (hdr->type) { case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: { const flat_binder_object *flat_obj = reinterpret_cast<const flat_binder_object*>(hdr); if (flat_obj->cookie == 0 && flat_obj->binder == 0) { // When transferring a NULL binder object, we don't write it into // the object list, so we don't want to check for it when // reading. ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos); return obj; } break; } case BINDER_TYPE_FD: case BINDER_TYPE_FDA: // fd (-arrays) must always appear in the meta-data list (eg touched by the kernel) break; case BINDER_TYPE_PTR: { const binder_buffer_object *buffer_obj = reinterpret_cast<const binder_buffer_object*>(hdr); if ((void *)buffer_obj->buffer == nullptr) { // null pointers can be returned directly - they're not written in the // object list. All non-null buffers must appear in the objects list. return obj; } break; } } // Ensure that this object is valid... binder_size_t* const OBJS = mObjects; const size_t N = mObjectsSize; size_t opos = mNextObjectHint; if (N > 0) { ALOGV("Parcel %p looking for obj at %zu, hint=%zu", this, DPOS, opos); // Start at the current hint position, looking for an object at // the current data position. if (opos < N) { while (opos < (N-1) && OBJS[opos] < DPOS) { opos++; } } else { opos = N-1; } if (OBJS[opos] == DPOS) { // Found it! ALOGV("Parcel %p found obj %zu at index %zu with forward search", this, DPOS, opos); mNextObjectHint = opos+1; ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos); if (objects_offset != nullptr) { *objects_offset = opos; } return obj; } // Look backwards for it... while (opos > 0 && OBJS[opos] > DPOS) { opos--; } if (OBJS[opos] == DPOS) { // Found it! ALOGV("Parcel %p found obj %zu at index %zu with backward search", this, DPOS, opos); mNextObjectHint = opos+1; ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos); if (objects_offset != nullptr) { *objects_offset = opos; } return obj; } } ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list", this, DPOS); } return NULL; } template const flat_binder_object* Parcel::readObject<flat_binder_object>(size_t *objects_offset) const; template const binder_fd_object* Parcel::readObject<binder_fd_object>(size_t *objects_offset) const; template const binder_buffer_object* Parcel::readObject<binder_buffer_object>(size_t *objects_offset) const; template const binder_fd_array_object* Parcel::readObject<binder_fd_array_object>(size_t *objects_offset) const; bool Parcel::verifyBufferObject(const binder_buffer_object *buffer_obj, size_t size, uint32_t flags, size_t parent, size_t parentOffset) const { if (buffer_obj->length != size) { ALOGE("Buffer length %" PRIu64 " does not match expected size %zu.", static_cast<uint64_t>(buffer_obj->length), size); return false; } if (buffer_obj->flags != flags) { ALOGE("Buffer flags 0x%02X do not match expected flags 0x%02X.", buffer_obj->flags, flags); return false; } if (flags & BINDER_BUFFER_FLAG_HAS_PARENT) { if (buffer_obj->parent != parent) { ALOGE("Buffer parent %" PRIu64 " does not match expected parent %zu.", static_cast<uint64_t>(buffer_obj->parent), parent); return false; } if (buffer_obj->parent_offset != parentOffset) { ALOGE("Buffer parent offset %" PRIu64 " does not match expected offset %zu.", static_cast<uint64_t>(buffer_obj->parent_offset), parentOffset); return false; } } return true; } status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle, uint32_t flags, size_t parent, size_t parentOffset, const void **buffer_out) const { const binder_buffer_object* buffer_obj = readObject<binder_buffer_object>(buffer_handle); if (buffer_obj == nullptr || !isBuffer(*buffer_obj)) { return BAD_VALUE; } if (!verifyBufferObject(buffer_obj, buffer_size, flags, parent, parentOffset)) { return BAD_VALUE; } // in read side, always use .buffer and .length. *buffer_out = reinterpret_cast<void*>(buffer_obj->buffer); return OK; } status_t Parcel::readNullableBuffer(size_t buffer_size, size_t *buffer_handle, const void **buffer_out) const { return readBuffer(buffer_size, buffer_handle, 0 /* flags */, 0 /* parent */, 0 /* parentOffset */, buffer_out); } status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle, const void **buffer_out) const { status_t status = readNullableBuffer(buffer_size, buffer_handle, buffer_out); if (status == OK && *buffer_out == nullptr) { return UNEXPECTED_NULL; } return status; } status_t Parcel::readEmbeddedBuffer(size_t buffer_size, size_t *buffer_handle, size_t parent_buffer_handle, size_t parent_offset, const void **buffer_out) const { status_t status = readNullableEmbeddedBuffer(buffer_size, buffer_handle, parent_buffer_handle, parent_offset, buffer_out); if (status == OK && *buffer_out == nullptr) { return UNEXPECTED_NULL; } return status; } status_t Parcel::readNullableEmbeddedBuffer(size_t buffer_size, size_t *buffer_handle, size_t parent_buffer_handle, size_t parent_offset, const void **buffer_out) const { return readBuffer(buffer_size, buffer_handle, BINDER_BUFFER_FLAG_HAS_PARENT, parent_buffer_handle, parent_offset, buffer_out); } // isRef if corresponds to a writeReference call, else corresponds to a writeBuffer call. // see ::android::hardware::writeReferenceToParcel for details. status_t Parcel::readReference(void const* *bufptr, size_t *buffer_handle, bool *isRef) const { LOG_BUFFER("readReference"); const binder_buffer_object* buffer_obj = readObject<binder_buffer_object>(); LOG_BUFFER(" readReference: buf = %p, len = %zu, flags = %x", (void*)buffer_obj->buffer, (size_t)buffer_obj->length, (int)buffer_obj->flags); // TODO need verification here if (buffer_obj && buffer_obj->hdr.type == BINDER_TYPE_PTR) { if (buffer_handle != nullptr) { *buffer_handle = 0; // TODO fix this, as readBuffer would do } if(isRef != nullptr) { *isRef = (buffer_obj->flags & BINDER_BUFFER_FLAG_REF) != 0; LOG_BUFFER(" readReference: isRef = %d", *isRef); } // in read side, always use .buffer and .length. if(bufptr != nullptr) { *bufptr = (void*)buffer_obj->buffer; } return OK; } return BAD_VALUE; } // isRef if corresponds to a writeEmbeddedReference call, else corresponds to a writeEmbeddedBuffer call. // see ::android::hardware::writeEmbeddedReferenceToParcel for details. status_t Parcel::readEmbeddedReference(void const* *bufptr, size_t *buffer_handle, size_t /* parent_buffer_handle */, size_t /* parent_offset */, bool *isRef) const { // TODO verify parent and offset LOG_BUFFER("readEmbeddedReference"); return (readReference(bufptr, buffer_handle, isRef)); } status_t Parcel::readEmbeddedNativeHandle(size_t parent_buffer_handle, size_t parent_offset, const native_handle_t **handle) const { status_t status = readNullableEmbeddedNativeHandle(parent_buffer_handle, parent_offset, handle); if (status == OK && *handle == nullptr) { return UNEXPECTED_NULL; } return status; } status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle, bool embedded, size_t parent_buffer_handle, size_t parent_offset) const { status_t status; uint64_t nativeHandleSize; size_t fdaParent; status = readUint64(&nativeHandleSize); if (status != OK || nativeHandleSize == 0) { *handle = nullptr; return status; } if (nativeHandleSize < sizeof(native_handle_t)) { ALOGE("Received a native_handle_t size that was too small."); return BAD_VALUE; } if (embedded) { status = readNullableEmbeddedBuffer(nativeHandleSize, &fdaParent, parent_buffer_handle, parent_offset, reinterpret_cast<const void**>(handle)); } else { status = readNullableBuffer(nativeHandleSize, &fdaParent, reinterpret_cast<const void**>(handle)); } if (status != OK) { return status; } const binder_fd_array_object* fd_array_obj = readObject<binder_fd_array_object>(); if (fd_array_obj == nullptr || fd_array_obj->hdr.type != BINDER_TYPE_FDA) { ALOGE("Can't find file-descriptor array object."); return BAD_VALUE; } if (static_cast<int>(fd_array_obj->num_fds) != (*handle)->numFds) { ALOGE("Number of native handles does not match."); return BAD_VALUE; } if (fd_array_obj->parent != fdaParent) { ALOGE("Parent handle of file-descriptor array not correct."); return BAD_VALUE; } if (fd_array_obj->parent_offset != offsetof(native_handle_t, data)) { ALOGE("FD array object not properly offset in parent."); return BAD_VALUE; } return OK; } status_t Parcel::readNullableEmbeddedNativeHandle(size_t parent_buffer_handle, size_t parent_offset, const native_handle_t **handle) const { return readNullableNativeHandleNoDup(handle, true /* embedded */, parent_buffer_handle, parent_offset); } status_t Parcel::readNativeHandleNoDup(const native_handle_t **handle) const { status_t status = readNullableNativeHandleNoDup(handle); if (status == OK && *handle == nullptr) { return UNEXPECTED_NULL; } return status; } status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle) const { return readNullableNativeHandleNoDup(handle, false /* embedded */); } void Parcel::closeFileDescriptors() { size_t i = mObjectsSize; if (i > 0) { //ALOGI("Closing file descriptors for %zu objects...", i); } while (i > 0) { i--; const flat_binder_object* flat = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]); if (flat->hdr.type == BINDER_TYPE_FD) { //ALOGI("Closing fd: %ld", flat->handle); close(flat->handle); } } } uintptr_t Parcel::ipcData() const { return reinterpret_cast<uintptr_t>(mData); } size_t Parcel::ipcDataSize() const { return mDataSize > mDataPos ? mDataSize : mDataPos; } uintptr_t Parcel::ipcObjects() const { return reinterpret_cast<uintptr_t>(mObjects); } size_t Parcel::ipcObjectsCount() const { return mObjectsSize; } #define BUFFER_ALIGNMENT_BYTES 8 size_t Parcel::ipcBufferSize() const { size_t totalBuffersSize = 0; // Add size for BINDER_TYPE_PTR size_t i = mObjectsSize; while (i > 0) { i--; const binder_buffer_object* buffer = reinterpret_cast<binder_buffer_object*>(mData+mObjects[i]); if (isBuffer(*buffer)) { /* The binder kernel driver requires each buffer to be 8-byte * aligned */ size_t alignedSize = (buffer->length + (BUFFER_ALIGNMENT_BYTES - 1)) & ~(BUFFER_ALIGNMENT_BYTES - 1); if (alignedSize > SIZE_MAX - totalBuffersSize) { ALOGE("ipcBuffersSize(): invalid buffer sizes."); return 0; } totalBuffersSize += alignedSize; } } return totalBuffersSize; } void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie) { binder_size_t minOffset = 0; freeDataNoInit(); mError = NO_ERROR; mData = const_cast<uint8_t*>(data); mDataSize = mDataCapacity = dataSize; //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid()); mDataPos = 0; ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos); mObjects = const_cast<binder_size_t*>(objects); mObjectsSize = mObjectsCapacity = objectsCount; mNextObjectHint = 0; clearCache(); mNumRef = 0; mOwner = relFunc; mOwnerCookie = relCookie; for (size_t i = 0; i < mObjectsSize; i++) { binder_size_t offset = mObjects[i]; if (offset < minOffset) { ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n", __func__, (uint64_t)offset, (uint64_t)minOffset); mObjectsSize = 0; break; } minOffset = offset + sizeof(flat_binder_object); } scanForFds(); } void Parcel::print(TextOutput& to, uint32_t /*flags*/) const { to << "Parcel("; if (errorCheck() != NO_ERROR) { const status_t err = errorCheck(); to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\""; } else if (dataSize() > 0) { const uint8_t* DATA = data(); to << indent << HexDump(DATA, dataSize()) << dedent; const binder_size_t* OBJS = objects(); const size_t N = objectsCount(); for (size_t i=0; i<N; i++) { const flat_binder_object* flat = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]); if (flat->hdr.type == BINDER_TYPE_PTR) { const binder_buffer_object* buffer = reinterpret_cast<const binder_buffer_object*>(DATA+OBJS[i]); if(isBuffer(*buffer)) { HexDump bufferDump((const uint8_t*)buffer->buffer, (size_t)buffer->length); bufferDump.setSingleLineCutoff(0); to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << " (buffer size " << buffer->length << "):"; to << indent << bufferDump << dedent; } else { to << endl << "Object #" << i << " @ " << (void*)OBJS[i]; } } else { to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": " << TypeCode(flat->hdr.type & 0x7f7f7f00) << " = " << flat->binder; } } } else { to << "NULL"; } to << ")"; } void Parcel::releaseObjects() { const sp<ProcessState> proc(ProcessState::self()); size_t i = mObjectsSize; uint8_t* const data = mData; binder_size_t* const objects = mObjects; while (i > 0) { i--; const flat_binder_object* flat = reinterpret_cast<flat_binder_object*>(data+objects[i]); release_object(proc, *flat, this); } } void Parcel::acquireObjects() { const sp<ProcessState> proc(ProcessState::self()); size_t i = mObjectsSize; uint8_t* const data = mData; binder_size_t* const objects = mObjects; while (i > 0) { i--; const binder_object_header* flat = reinterpret_cast<binder_object_header*>(data+objects[i]); acquire_object(proc, *flat, this); } } void Parcel::freeData() { freeDataNoInit(); initState(); } void Parcel::freeDataNoInit() { if (mOwner) { LOG_ALLOC("Parcel %p: freeing other owner data", this); //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid()); mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie); } else { LOG_ALLOC("Parcel %p: freeing allocated data", this); releaseObjects(); if (mData) { LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); if (mDataCapacity <= gParcelGlobalAllocSize) { gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity; } else { gParcelGlobalAllocSize = 0; } if (gParcelGlobalAllocCount > 0) { gParcelGlobalAllocCount--; } pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); free(mData); } if (mObjects) free(mObjects); } } status_t Parcel::growData(size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } size_t newSize = ((mDataSize+len)*3)/2; return (newSize <= mDataSize) ? (status_t) NO_MEMORY : continueWrite(newSize); } status_t Parcel::restartWrite(size_t desired) { if (desired > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if (mOwner) { freeData(); return continueWrite(desired); } uint8_t* data = (uint8_t*)realloc(mData, desired); if (!data && desired > mDataCapacity) { mError = NO_MEMORY; return NO_MEMORY; } releaseObjects(); if (data) { LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); gParcelGlobalAllocSize += desired; gParcelGlobalAllocSize -= mDataCapacity; if (!mData) { gParcelGlobalAllocCount++; } pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); mData = data; mDataCapacity = desired; } mDataSize = mDataPos = 0; ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize); ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos); free(mObjects); mObjects = NULL; mObjectsSize = mObjectsCapacity = 0; mNextObjectHint = 0; mHasFds = false; clearCache(); mNumRef = 0; mFdsKnown = true; mAllowFds = true; return NO_ERROR; } status_t Parcel::continueWrite(size_t desired) { if (desired > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } // If shrinking, first adjust for any objects that appear // after the new data size. size_t objectsSize = mObjectsSize; if (desired < mDataSize) { if (desired == 0) { objectsSize = 0; } else { while (objectsSize > 0) { if (mObjects[objectsSize-1] < desired) break; objectsSize--; } } } if (mOwner) { // If the size is going to zero, just release the owner's data. if (desired == 0) { freeData(); return NO_ERROR; } // If there is a different owner, we need to take // posession. uint8_t* data = (uint8_t*)malloc(desired); if (!data) { mError = NO_MEMORY; return NO_MEMORY; } binder_size_t* objects = NULL; if (objectsSize) { objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t)); if (!objects) { free(data); mError = NO_MEMORY; return NO_MEMORY; } // Little hack to only acquire references on objects // we will be keeping. size_t oldObjectsSize = mObjectsSize; mObjectsSize = objectsSize; acquireObjects(); mObjectsSize = oldObjectsSize; } if (mData) { memcpy(data, mData, mDataSize < desired ? mDataSize : desired); } if (objects && mObjects) { memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t)); } //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid()); mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie); mOwner = NULL; LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); gParcelGlobalAllocSize += desired; gParcelGlobalAllocCount++; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); mData = data; mObjects = objects; mDataSize = (mDataSize < desired) ? mDataSize : desired; ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize); mDataCapacity = desired; mObjectsSize = mObjectsCapacity = objectsSize; mNextObjectHint = 0; clearCache(); } else if (mData) { if (objectsSize < mObjectsSize) { // Need to release refs on any objects we are dropping. const sp<ProcessState> proc(ProcessState::self()); for (size_t i=objectsSize; i<mObjectsSize; i++) { const flat_binder_object* flat = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]); if (flat->hdr.type == BINDER_TYPE_FD) { // will need to rescan because we may have lopped off the only FDs mFdsKnown = false; } release_object(proc, *flat, this); } binder_size_t* objects = (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t)); if (objects) { mObjects = objects; } mObjectsSize = objectsSize; mNextObjectHint = 0; clearCache(); } // We own the data, so we can just do a realloc(). if (desired > mDataCapacity) { uint8_t* data = (uint8_t*)realloc(mData, desired); if (data) { LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity, desired); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); gParcelGlobalAllocSize += desired; gParcelGlobalAllocSize -= mDataCapacity; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); mData = data; mDataCapacity = desired; } else { mError = NO_MEMORY; return NO_MEMORY; } } else { if (mDataSize > desired) { mDataSize = desired; ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize); } if (mDataPos > desired) { mDataPos = desired; ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos); } } } else { // This is the first data. Easy! uint8_t* data = (uint8_t*)malloc(desired); if (!data) { mError = NO_MEMORY; return NO_MEMORY; } if(!(mDataCapacity == 0 && mObjects == NULL && mObjectsCapacity == 0)) { ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired); } LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); gParcelGlobalAllocSize += desired; gParcelGlobalAllocCount++; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); mData = data; mDataSize = mDataPos = 0; ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize); ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos); mDataCapacity = desired; } return NO_ERROR; } void Parcel::initState() { LOG_ALLOC("Parcel %p: initState", this); mError = NO_ERROR; mData = 0; mDataSize = 0; mDataCapacity = 0; mDataPos = 0; ALOGV("initState Setting data size of %p to %zu", this, mDataSize); ALOGV("initState Setting data pos of %p to %zu", this, mDataPos); mObjects = NULL; mObjectsSize = 0; mObjectsCapacity = 0; mNextObjectHint = 0; mHasFds = false; mFdsKnown = true; mAllowFds = true; mOwner = NULL; clearCache(); mNumRef = 0; // racing multiple init leads only to multiple identical write if (gMaxFds == 0) { struct rlimit result; if (!getrlimit(RLIMIT_NOFILE, &result)) { gMaxFds = (size_t)result.rlim_cur; //ALOGI("parcel fd limit set to %zu", gMaxFds); } else { ALOGW("Unable to getrlimit: %s", strerror(errno)); gMaxFds = 1024; } } } void Parcel::scanForFds() const { bool hasFds = false; for (size_t i=0; i<mObjectsSize; i++) { const flat_binder_object* flat = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]); if (flat->hdr.type == BINDER_TYPE_FD) { hasFds = true; break; } } mHasFds = hasFds; mFdsKnown = true; } }; // namespace hardware }; // namespace android