/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <gtest/gtest.h> #include <utils/StrongPointer.h> #include <utils/RefBase.h> #include <thread> #include <atomic> #include <sched.h> #include <errno.h> // Enhanced version of StrongPointer_test, but using RefBase underneath. using namespace android; static constexpr int NITERS = 1000000; static constexpr int INITIAL_STRONG_VALUE = 1 << 28; // Mirroring RefBase definition. class Foo : public RefBase { public: Foo(bool* deleted_check) : mDeleted(deleted_check) { *mDeleted = false; } ~Foo() { *mDeleted = true; } private: bool* mDeleted; }; TEST(RefBase, StrongMoves) { bool isDeleted; Foo* foo = new Foo(&isDeleted); ASSERT_EQ(INITIAL_STRONG_VALUE, foo->getStrongCount()); ASSERT_FALSE(isDeleted) << "Already deleted...?"; sp<Foo> sp1(foo); wp<Foo> wp1(sp1); ASSERT_EQ(1, foo->getStrongCount()); // Weak count includes both strong and weak references. ASSERT_EQ(2, foo->getWeakRefs()->getWeakCount()); { sp<Foo> sp2 = std::move(sp1); ASSERT_EQ(1, foo->getStrongCount()) << "std::move failed, incremented refcnt"; ASSERT_EQ(nullptr, sp1.get()) << "std::move failed, sp1 is still valid"; // The strong count isn't increasing, let's double check the old object // is properly reset and doesn't early delete sp1 = std::move(sp2); } ASSERT_FALSE(isDeleted) << "deleted too early! still has a reference!"; { // Now let's double check it deletes on time sp<Foo> sp2 = std::move(sp1); } ASSERT_TRUE(isDeleted) << "foo was leaked!"; ASSERT_TRUE(wp1.promote().get() == nullptr); } TEST(RefBase, WeakCopies) { bool isDeleted; Foo* foo = new Foo(&isDeleted); EXPECT_EQ(0, foo->getWeakRefs()->getWeakCount()); ASSERT_FALSE(isDeleted) << "Foo (weak) already deleted...?"; wp<Foo> wp1(foo); EXPECT_EQ(1, foo->getWeakRefs()->getWeakCount()); { wp<Foo> wp2 = wp1; ASSERT_EQ(2, foo->getWeakRefs()->getWeakCount()); } EXPECT_EQ(1, foo->getWeakRefs()->getWeakCount()); ASSERT_FALSE(isDeleted) << "deleted too early! still has a reference!"; wp1 = nullptr; ASSERT_FALSE(isDeleted) << "Deletion on wp destruction should no longer occur"; } // Set up a situation in which we race with visit2AndRremove() to delete // 2 strong references. Bar destructor checks that there are no early // deletions and prior updates are visible to destructor. class Bar : public RefBase { public: Bar(std::atomic<int>* delete_count) : mVisited1(false), mVisited2(false), mDeleteCount(delete_count) { } ~Bar() { EXPECT_TRUE(mVisited1); EXPECT_TRUE(mVisited2); (*mDeleteCount)++; } bool mVisited1; bool mVisited2; private: std::atomic<int>* mDeleteCount; }; static sp<Bar> buffer; static std::atomic<bool> bufferFull(false); // Wait until bufferFull has value val. static inline void waitFor(bool val) { while (bufferFull != val) {} } cpu_set_t otherCpus; // Divide the cpus we're allowed to run on into myCpus and otherCpus. // Set origCpus to the processors we were originally allowed to run on. // Return false if origCpus doesn't include at least processors 0 and 1. static bool setExclusiveCpus(cpu_set_t* origCpus /* out */, cpu_set_t* myCpus /* out */, cpu_set_t* otherCpus) { if (sched_getaffinity(0, sizeof(cpu_set_t), origCpus) != 0) { return false; } if (!CPU_ISSET(0, origCpus) || !CPU_ISSET(1, origCpus)) { return false; } CPU_ZERO(myCpus); CPU_ZERO(otherCpus); CPU_OR(myCpus, myCpus, origCpus); CPU_OR(otherCpus, otherCpus, origCpus); for (unsigned i = 0; i < CPU_SETSIZE; ++i) { // I get the even cores, the other thread gets the odd ones. if (i & 1) { CPU_CLR(i, myCpus); } else { CPU_CLR(i, otherCpus); } } return true; } static void visit2AndRemove() { if (sched_setaffinity(0, sizeof(cpu_set_t), &otherCpus) != 0) { FAIL() << "setaffinity returned:" << errno; } for (int i = 0; i < NITERS; ++i) { waitFor(true); buffer->mVisited2 = true; buffer = nullptr; bufferFull = false; } } TEST(RefBase, RacingDestructors) { cpu_set_t origCpus; cpu_set_t myCpus; // Restrict us and the helper thread to disjoint cpu sets. // This prevents us from getting scheduled against each other, // which would be atrociously slow. if (setExclusiveCpus(&origCpus, &myCpus, &otherCpus)) { std::thread t(visit2AndRemove); std::atomic<int> deleteCount(0); if (sched_setaffinity(0, sizeof(cpu_set_t), &myCpus) != 0) { FAIL() << "setaffinity returned:" << errno; } for (int i = 0; i < NITERS; ++i) { waitFor(false); Bar* bar = new Bar(&deleteCount); sp<Bar> sp3(bar); buffer = sp3; bufferFull = true; ASSERT_TRUE(bar->getStrongCount() >= 1); // Weak count includes strong count. ASSERT_TRUE(bar->getWeakRefs()->getWeakCount() >= 1); sp3->mVisited1 = true; sp3 = nullptr; } t.join(); if (sched_setaffinity(0, sizeof(cpu_set_t), &origCpus) != 0) { FAIL(); } ASSERT_EQ(NITERS, deleteCount) << "Deletions missed!"; } // Otherwise this is slow and probably pointless on a uniprocessor. } static wp<Bar> wpBuffer; static std::atomic<bool> wpBufferFull(false); // Wait until wpBufferFull has value val. static inline void wpWaitFor(bool val) { while (wpBufferFull != val) {} } static void visit3AndRemove() { if (sched_setaffinity(0, sizeof(cpu_set_t), &otherCpus) != 0) { FAIL() << "setaffinity returned:" << errno; } for (int i = 0; i < NITERS; ++i) { wpWaitFor(true); { sp<Bar> sp1 = wpBuffer.promote(); // We implicitly check that sp1 != NULL sp1->mVisited2 = true; } wpBuffer = nullptr; wpBufferFull = false; } } TEST(RefBase, RacingPromotions) { cpu_set_t origCpus; cpu_set_t myCpus; // Restrict us and the helper thread to disjoint cpu sets. // This prevents us from getting scheduled against each other, // which would be atrociously slow. if (setExclusiveCpus(&origCpus, &myCpus, &otherCpus)) { std::thread t(visit3AndRemove); std::atomic<int> deleteCount(0); if (sched_setaffinity(0, sizeof(cpu_set_t), &myCpus) != 0) { FAIL() << "setaffinity returned:" << errno; } for (int i = 0; i < NITERS; ++i) { Bar* bar = new Bar(&deleteCount); wp<Bar> wp1(bar); bar->mVisited1 = true; if (i % (NITERS / 10) == 0) { // Do this rarely, since it generates a log message. wp1 = nullptr; // No longer destroys the object. wp1 = bar; } wpBuffer = wp1; ASSERT_EQ(bar->getWeakRefs()->getWeakCount(), 2); wpBufferFull = true; // Promotion races with that in visit3AndRemove. // This may or may not succeed, but it shouldn't interfere with // the concurrent one. sp<Bar> sp1 = wp1.promote(); wpWaitFor(false); // Waits for other thread to drop strong pointer. sp1 = nullptr; // No strong pointers here. sp1 = wp1.promote(); ASSERT_EQ(sp1.get(), nullptr) << "Dead wp promotion succeeded!"; } t.join(); if (sched_setaffinity(0, sizeof(cpu_set_t), &origCpus) != 0) { FAIL(); } ASSERT_EQ(NITERS, deleteCount) << "Deletions missed!"; } // Otherwise this is slow and probably pointless on a uniprocessor. }