/* * sync.c * * Copyright 2012 Google, Inc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <errno.h> #include <fcntl.h> #include <malloc.h> #include <poll.h> #include <stdatomic.h> #include <stdint.h> #include <string.h> #include <sys/ioctl.h> #include <sys/stat.h> #include <sys/types.h> #include <android/sync.h> /* Legacy Sync API */ struct sync_legacy_merge_data { int32_t fd2; char name[32]; int32_t fence; }; /** * DOC: SYNC_IOC_MERGE - merge two fences * * Takes a struct sync_merge_data. Creates a new fence containing copies of * the sync_pts in both the calling fd and sync_merge_data.fd2. Returns the * new fence's fd in sync_merge_data.fence * * This is the legacy version of the Sync API before the de-stage that happened * on Linux kernel 4.7. */ #define SYNC_IOC_LEGACY_MERGE _IOWR(SYNC_IOC_MAGIC, 1, \ struct sync_legacy_merge_data) /** * DOC: SYNC_IOC_LEGACY_FENCE_INFO - get detailed information on a fence * * Takes a struct sync_fence_info_data with extra space allocated for pt_info. * Caller should write the size of the buffer into len. On return, len is * updated to reflect the total size of the sync_fence_info_data including * pt_info. * * pt_info is a buffer containing sync_pt_infos for every sync_pt in the fence. * To iterate over the sync_pt_infos, use the sync_pt_info.len field. * * This is the legacy version of the Sync API before the de-stage that happened * on Linux kernel 4.7. */ #define SYNC_IOC_LEGACY_FENCE_INFO _IOWR(SYNC_IOC_MAGIC, 2,\ struct sync_fence_info_data) /* SW Sync API */ struct sw_sync_create_fence_data { __u32 value; char name[32]; __s32 fence; }; #define SW_SYNC_IOC_MAGIC 'W' #define SW_SYNC_IOC_CREATE_FENCE _IOWR(SW_SYNC_IOC_MAGIC, 0, struct sw_sync_create_fence_data) #define SW_SYNC_IOC_INC _IOW(SW_SYNC_IOC_MAGIC, 1, __u32) // --------------------------------------------------------------------------- // Support for caching the sync uapi version. // // This library supports both legacy (android/staging) uapi and modern // (mainline) sync uapi. Library calls first try one uapi, and if that fails, // try the other. Since any given kernel only supports one uapi version, after // the first successful syscall we know what the kernel supports and can skip // trying the other. enum uapi_version { UAPI_UNKNOWN, UAPI_MODERN, UAPI_LEGACY }; static atomic_int g_uapi_version = ATOMIC_VAR_INIT(UAPI_UNKNOWN); // --------------------------------------------------------------------------- int sync_wait(int fd, int timeout) { struct pollfd fds; int ret; if (fd < 0) { errno = EINVAL; return -1; } fds.fd = fd; fds.events = POLLIN; do { ret = poll(&fds, 1, timeout); if (ret > 0) { if (fds.revents & (POLLERR | POLLNVAL)) { errno = EINVAL; return -1; } return 0; } else if (ret == 0) { errno = ETIME; return -1; } } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); return ret; } static int legacy_sync_merge(const char *name, int fd1, int fd2) { struct sync_legacy_merge_data data; int ret; data.fd2 = fd2; strlcpy(data.name, name, sizeof(data.name)); ret = ioctl(fd1, SYNC_IOC_LEGACY_MERGE, &data); if (ret < 0) return ret; return data.fence; } static int modern_sync_merge(const char *name, int fd1, int fd2) { struct sync_merge_data data; int ret; data.fd2 = fd2; strlcpy(data.name, name, sizeof(data.name)); data.flags = 0; data.pad = 0; ret = ioctl(fd1, SYNC_IOC_MERGE, &data); if (ret < 0) return ret; return data.fence; } int sync_merge(const char *name, int fd1, int fd2) { int uapi; int ret; uapi = atomic_load_explicit(&g_uapi_version, memory_order_acquire); if (uapi == UAPI_MODERN || uapi == UAPI_UNKNOWN) { ret = modern_sync_merge(name, fd1, fd2); if (ret >= 0 || errno != ENOTTY) { if (ret >= 0 && uapi == UAPI_UNKNOWN) { atomic_store_explicit(&g_uapi_version, UAPI_MODERN, memory_order_release); } return ret; } } ret = legacy_sync_merge(name, fd1, fd2); if (ret >= 0 && uapi == UAPI_UNKNOWN) { atomic_store_explicit(&g_uapi_version, UAPI_LEGACY, memory_order_release); } return ret; } static struct sync_fence_info_data *legacy_sync_fence_info(int fd) { struct sync_fence_info_data *legacy_info; struct sync_pt_info *legacy_pt_info; int err; legacy_info = malloc(4096); if (legacy_info == NULL) return NULL; legacy_info->len = 4096; err = ioctl(fd, SYNC_IOC_LEGACY_FENCE_INFO, legacy_info); if (err < 0) { free(legacy_info); return NULL; } return legacy_info; } static struct sync_file_info *modern_sync_file_info(int fd) { struct sync_file_info local_info; struct sync_file_info *info; int err; memset(&local_info, 0, sizeof(local_info)); err = ioctl(fd, SYNC_IOC_FILE_INFO, &local_info); if (err < 0) return NULL; info = calloc(1, sizeof(struct sync_file_info) + local_info.num_fences * sizeof(struct sync_fence_info)); if (!info) return NULL; info->num_fences = local_info.num_fences; info->sync_fence_info = (__u64)(uintptr_t)(info + 1); err = ioctl(fd, SYNC_IOC_FILE_INFO, info); if (err < 0) { free(info); return NULL; } return info; } static struct sync_fence_info_data *sync_file_info_to_legacy_fence_info( const struct sync_file_info *info) { struct sync_fence_info_data *legacy_info; struct sync_pt_info *legacy_pt_info; const struct sync_fence_info *fence_info = sync_get_fence_info(info); const uint32_t num_fences = info->num_fences; legacy_info = malloc(4096); if (legacy_info == NULL) return NULL; legacy_info->len = sizeof(*legacy_info) + num_fences * sizeof(struct sync_pt_info); strlcpy(legacy_info->name, info->name, sizeof(legacy_info->name)); legacy_info->status = info->status; legacy_pt_info = (struct sync_pt_info *)legacy_info->pt_info; for (uint32_t i = 0; i < num_fences; i++) { legacy_pt_info[i].len = sizeof(*legacy_pt_info); strlcpy(legacy_pt_info[i].obj_name, fence_info[i].obj_name, sizeof(legacy_pt_info->obj_name)); strlcpy(legacy_pt_info[i].driver_name, fence_info[i].driver_name, sizeof(legacy_pt_info->driver_name)); legacy_pt_info[i].status = fence_info[i].status; legacy_pt_info[i].timestamp_ns = fence_info[i].timestamp_ns; } return legacy_info; } static struct sync_file_info* legacy_fence_info_to_sync_file_info( struct sync_fence_info_data *legacy_info) { struct sync_file_info *info; struct sync_pt_info *pt; struct sync_fence_info *fence; size_t num_fences; int err; pt = NULL; num_fences = 0; while ((pt = sync_pt_info(legacy_info, pt)) != NULL) num_fences++; info = calloc(1, sizeof(struct sync_file_info) + num_fences * sizeof(struct sync_fence_info)); if (!info) { return NULL; } info->sync_fence_info = (__u64)(uintptr_t)(info + 1); strlcpy(info->name, legacy_info->name, sizeof(info->name)); info->status = legacy_info->status; info->num_fences = num_fences; pt = NULL; fence = sync_get_fence_info(info); while ((pt = sync_pt_info(legacy_info, pt)) != NULL) { strlcpy(fence->obj_name, pt->obj_name, sizeof(fence->obj_name)); strlcpy(fence->driver_name, pt->driver_name, sizeof(fence->driver_name)); fence->status = pt->status; fence->timestamp_ns = pt->timestamp_ns; fence++; } return info; } struct sync_fence_info_data *sync_fence_info(int fd) { struct sync_fence_info_data *legacy_info; int uapi; uapi = atomic_load_explicit(&g_uapi_version, memory_order_acquire); if (uapi == UAPI_LEGACY || uapi == UAPI_UNKNOWN) { legacy_info = legacy_sync_fence_info(fd); if (legacy_info || errno != ENOTTY) { if (legacy_info && uapi == UAPI_UNKNOWN) { atomic_store_explicit(&g_uapi_version, UAPI_LEGACY, memory_order_release); } return legacy_info; } } struct sync_file_info* file_info; file_info = modern_sync_file_info(fd); if (!file_info) return NULL; if (uapi == UAPI_UNKNOWN) { atomic_store_explicit(&g_uapi_version, UAPI_MODERN, memory_order_release); } legacy_info = sync_file_info_to_legacy_fence_info(file_info); sync_file_info_free(file_info); return legacy_info; } struct sync_file_info* sync_file_info(int32_t fd) { struct sync_file_info *info; int uapi; uapi = atomic_load_explicit(&g_uapi_version, memory_order_acquire); if (uapi == UAPI_MODERN || uapi == UAPI_UNKNOWN) { info = modern_sync_file_info(fd); if (info || errno != ENOTTY) { if (info && uapi == UAPI_UNKNOWN) { atomic_store_explicit(&g_uapi_version, UAPI_MODERN, memory_order_release); } return info; } } struct sync_fence_info_data *legacy_info; legacy_info = legacy_sync_fence_info(fd); if (!legacy_info) return NULL; if (uapi == UAPI_UNKNOWN) { atomic_store_explicit(&g_uapi_version, UAPI_LEGACY, memory_order_release); } info = legacy_fence_info_to_sync_file_info(legacy_info); sync_fence_info_free(legacy_info); return info; } struct sync_pt_info *sync_pt_info(struct sync_fence_info_data *info, struct sync_pt_info *itr) { if (itr == NULL) itr = (struct sync_pt_info *) info->pt_info; else itr = (struct sync_pt_info *) ((__u8 *)itr + itr->len); if ((__u8 *)itr - (__u8 *)info >= (int)info->len) return NULL; return itr; } void sync_fence_info_free(struct sync_fence_info_data *info) { free(info); } void sync_file_info_free(struct sync_file_info *info) { free(info); } int sw_sync_timeline_create(void) { int ret; ret = open("/sys/kernel/debug/sync/sw_sync", O_RDWR); if (ret < 0) ret = open("/dev/sw_sync", O_RDWR); return ret; } int sw_sync_timeline_inc(int fd, unsigned count) { __u32 arg = count; return ioctl(fd, SW_SYNC_IOC_INC, &arg); } int sw_sync_fence_create(int fd, const char *name, unsigned value) { struct sw_sync_create_fence_data data; int err; data.value = value; strlcpy(data.name, name, sizeof(data.name)); err = ioctl(fd, SW_SYNC_IOC_CREATE_FENCE, &data); if (err < 0) return err; return data.fence; }