/* libs/pixelflinger/codeflinger/MIPS64Assembler.cpp ** ** Copyright 2015, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ /* MIPS64 assembler and ARM->MIPS64 assembly translator ** ** The approach is utilize MIPSAssembler generator, using inherited MIPS64Assembler ** that overrides just the specific MIPS64r6 instructions. ** For now ArmToMips64Assembler is copied over from ArmToMipsAssembler class, ** changing some MIPS64r6 related stuff. ** */ #define LOG_TAG "MIPS64Assembler" #include <stdio.h> #include <stdlib.h> #include <cutils/properties.h> #include <log/log.h> #include <private/pixelflinger/ggl_context.h> #include "MIPS64Assembler.h" #include "CodeCache.h" #include "mips64_disassem.h" #define NOT_IMPLEMENTED() LOG_ALWAYS_FATAL("Arm instruction %s not yet implemented\n", __func__) #define __unused __attribute__((__unused__)) // ---------------------------------------------------------------------------- namespace android { // ---------------------------------------------------------------------------- #if 0 #pragma mark - #pragma mark ArmToMips64Assembler... #endif ArmToMips64Assembler::ArmToMips64Assembler(const sp<Assembly>& assembly, char *abuf, int linesz, int instr_count) : ARMAssemblerInterface(), mArmDisassemblyBuffer(abuf), mArmLineLength(linesz), mArmInstrCount(instr_count), mInum(0), mAssembly(assembly) { mMips = new MIPS64Assembler(assembly, this); mArmPC = (uint32_t **) malloc(ARM_MAX_INSTUCTIONS * sizeof(uint32_t *)); init_conditional_labels(); } ArmToMips64Assembler::ArmToMips64Assembler(void* assembly) : ARMAssemblerInterface(), mArmDisassemblyBuffer(NULL), mInum(0), mAssembly(NULL) { mMips = new MIPS64Assembler(assembly, this); mArmPC = (uint32_t **) malloc(ARM_MAX_INSTUCTIONS * sizeof(uint32_t *)); init_conditional_labels(); } ArmToMips64Assembler::~ArmToMips64Assembler() { delete mMips; free((void *) mArmPC); } uint32_t* ArmToMips64Assembler::pc() const { return mMips->pc(); } uint32_t* ArmToMips64Assembler::base() const { return mMips->base(); } void ArmToMips64Assembler::reset() { cond.labelnum = 0; mInum = 0; mMips->reset(); } int ArmToMips64Assembler::getCodegenArch() { return CODEGEN_ARCH_MIPS64; } void ArmToMips64Assembler::comment(const char* string) { mMips->comment(string); } void ArmToMips64Assembler::label(const char* theLabel) { mMips->label(theLabel); } void ArmToMips64Assembler::disassemble(const char* name) { mMips->disassemble(name); } void ArmToMips64Assembler::init_conditional_labels() { int i; for (i=0;i<99; ++i) { sprintf(cond.label[i], "cond_%d", i); } } #if 0 #pragma mark - #pragma mark Prolog/Epilog & Generate... #endif void ArmToMips64Assembler::prolog() { mArmPC[mInum++] = pc(); // save starting PC for this instr mMips->DADDIU(R_sp, R_sp, -(5 * 8)); mMips->SD(R_s0, R_sp, 0); mMips->SD(R_s1, R_sp, 8); mMips->SD(R_s2, R_sp, 16); mMips->SD(R_s3, R_sp, 24); mMips->SD(R_s4, R_sp, 32); mMips->MOVE(R_v0, R_a0); // move context * passed in a0 to v0 (arm r0) } void ArmToMips64Assembler::epilog(uint32_t touched __unused) { mArmPC[mInum++] = pc(); // save starting PC for this instr mMips->LD(R_s0, R_sp, 0); mMips->LD(R_s1, R_sp, 8); mMips->LD(R_s2, R_sp, 16); mMips->LD(R_s3, R_sp, 24); mMips->LD(R_s4, R_sp, 32); mMips->DADDIU(R_sp, R_sp, (5 * 8)); mMips->JR(R_ra); } int ArmToMips64Assembler::generate(const char* name) { return mMips->generate(name); } void ArmToMips64Assembler::fix_branches() { mMips->fix_branches(); } uint32_t* ArmToMips64Assembler::pcForLabel(const char* label) { return mMips->pcForLabel(label); } void ArmToMips64Assembler::set_condition(int mode, int R1, int R2) { if (mode == 2) { cond.type = SBIT_COND; } else { cond.type = CMP_COND; } cond.r1 = R1; cond.r2 = R2; } //---------------------------------------------------------- #if 0 #pragma mark - #pragma mark Addressing modes & shifters... #endif // do not need this for MIPS, but it is in the Interface (virtual) int ArmToMips64Assembler::buildImmediate( uint32_t immediate, uint32_t& rot, uint32_t& imm) { // for MIPS, any 32-bit immediate is OK rot = 0; imm = immediate; return 0; } // shifters... bool ArmToMips64Assembler::isValidImmediate(uint32_t immediate __unused) { // for MIPS, any 32-bit immediate is OK return true; } uint32_t ArmToMips64Assembler::imm(uint32_t immediate) { amode.value = immediate; return AMODE_IMM; } uint32_t ArmToMips64Assembler::reg_imm(int Rm, int type, uint32_t shift) { amode.reg = Rm; amode.stype = type; amode.value = shift; return AMODE_REG_IMM; } uint32_t ArmToMips64Assembler::reg_rrx(int Rm __unused) { // reg_rrx mode is not used in the GLLAssember code at this time return AMODE_UNSUPPORTED; } uint32_t ArmToMips64Assembler::reg_reg(int Rm __unused, int type __unused, int Rs __unused) { // reg_reg mode is not used in the GLLAssember code at this time return AMODE_UNSUPPORTED; } // addressing modes... // LDR(B)/STR(B)/PLD (immediate and Rm can be negative, which indicate U=0) uint32_t ArmToMips64Assembler::immed12_pre(int32_t immed12, int W) { LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800, "LDR(B)/STR(B)/PLD immediate too big (%08x)", immed12); amode.value = immed12; amode.writeback = W; return AMODE_IMM_12_PRE; } uint32_t ArmToMips64Assembler::immed12_post(int32_t immed12) { LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800, "LDR(B)/STR(B)/PLD immediate too big (%08x)", immed12); amode.value = immed12; return AMODE_IMM_12_POST; } uint32_t ArmToMips64Assembler::reg_scale_pre(int Rm, int type, uint32_t shift, int W) { LOG_ALWAYS_FATAL_IF(W | type | shift, "reg_scale_pre adv modes not yet implemented"); amode.reg = Rm; // amode.stype = type; // more advanced modes not used in GGLAssembler yet // amode.value = shift; // amode.writeback = W; return AMODE_REG_SCALE_PRE; } uint32_t ArmToMips64Assembler::reg_scale_post(int Rm __unused, int type __unused, uint32_t shift __unused) { LOG_ALWAYS_FATAL("adr mode reg_scale_post not yet implemented\n"); return AMODE_UNSUPPORTED; } // LDRH/LDRSB/LDRSH/STRH (immediate and Rm can be negative, which indicate U=0) uint32_t ArmToMips64Assembler::immed8_pre(int32_t immed8, int W __unused) { LOG_ALWAYS_FATAL("adr mode immed8_pre not yet implemented\n"); LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100, "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)", immed8); return AMODE_IMM_8_PRE; } uint32_t ArmToMips64Assembler::immed8_post(int32_t immed8) { LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100, "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)", immed8); amode.value = immed8; return AMODE_IMM_8_POST; } uint32_t ArmToMips64Assembler::reg_pre(int Rm, int W) { LOG_ALWAYS_FATAL_IF(W, "reg_pre writeback not yet implemented"); amode.reg = Rm; return AMODE_REG_PRE; } uint32_t ArmToMips64Assembler::reg_post(int Rm __unused) { LOG_ALWAYS_FATAL("adr mode reg_post not yet implemented\n"); return AMODE_UNSUPPORTED; } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #pragma mark Data Processing... #endif // check if the operand registers from a previous CMP or S-bit instruction // would be overwritten by this instruction. If so, move the value to a // safe register. // Note that we cannot tell at _this_ instruction time if a future (conditional) // instruction will _also_ use this value (a defect of the simple 1-pass, one- // instruction-at-a-time translation). Therefore we must be conservative and // save the value before it is overwritten. This costs an extra MOVE instr. void ArmToMips64Assembler::protectConditionalOperands(int Rd) { if (Rd == cond.r1) { mMips->MOVE(R_cmp, cond.r1); cond.r1 = R_cmp; } if (cond.type == CMP_COND && Rd == cond.r2) { mMips->MOVE(R_cmp2, cond.r2); cond.r2 = R_cmp2; } } // interprets the addressing mode, and generates the common code // used by the majority of data-processing ops. Many MIPS instructions // have a register-based form and a different immediate form. See // opAND below for an example. (this could be inlined) // // this works with the imm(), reg_imm() methods above, which are directly // called by the GLLAssembler. // note: _signed parameter defaults to false (un-signed) // note: tmpReg parameter defaults to 1, MIPS register AT int ArmToMips64Assembler::dataProcAdrModes(int op, int& source, bool _signed, int tmpReg) { if (op < AMODE_REG) { source = op; return SRC_REG; } else if (op == AMODE_IMM) { if ((!_signed && amode.value > 0xffff) || (_signed && ((int)amode.value < -32768 || (int)amode.value > 32767) )) { mMips->LUI(tmpReg, (amode.value >> 16)); if (amode.value & 0x0000ffff) { mMips->ORI(tmpReg, tmpReg, (amode.value & 0x0000ffff)); } source = tmpReg; return SRC_REG; } else { source = amode.value; return SRC_IMM; } } else if (op == AMODE_REG_IMM) { switch (amode.stype) { case LSL: mMips->SLL(tmpReg, amode.reg, amode.value); break; case LSR: mMips->SRL(tmpReg, amode.reg, amode.value); break; case ASR: mMips->SRA(tmpReg, amode.reg, amode.value); break; case ROR: mMips->ROTR(tmpReg, amode.reg, amode.value); break; } source = tmpReg; return SRC_REG; } else { // adr mode RRX is not used in GGL Assembler at this time // we are screwed, this should be exception, assert-fail or something LOG_ALWAYS_FATAL("adr mode reg_rrx not yet implemented\n"); return SRC_ERROR; } } void ArmToMips64Assembler::dataProcessing(int opcode, int cc, int s, int Rd, int Rn, uint32_t Op2) { int src; // src is modified by dataProcAdrModes() - passed as int& if (cc != AL) { protectConditionalOperands(Rd); // the branch tests register(s) set by prev CMP or instr with 'S' bit set // inverse the condition to jump past this conditional instruction ArmToMips64Assembler::B(cc^1, cond.label[++cond.labelnum]); } else { mArmPC[mInum++] = pc(); // save starting PC for this instr } switch (opcode) { case opAND: if (dataProcAdrModes(Op2, src) == SRC_REG) { mMips->AND(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->ANDI(Rd, Rn, src); } break; case opADD: // set "signed" to true for adr modes if (dataProcAdrModes(Op2, src, true) == SRC_REG) { mMips->ADDU(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->ADDIU(Rd, Rn, src); } break; case opSUB: // set "signed" to true for adr modes if (dataProcAdrModes(Op2, src, true) == SRC_REG) { mMips->SUBU(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->SUBIU(Rd, Rn, src); } break; case opADD64: // set "signed" to true for adr modes if (dataProcAdrModes(Op2, src, true) == SRC_REG) { mMips->DADDU(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->DADDIU(Rd, Rn, src); } break; case opSUB64: // set "signed" to true for adr modes if (dataProcAdrModes(Op2, src, true) == SRC_REG) { mMips->DSUBU(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->DSUBIU(Rd, Rn, src); } break; case opEOR: if (dataProcAdrModes(Op2, src) == SRC_REG) { mMips->XOR(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->XORI(Rd, Rn, src); } break; case opORR: if (dataProcAdrModes(Op2, src) == SRC_REG) { mMips->OR(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->ORI(Rd, Rn, src); } break; case opBIC: if (dataProcAdrModes(Op2, src) == SRC_IMM) { // if we are 16-bit imnmediate, load to AT reg mMips->ORI(R_at, 0, src); src = R_at; } mMips->NOT(R_at, src); mMips->AND(Rd, Rn, R_at); break; case opRSB: if (dataProcAdrModes(Op2, src) == SRC_IMM) { // if we are 16-bit imnmediate, load to AT reg mMips->ORI(R_at, 0, src); src = R_at; } mMips->SUBU(Rd, src, Rn); // subu with the parameters reversed break; case opMOV: if (Op2 < AMODE_REG) { // op2 is reg # in this case mMips->MOVE(Rd, Op2); } else if (Op2 == AMODE_IMM) { if (amode.value > 0xffff) { mMips->LUI(Rd, (amode.value >> 16)); if (amode.value & 0x0000ffff) { mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff)); } } else { mMips->ORI(Rd, 0, amode.value); } } else if (Op2 == AMODE_REG_IMM) { switch (amode.stype) { case LSL: mMips->SLL(Rd, amode.reg, amode.value); break; case LSR: mMips->SRL(Rd, amode.reg, amode.value); break; case ASR: mMips->SRA(Rd, amode.reg, amode.value); break; case ROR: mMips->ROTR(Rd, amode.reg, amode.value); break; } } else { // adr mode RRX is not used in GGL Assembler at this time mMips->UNIMPL(); } break; case opMVN: // this is a 1's complement: NOT if (Op2 < AMODE_REG) { // op2 is reg # in this case mMips->NOR(Rd, Op2, 0); // NOT is NOR with 0 break; } else if (Op2 == AMODE_IMM) { if (amode.value > 0xffff) { mMips->LUI(Rd, (amode.value >> 16)); if (amode.value & 0x0000ffff) { mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff)); } } else { mMips->ORI(Rd, 0, amode.value); } } else if (Op2 == AMODE_REG_IMM) { switch (amode.stype) { case LSL: mMips->SLL(Rd, amode.reg, amode.value); break; case LSR: mMips->SRL(Rd, amode.reg, amode.value); break; case ASR: mMips->SRA(Rd, amode.reg, amode.value); break; case ROR: mMips->ROTR(Rd, amode.reg, amode.value); break; } } else { // adr mode RRX is not used in GGL Assembler at this time mMips->UNIMPL(); } mMips->NOR(Rd, Rd, 0); // NOT is NOR with 0 break; case opCMP: // Either operand of a CMP instr could get overwritten by a subsequent // conditional instruction, which is ok, _UNLESS_ there is a _second_ // conditional instruction. Under MIPS, this requires doing the comparison // again (SLT), and the original operands must be available. (and this // pattern of multiple conditional instructions from same CMP _is_ used // in GGL-Assembler) // // For now, if a conditional instr overwrites the operands, we will // move them to dedicated temp regs. This is ugly, and inefficient, // and should be optimized. // // WARNING: making an _Assumption_ that CMP operand regs will NOT be // trashed by intervening NON-conditional instructions. In the general // case this is legal, but it is NOT currently done in GGL-Assembler. cond.type = CMP_COND; cond.r1 = Rn; if (dataProcAdrModes(Op2, src, false, R_cmp2) == SRC_REG) { cond.r2 = src; } else { // adr mode was SRC_IMM mMips->ORI(R_cmp2, R_zero, src); cond.r2 = R_cmp2; } break; case opTST: case opTEQ: case opCMN: case opADC: case opSBC: case opRSC: mMips->UNIMPL(); // currently unused in GGL Assembler code break; } if (cc != AL) { mMips->label(cond.label[cond.labelnum]); } if (s && opcode != opCMP) { cond.type = SBIT_COND; cond.r1 = Rd; } } #if 0 #pragma mark - #pragma mark Multiply... #endif // multiply, accumulate void ArmToMips64Assembler::MLA(int cc __unused, int s, int Rd, int Rm, int Rs, int Rn) { //ALOGW("MLA"); mArmPC[mInum++] = pc(); // save starting PC for this instr mMips->MUL(R_at, Rm, Rs); mMips->ADDU(Rd, R_at, Rn); if (s) { cond.type = SBIT_COND; cond.r1 = Rd; } } void ArmToMips64Assembler::MUL(int cc __unused, int s, int Rd, int Rm, int Rs) { mArmPC[mInum++] = pc(); mMips->MUL(Rd, Rm, Rs); if (s) { cond.type = SBIT_COND; cond.r1 = Rd; } } void ArmToMips64Assembler::UMULL(int cc __unused, int s, int RdLo, int RdHi, int Rm, int Rs) { mArmPC[mInum++] = pc(); mMips->MUH(RdHi, Rm, Rs); mMips->MUL(RdLo, Rm, Rs); if (s) { cond.type = SBIT_COND; cond.r1 = RdHi; // BUG... LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n"); } } void ArmToMips64Assembler::UMUAL(int cc __unused, int s, int RdLo __unused, int RdHi, int Rm __unused, int Rs __unused) { LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, "UMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); // *mPC++ = (cc<<28) | (1<<23) | (1<<21) | (s<<20) | // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); if (s) { cond.type = SBIT_COND; cond.r1 = RdHi; // BUG... LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n"); } } void ArmToMips64Assembler::SMULL(int cc __unused, int s, int RdLo __unused, int RdHi, int Rm __unused, int Rs __unused) { LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, "SMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); // *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (s<<20) | // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); if (s) { cond.type = SBIT_COND; cond.r1 = RdHi; // BUG... LOG_ALWAYS_FATAL("Condition on SMULL must be on 64-bit result\n"); } } void ArmToMips64Assembler::SMUAL(int cc __unused, int s, int RdLo __unused, int RdHi, int Rm __unused, int Rs __unused) { LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, "SMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); // *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (1<<21) | (s<<20) | // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); if (s) { cond.type = SBIT_COND; cond.r1 = RdHi; // BUG... LOG_ALWAYS_FATAL("Condition on SMUAL must be on 64-bit result\n"); } } #if 0 #pragma mark - #pragma mark Branches... #endif // branches... void ArmToMips64Assembler::B(int cc, const char* label) { mArmPC[mInum++] = pc(); if (cond.type == SBIT_COND) { cond.r2 = R_zero; } switch(cc) { case EQ: mMips->BEQ(cond.r1, cond.r2, label); break; case NE: mMips->BNE(cond.r1, cond.r2, label); break; case HS: mMips->BGEU(cond.r1, cond.r2, label); break; case LO: mMips->BLTU(cond.r1, cond.r2, label); break; case MI: mMips->BLT(cond.r1, cond.r2, label); break; case PL: mMips->BGE(cond.r1, cond.r2, label); break; case HI: mMips->BGTU(cond.r1, cond.r2, label); break; case LS: mMips->BLEU(cond.r1, cond.r2, label); break; case GE: mMips->BGE(cond.r1, cond.r2, label); break; case LT: mMips->BLT(cond.r1, cond.r2, label); break; case GT: mMips->BGT(cond.r1, cond.r2, label); break; case LE: mMips->BLE(cond.r1, cond.r2, label); break; case AL: mMips->B(label); break; case NV: /* B Never - no instruction */ break; case VS: case VC: default: LOG_ALWAYS_FATAL("Unsupported cc: %02x\n", cc); break; } } void ArmToMips64Assembler::BL(int cc __unused, const char* label __unused) { LOG_ALWAYS_FATAL("branch-and-link not supported yet\n"); mArmPC[mInum++] = pc(); } // no use for Branches with integer PC, but they're in the Interface class .... void ArmToMips64Assembler::B(int cc __unused, uint32_t* to_pc __unused) { LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); mArmPC[mInum++] = pc(); } void ArmToMips64Assembler::BL(int cc __unused, uint32_t* to_pc __unused) { LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); mArmPC[mInum++] = pc(); } void ArmToMips64Assembler::BX(int cc __unused, int Rn __unused) { LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); mArmPC[mInum++] = pc(); } #if 0 #pragma mark - #pragma mark Data Transfer... #endif // data transfer... void ArmToMips64Assembler::LDR(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert LDR via Arm SP to LW via Mips SP } mMips->LW(Rd, Rn, amode.value); if (amode.writeback) { // OPTIONAL writeback on pre-index mode mMips->DADDIU(Rn, Rn, amode.value); } break; case AMODE_IMM_12_POST: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert STR thru Arm SP to STR thru Mips SP } mMips->LW(Rd, Rn, 0); mMips->DADDIU(Rn, Rn, amode.value); break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->DADDU(R_at, Rn, amode.reg); mMips->LW(Rd, R_at, 0); break; } } void ArmToMips64Assembler::LDRB(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: mMips->LBU(Rd, Rn, amode.value); if (amode.writeback) { // OPTIONAL writeback on pre-index mode mMips->DADDIU(Rn, Rn, amode.value); } break; case AMODE_IMM_12_POST: mMips->LBU(Rd, Rn, 0); mMips->DADDIU(Rn, Rn, amode.value); break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->DADDU(R_at, Rn, amode.reg); mMips->LBU(Rd, R_at, 0); break; } } void ArmToMips64Assembler::STR(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert STR thru Arm SP to SW thru Mips SP } if (amode.writeback) { // OPTIONAL writeback on pre-index mode // If we will writeback, then update the index reg, then store. // This correctly handles stack-push case. mMips->DADDIU(Rn, Rn, amode.value); mMips->SW(Rd, Rn, 0); } else { // No writeback so store offset by value mMips->SW(Rd, Rn, amode.value); } break; case AMODE_IMM_12_POST: mMips->SW(Rd, Rn, 0); mMips->DADDIU(Rn, Rn, amode.value); // post index always writes back break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->DADDU(R_at, Rn, amode.reg); mMips->SW(Rd, R_at, 0); break; } } void ArmToMips64Assembler::STRB(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: mMips->SB(Rd, Rn, amode.value); if (amode.writeback) { // OPTIONAL writeback on pre-index mode mMips->DADDIU(Rn, Rn, amode.value); } break; case AMODE_IMM_12_POST: mMips->SB(Rd, Rn, 0); mMips->DADDIU(Rn, Rn, amode.value); break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->DADDU(R_at, Rn, amode.reg); mMips->SB(Rd, R_at, 0); break; } } void ArmToMips64Assembler::LDRH(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed8_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; // fall thru to next case .... case AMODE_IMM_8_PRE: // no support yet for writeback mMips->LHU(Rd, Rn, amode.value); break; case AMODE_IMM_8_POST: mMips->LHU(Rd, Rn, 0); mMips->DADDIU(Rn, Rn, amode.value); break; case AMODE_REG_PRE: // we only support simple base +/- index if (amode.reg >= 0) { mMips->DADDU(R_at, Rn, amode.reg); } else { mMips->DSUBU(R_at, Rn, abs(amode.reg)); } mMips->LHU(Rd, R_at, 0); break; } } void ArmToMips64Assembler::LDRSB(int cc __unused, int Rd __unused, int Rn __unused, uint32_t offset __unused) { mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::LDRSH(int cc __unused, int Rd __unused, int Rn __unused, uint32_t offset __unused) { mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::STRH(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed8_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; // fall thru to next case .... case AMODE_IMM_8_PRE: // no support yet for writeback mMips->SH(Rd, Rn, amode.value); break; case AMODE_IMM_8_POST: mMips->SH(Rd, Rn, 0); mMips->DADDIU(Rn, Rn, amode.value); break; case AMODE_REG_PRE: // we only support simple base +/- index if (amode.reg >= 0) { mMips->DADDU(R_at, Rn, amode.reg); } else { mMips->DSUBU(R_at, Rn, abs(amode.reg)); } mMips->SH(Rd, R_at, 0); break; } } #if 0 #pragma mark - #pragma mark Block Data Transfer... #endif // block data transfer... void ArmToMips64Assembler::LDM(int cc __unused, int dir __unused, int Rn __unused, int W __unused, uint32_t reg_list __unused) { // ED FD EA FA IB IA DB DA // const uint8_t P[8] = { 1, 0, 1, 0, 1, 0, 1, 0 }; // const uint8_t U[8] = { 1, 1, 0, 0, 1, 1, 0, 0 }; // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) | // (uint32_t(U[dir])<<23) | (1<<20) | (W<<21) | (Rn<<16) | reg_list; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::STM(int cc __unused, int dir __unused, int Rn __unused, int W __unused, uint32_t reg_list __unused) { // FA EA FD ED IB IA DB DA // const uint8_t P[8] = { 0, 1, 0, 1, 1, 0, 1, 0 }; // const uint8_t U[8] = { 0, 0, 1, 1, 1, 1, 0, 0 }; // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) | // (uint32_t(U[dir])<<23) | (0<<20) | (W<<21) | (Rn<<16) | reg_list; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } #if 0 #pragma mark - #pragma mark Special... #endif // special... void ArmToMips64Assembler::SWP(int cc __unused, int Rn __unused, int Rd __unused, int Rm __unused) { // *mPC++ = (cc<<28) | (2<<23) | (Rn<<16) | (Rd << 12) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::SWPB(int cc __unused, int Rn __unused, int Rd __unused, int Rm __unused) { // *mPC++ = (cc<<28) | (2<<23) | (1<<22) | (Rn<<16) | (Rd << 12) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::SWI(int cc __unused, uint32_t comment __unused) { // *mPC++ = (cc<<28) | (0xF<<24) | comment; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } #if 0 #pragma mark - #pragma mark DSP instructions... #endif // DSP instructions... void ArmToMips64Assembler::PLD(int Rn __unused, uint32_t offset) { LOG_ALWAYS_FATAL_IF(!((offset&(1<<24)) && !(offset&(1<<21))), "PLD only P=1, W=0"); // *mPC++ = 0xF550F000 | (Rn<<16) | offset; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::CLZ(int cc __unused, int Rd, int Rm) { mArmPC[mInum++] = pc(); mMips->CLZ(Rd, Rm); } void ArmToMips64Assembler::QADD(int cc __unused, int Rd __unused, int Rm __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1000050 | (Rn<<16) | (Rd<<12) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::QDADD(int cc __unused, int Rd __unused, int Rm __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1400050 | (Rn<<16) | (Rd<<12) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::QSUB(int cc __unused, int Rd __unused, int Rm __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1200050 | (Rn<<16) | (Rd<<12) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::QDSUB(int cc __unused, int Rd __unused, int Rm __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1600050 | (Rn<<16) | (Rd<<12) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } // 16 x 16 signed multiply (like SMLAxx without the accumulate) void ArmToMips64Assembler::SMUL(int cc __unused, int xy, int Rd, int Rm, int Rs) { mArmPC[mInum++] = pc(); // the 16 bits may be in the top or bottom half of 32-bit source reg, // as defined by the codes BB, BT, TB, TT (compressed param xy) // where x corresponds to Rm and y to Rs // select half-reg for Rm if (xy & xyTB) { // use top 16-bits mMips->SRA(R_at, Rm, 16); } else { // use bottom 16, but sign-extend to 32 mMips->SEH(R_at, Rm); } // select half-reg for Rs if (xy & xyBT) { // use top 16-bits mMips->SRA(R_at2, Rs, 16); } else { // use bottom 16, but sign-extend to 32 mMips->SEH(R_at2, Rs); } mMips->MUL(Rd, R_at, R_at2); } // signed 32b x 16b multiple, save top 32-bits of 48-bit result void ArmToMips64Assembler::SMULW(int cc __unused, int y, int Rd, int Rm, int Rs) { mArmPC[mInum++] = pc(); // the selector yT or yB refers to reg Rs if (y & yT) { // zero the bottom 16-bits, with 2 shifts, it can affect result mMips->SRL(R_at, Rs, 16); mMips->SLL(R_at, R_at, 16); } else { // move low 16-bit half, to high half mMips->SLL(R_at, Rs, 16); } mMips->MUH(Rd, Rm, R_at); } // 16 x 16 signed multiply, accumulate: Rd = Rm{16} * Rs{16} + Rn void ArmToMips64Assembler::SMLA(int cc __unused, int xy, int Rd, int Rm, int Rs, int Rn) { mArmPC[mInum++] = pc(); // the 16 bits may be in the top or bottom half of 32-bit source reg, // as defined by the codes BB, BT, TB, TT (compressed param xy) // where x corresponds to Rm and y to Rs // select half-reg for Rm if (xy & xyTB) { // use top 16-bits mMips->SRA(R_at, Rm, 16); } else { // use bottom 16, but sign-extend to 32 mMips->SEH(R_at, Rm); } // select half-reg for Rs if (xy & xyBT) { // use top 16-bits mMips->SRA(R_at2, Rs, 16); } else { // use bottom 16, but sign-extend to 32 mMips->SEH(R_at2, Rs); } mMips->MUL(R_at, R_at, R_at2); mMips->ADDU(Rd, R_at, Rn); } void ArmToMips64Assembler::SMLAL(int cc __unused, int xy __unused, int RdHi __unused, int RdLo __unused, int Rs __unused, int Rm __unused) { // *mPC++ = (cc<<28) | 0x1400080 | (RdHi<<16) | (RdLo<<12) | (Rs<<8) | (xy<<4) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMips64Assembler::SMLAW(int cc __unused, int y __unused, int Rd __unused, int Rm __unused, int Rs __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1200080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (y<<4) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } // used by ARMv6 version of GGLAssembler::filter32 void ArmToMips64Assembler::UXTB16(int cc __unused, int Rd, int Rm, int rotate) { mArmPC[mInum++] = pc(); //Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]), //Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3. mMips->ROTR(R_at2, Rm, rotate * 8); mMips->LUI(R_at, 0xFF); mMips->ORI(R_at, R_at, 0xFF); mMips->AND(Rd, R_at2, R_at); } void ArmToMips64Assembler::UBFX(int cc __unused, int Rd __unused, int Rn __unused, int lsb __unused, int width __unused) { /* Placeholder for UBFX */ mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } // ---------------------------------------------------------------------------- // Address Processing... // ---------------------------------------------------------------------------- void ArmToMips64Assembler::ADDR_ADD(int cc, int s, int Rd, int Rn, uint32_t Op2) { // if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required // if(s != 0) { NOT_IMPLEMENTED(); return;} //Not required dataProcessing(opADD64, cc, s, Rd, Rn, Op2); } void ArmToMips64Assembler::ADDR_SUB(int cc, int s, int Rd, int Rn, uint32_t Op2) { // if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required // if(s != 0) { NOT_IMPLEMENTED(); return;} //Not required dataProcessing(opSUB64, cc, s, Rd, Rn, Op2); } void ArmToMips64Assembler::ADDR_LDR(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert LDR via Arm SP to LW via Mips SP } mMips->LD(Rd, Rn, amode.value); if (amode.writeback) { // OPTIONAL writeback on pre-index mode mMips->DADDIU(Rn, Rn, amode.value); } break; case AMODE_IMM_12_POST: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert STR thru Arm SP to STR thru Mips SP } mMips->LD(Rd, Rn, 0); mMips->DADDIU(Rn, Rn, amode.value); break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->DADDU(R_at, Rn, amode.reg); mMips->LD(Rd, R_at, 0); break; } } void ArmToMips64Assembler::ADDR_STR(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert STR thru Arm SP to SW thru Mips SP } if (amode.writeback) { // OPTIONAL writeback on pre-index mode // If we will writeback, then update the index reg, then store. // This correctly handles stack-push case. mMips->DADDIU(Rn, Rn, amode.value); mMips->SD(Rd, Rn, 0); } else { // No writeback so store offset by value mMips->SD(Rd, Rn, amode.value); } break; case AMODE_IMM_12_POST: mMips->SD(Rd, Rn, 0); mMips->DADDIU(Rn, Rn, amode.value); // post index always writes back break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->DADDU(R_at, Rn, amode.reg); mMips->SD(Rd, R_at, 0); break; } } #if 0 #pragma mark - #pragma mark MIPS Assembler... #endif //************************************************************************** //************************************************************************** //************************************************************************** /* MIPS64 assembler ** this is a subset of mips64r6, targeted specifically at ARM instruction ** replacement in the pixelflinger/codeflinger code. ** ** This class is extended from MIPSAssembler class and overrides only ** MIPS64r6 specific stuff. */ MIPS64Assembler::MIPS64Assembler(const sp<Assembly>& assembly, ArmToMips64Assembler *parent) : MIPSAssembler::MIPSAssembler(assembly, NULL), mParent(parent) { } MIPS64Assembler::MIPS64Assembler(void* assembly, ArmToMips64Assembler *parent) : MIPSAssembler::MIPSAssembler(assembly), mParent(parent) { } MIPS64Assembler::~MIPS64Assembler() { } void MIPS64Assembler::reset() { if (mAssembly != NULL) { mBase = mPC = (uint32_t *)mAssembly->base(); } else { mPC = mBase = base(); } mBranchTargets.clear(); mLabels.clear(); mLabelsInverseMapping.clear(); mComments.clear(); } void MIPS64Assembler::disassemble(const char* name __unused) { char di_buf[140]; bool arm_disasm_fmt = (mParent->mArmDisassemblyBuffer == NULL) ? false : true; typedef char dstr[40]; dstr *lines = (dstr *)mParent->mArmDisassemblyBuffer; if (mParent->mArmDisassemblyBuffer != NULL) { for (int i=0; i<mParent->mArmInstrCount; ++i) { string_detab(lines[i]); } } size_t count = pc()-base(); uint32_t* mipsPC = base(); while (count--) { ssize_t label = mLabelsInverseMapping.indexOfKey(mipsPC); if (label >= 0) { ALOGW("%s:\n", mLabelsInverseMapping.valueAt(label)); } ssize_t comment = mComments.indexOfKey(mipsPC); if (comment >= 0) { ALOGW("; %s\n", mComments.valueAt(comment)); } ::mips_disassem(mipsPC, di_buf, arm_disasm_fmt); string_detab(di_buf); string_pad(di_buf, 30); ALOGW("%08lx: %08x %s", uintptr_t(mipsPC), uint32_t(*mipsPC), di_buf); mipsPC++; } } void MIPS64Assembler::fix_branches() { // fixup all the branches size_t count = mBranchTargets.size(); while (count--) { const branch_target_t& bt = mBranchTargets[count]; uint32_t* target_pc = mLabels.valueFor(bt.label); LOG_ALWAYS_FATAL_IF(!target_pc, "error resolving branch targets, target_pc is null"); int32_t offset = int32_t(target_pc - (bt.pc+1)); *bt.pc |= offset & 0x00FFFF; } } void MIPS64Assembler::DADDU(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (daddu_fn<<FUNC_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF); } void MIPS64Assembler::DADDIU(int Rt, int Rs, int16_t imm) { *mPC++ = (daddiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); } void MIPS64Assembler::DSUBU(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (dsubu_fn<<FUNC_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ; } void MIPS64Assembler::DSUBIU(int Rt, int Rs, int16_t imm) // really addiu(d, s, -j) { *mPC++ = (daddiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | ((-imm) & MSK_16); } void MIPS64Assembler::MUL(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (mul_fn<<RE_SHF) | (sop30_fn<<FUNC_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ; } void MIPS64Assembler::MUH(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (muh_fn<<RE_SHF) | (sop30_fn<<FUNC_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ; } void MIPS64Assembler::CLO(int Rd, int Rs) { *mPC++ = (spec_op<<OP_SHF) | (17<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (1<<RE_SHF); } void MIPS64Assembler::CLZ(int Rd, int Rs) { *mPC++ = (spec_op<<OP_SHF) | (16<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (1<<RE_SHF); } void MIPS64Assembler::LD(int Rt, int Rbase, int16_t offset) { *mPC++ = (ld_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPS64Assembler::SD(int Rt, int Rbase, int16_t offset) { *mPC++ = (sd_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPS64Assembler::LUI(int Rt, int16_t offset) { *mPC++ = (aui_op<<OP_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPS64Assembler::JR(int Rs) { *mPC++ = (spec_op<<OP_SHF) | (Rs<<RS_SHF) | (jalr_fn << FUNC_SHF); MIPS64Assembler::NOP(); } }; // namespace android: