/* * Copyright (C) 2013 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define LOG_TAG "ArmToArm64Assembler" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <cutils/properties.h> #include <log/log.h> #include <private/pixelflinger/ggl_context.h> #include "codeflinger/Arm64Assembler.h" #include "codeflinger/Arm64Disassembler.h" #include "codeflinger/CodeCache.h" /* ** -------------------------------------------- ** Support for Arm64 in GGLAssembler JIT ** -------------------------------------------- ** ** Approach ** - GGLAssembler and associated files are largely un-changed. ** - A translator class maps ArmAssemblerInterface calls to ** generate Arm64 instructions. ** ** ---------------------- ** ArmToArm64Assembler ** ---------------------- ** ** - Subclassed from ArmAssemblerInterface ** ** - Translates each ArmAssemblerInterface call to generate ** one or more Arm64 instructions as necessary. ** ** - Does not implement ArmAssemblerInterface portions unused by GGLAssembler ** It calls NOT_IMPLEMENTED() for such cases, which in turn logs ** a fatal message. ** ** - Uses A64_.. series of functions to generate instruction machine code ** for Arm64 instructions. These functions also log the instruction ** to LOG, if ARM64_ASM_DEBUG define is set to 1 ** ** - Dumps machine code and eqvt assembly if "debug.pf.disasm" option is set ** It uses arm64_disassemble to perform disassembly ** ** - Uses register 13 (SP in ARM), 15 (PC in ARM), 16, 17 for storing ** intermediate results. GGLAssembler does not use SP and PC as these ** registers are marked as reserved. The temporary registers are not ** saved/restored on stack as these are caller-saved registers in Arm64 ** ** - Uses CSEL instruction to support conditional execution. The result is ** stored in a temporary register and then copied to the target register ** if the condition is true. ** ** - In the case of conditional data transfer instructions, conditional ** branch is used to skip over instruction, if the condition is false ** ** - Wherever possible, immediate values are transferred to temporary ** register prior to processing. This simplifies overall implementation ** as instructions requiring immediate values are converted to ** move immediate instructions followed by register-register instruction. ** ** -------------------------------------------- ** ArmToArm64Assembler unit test bench ** -------------------------------------------- ** ** - Tests ArmToArm64Assembler interface for all the possible ** ways in which GGLAssembler uses ArmAssemblerInterface interface. ** ** - Uses test jacket (written in assembly) to set the registers, ** condition flags prior to calling generated instruction. It also ** copies registers and flags at the end of execution. Caller then ** checks if generated code performed correct operation based on ** output registers and flags. ** ** - Broadly contains three type of tests, (i) data operation tests ** (ii) data transfer tests and (iii) LDM/STM tests. ** ** ---------------------- ** Arm64 disassembler ** ---------------------- ** - This disassembler disassembles only those machine codes which can be ** generated by ArmToArm64Assembler. It has a unit testbench which ** tests all the instructions supported by the disassembler. ** ** ------------------------------------------------------------------ ** ARMAssembler/ARMAssemblerInterface/ARMAssemblerProxy changes ** ------------------------------------------------------------------ ** ** - In existing code, addresses were being handled as 32 bit values at ** certain places. ** ** - Added a new set of functions for address load/store/manipulation. ** These are ADDR_LDR, ADDR_STR, ADDR_ADD, ADDR_SUB and they map to ** default 32 bit implementations in ARMAssemblerInterface. ** ** - ArmToArm64Assembler maps these functions to appropriate 64 bit ** functions. ** ** ---------------------- ** GGLAssembler changes ** ---------------------- ** - Since ArmToArm64Assembler can generate 4 Arm64 instructions for ** each call in worst case, the memory required is set to 4 times ** ARM memory ** ** - Address load/store/manipulation were changed to use new functions ** added in the ARMAssemblerInterface. ** */ #define NOT_IMPLEMENTED() LOG_FATAL("Arm instruction %s not yet implemented\n", __func__) #define ARM64_ASM_DEBUG 0 #if ARM64_ASM_DEBUG #define LOG_INSTR(...) ALOGD("\t" __VA_ARGS__) #define LOG_LABEL(...) ALOGD(__VA_ARGS__) #else #define LOG_INSTR(...) ((void)0) #define LOG_LABEL(...) ((void)0) #endif namespace android { static __unused const char* shift_codes[] = { "LSL", "LSR", "ASR", "ROR" }; static __unused const char *cc_codes[] = { "EQ", "NE", "CS", "CC", "MI", "PL", "VS", "VC", "HI", "LS", "GE", "LT", "GT", "LE", "AL", "NV" }; ArmToArm64Assembler::ArmToArm64Assembler(const sp<Assembly>& assembly) : ARMAssemblerInterface(), mAssembly(assembly) { mBase = mPC = (uint32_t *)assembly->base(); mDuration = ggl_system_time(); mZeroReg = 13; mTmpReg1 = 15; mTmpReg2 = 16; mTmpReg3 = 17; } ArmToArm64Assembler::ArmToArm64Assembler(void *base) : ARMAssemblerInterface(), mAssembly(NULL) { mBase = mPC = (uint32_t *)base; mDuration = ggl_system_time(); // Regs 13, 15, 16, 17 are used as temporary registers mZeroReg = 13; mTmpReg1 = 15; mTmpReg2 = 16; mTmpReg3 = 17; } ArmToArm64Assembler::~ArmToArm64Assembler() { } uint32_t* ArmToArm64Assembler::pc() const { return mPC; } uint32_t* ArmToArm64Assembler::base() const { return mBase; } void ArmToArm64Assembler::reset() { if(mAssembly == NULL) mPC = mBase; else mBase = mPC = (uint32_t *)mAssembly->base(); mBranchTargets.clear(); mLabels.clear(); mLabelsInverseMapping.clear(); mComments.clear(); #if ARM64_ASM_DEBUG ALOGI("RESET\n"); #endif } int ArmToArm64Assembler::getCodegenArch() { return CODEGEN_ARCH_ARM64; } // ---------------------------------------------------------------------------- void ArmToArm64Assembler::disassemble(const char* name) { if(name) { printf("%s:\n", name); } size_t count = pc()-base(); uint32_t* i = base(); while (count--) { ssize_t label = mLabelsInverseMapping.indexOfKey(i); if (label >= 0) { printf("%s:\n", mLabelsInverseMapping.valueAt(label)); } ssize_t comment = mComments.indexOfKey(i); if (comment >= 0) { printf("; %s\n", mComments.valueAt(comment)); } printf("%p: %08x ", i, uint32_t(i[0])); { char instr[256]; ::arm64_disassemble(*i, instr); printf("%s\n", instr); } i++; } } void ArmToArm64Assembler::comment(const char* string) { mComments.add(mPC, string); LOG_INSTR("//%s\n", string); } void ArmToArm64Assembler::label(const char* theLabel) { mLabels.add(theLabel, mPC); mLabelsInverseMapping.add(mPC, theLabel); LOG_LABEL("%s:\n", theLabel); } void ArmToArm64Assembler::B(int cc, const char* label) { mBranchTargets.add(branch_target_t(label, mPC)); LOG_INSTR("B%s %s\n", cc_codes[cc], label ); *mPC++ = (0x54 << 24) | cc; } void ArmToArm64Assembler::BL(int /*cc*/, const char* /*label*/) { NOT_IMPLEMENTED(); //Not Required } // ---------------------------------------------------------------------------- //Prolog/Epilog & Generate... // ---------------------------------------------------------------------------- void ArmToArm64Assembler::prolog() { // write prolog code mPrologPC = mPC; *mPC++ = A64_MOVZ_X(mZeroReg,0,0); } void ArmToArm64Assembler::epilog(uint32_t /*touched*/) { // write epilog code static const int XLR = 30; *mPC++ = A64_RET(XLR); } int ArmToArm64Assembler::generate(const char* name) { // fixup all the branches size_t count = mBranchTargets.size(); while (count--) { const branch_target_t& bt = mBranchTargets[count]; uint32_t* target_pc = mLabels.valueFor(bt.label); LOG_ALWAYS_FATAL_IF(!target_pc, "error resolving branch targets, target_pc is null"); int32_t offset = int32_t(target_pc - bt.pc); *bt.pc |= (offset & 0x7FFFF) << 5; } if(mAssembly != NULL) mAssembly->resize( int(pc()-base())*4 ); // the instruction cache is flushed by CodeCache const int64_t duration = ggl_system_time() - mDuration; const char * const format = "generated %s (%d ins) at [%p:%p] in %ld ns\n"; ALOGI(format, name, int(pc()-base()), base(), pc(), duration); char value[PROPERTY_VALUE_MAX]; property_get("debug.pf.disasm", value, "0"); if (atoi(value) != 0) { printf(format, name, int(pc()-base()), base(), pc(), duration); disassemble(name); } return NO_ERROR; } uint32_t* ArmToArm64Assembler::pcForLabel(const char* label) { return mLabels.valueFor(label); } // ---------------------------------------------------------------------------- // Data Processing... // ---------------------------------------------------------------------------- void ArmToArm64Assembler::dataProcessingCommon(int opcode, int s, int Rd, int Rn, uint32_t Op2) { if(opcode != opSUB && s == 1) { NOT_IMPLEMENTED(); //Not required return; } if(opcode != opSUB && opcode != opADD && opcode != opAND && opcode != opORR && opcode != opMVN) { NOT_IMPLEMENTED(); //Not required return; } if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_shift > 31) { NOT_IMPLEMENTED(); return; } //Store immediate in temporary register and convert //immediate operation into register operation if(Op2 == OPERAND_IMM) { int imm = mAddrMode.immediate; *mPC++ = A64_MOVZ_W(mTmpReg2, imm & 0x0000FFFF, 0); *mPC++ = A64_MOVK_W(mTmpReg2, (imm >> 16) & 0x0000FFFF, 16); Op2 = mTmpReg2; } { uint32_t shift; uint32_t amount; uint32_t Rm; if(Op2 == OPERAND_REG_IMM) { shift = mAddrMode.reg_imm_type; amount = mAddrMode.reg_imm_shift; Rm = mAddrMode.reg_imm_Rm; } else if(Op2 < OPERAND_REG) { shift = 0; amount = 0; Rm = Op2; } else { NOT_IMPLEMENTED(); //Not required return; } switch(opcode) { case opADD: *mPC++ = A64_ADD_W(Rd, Rn, Rm, shift, amount); break; case opAND: *mPC++ = A64_AND_W(Rd, Rn, Rm, shift, amount); break; case opORR: *mPC++ = A64_ORR_W(Rd, Rn, Rm, shift, amount); break; case opMVN: *mPC++ = A64_ORN_W(Rd, Rn, Rm, shift, amount); break; case opSUB: *mPC++ = A64_SUB_W(Rd, Rn, Rm, shift, amount, s);break; }; } } void ArmToArm64Assembler::dataProcessing(int opcode, int cc, int s, int Rd, int Rn, uint32_t Op2) { uint32_t Wd; if(cc != AL) Wd = mTmpReg1; else Wd = Rd; if(opcode == opADD || opcode == opAND || opcode == opORR ||opcode == opSUB) { dataProcessingCommon(opcode, s, Wd, Rn, Op2); } else if(opcode == opCMP) { dataProcessingCommon(opSUB, 1, mTmpReg3, Rn, Op2); } else if(opcode == opRSB) { dataProcessingCommon(opSUB, s, Wd, Rn, Op2); dataProcessingCommon(opSUB, s, Wd, mZeroReg, Wd); } else if(opcode == opMOV) { dataProcessingCommon(opORR, 0, Wd, mZeroReg, Op2); if(s == 1) { dataProcessingCommon(opSUB, 1, mTmpReg3, Wd, mZeroReg); } } else if(opcode == opMVN) { dataProcessingCommon(opMVN, s, Wd, mZeroReg, Op2); } else if(opcode == opBIC) { dataProcessingCommon(opMVN, s, mTmpReg3, mZeroReg, Op2); dataProcessingCommon(opAND, s, Wd, Rn, mTmpReg3); } else { NOT_IMPLEMENTED(); return; } if(cc != AL) { *mPC++ = A64_CSEL_W(Rd, mTmpReg1, Rd, cc); } } // ---------------------------------------------------------------------------- // Address Processing... // ---------------------------------------------------------------------------- void ArmToArm64Assembler::ADDR_ADD(int cc, int s, int Rd, int Rn, uint32_t Op2) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required if(s != 0) { NOT_IMPLEMENTED(); return;} //Not required if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_type == LSL) { int Rm = mAddrMode.reg_imm_Rm; int amount = mAddrMode.reg_imm_shift; *mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount); } else if(Op2 < OPERAND_REG) { int Rm = Op2; int amount = 0; *mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount); } else if(Op2 == OPERAND_IMM) { int imm = mAddrMode.immediate; *mPC++ = A64_MOVZ_W(mTmpReg1, imm & 0x0000FFFF, 0); *mPC++ = A64_MOVK_W(mTmpReg1, (imm >> 16) & 0x0000FFFF, 16); int Rm = mTmpReg1; int amount = 0; *mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount); } else { NOT_IMPLEMENTED(); //Not required } } void ArmToArm64Assembler::ADDR_SUB(int cc, int s, int Rd, int Rn, uint32_t Op2) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required if(s != 0) { NOT_IMPLEMENTED(); return;} //Not required if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_type == LSR) { *mPC++ = A64_ADD_W(mTmpReg1, mZeroReg, mAddrMode.reg_imm_Rm, LSR, mAddrMode.reg_imm_shift); *mPC++ = A64_SUB_X_Wm_SXTW(Rd, Rn, mTmpReg1, 0); } else { NOT_IMPLEMENTED(); //Not required } } // ---------------------------------------------------------------------------- // multiply... // ---------------------------------------------------------------------------- void ArmToArm64Assembler::MLA(int cc, int s,int Rd, int Rm, int Rs, int Rn) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required *mPC++ = A64_MADD_W(Rd, Rm, Rs, Rn); if(s == 1) dataProcessingCommon(opSUB, 1, mTmpReg1, Rd, mZeroReg); } void ArmToArm64Assembler::MUL(int cc, int s, int Rd, int Rm, int Rs) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required if(s != 0) { NOT_IMPLEMENTED(); return;} //Not required *mPC++ = A64_MADD_W(Rd, Rm, Rs, mZeroReg); } void ArmToArm64Assembler::UMULL(int /*cc*/, int /*s*/, int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::UMUAL(int /*cc*/, int /*s*/, int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::SMULL(int /*cc*/, int /*s*/, int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::SMUAL(int /*cc*/, int /*s*/, int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/) { NOT_IMPLEMENTED(); //Not required } // ---------------------------------------------------------------------------- // branches relative to PC... // ---------------------------------------------------------------------------- void ArmToArm64Assembler::B(int /*cc*/, uint32_t* /*pc*/){ NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::BL(int /*cc*/, uint32_t* /*pc*/){ NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::BX(int /*cc*/, int /*Rn*/){ NOT_IMPLEMENTED(); //Not required } // ---------------------------------------------------------------------------- // data transfer... // ---------------------------------------------------------------------------- enum dataTransferOp { opLDR,opLDRB,opLDRH,opSTR,opSTRB,opSTRH }; void ArmToArm64Assembler::dataTransfer(int op, int cc, int Rd, int Rn, uint32_t op_type, uint32_t size) { const int XSP = 31; if(Rn == SP) Rn = XSP; if(op_type == OPERAND_IMM) { int addrReg; int imm = mAddrMode.immediate; if(imm >= 0 && imm < (1<<12)) *mPC++ = A64_ADD_IMM_X(mTmpReg1, mZeroReg, imm, 0); else if(imm < 0 && -imm < (1<<12)) *mPC++ = A64_SUB_IMM_X(mTmpReg1, mZeroReg, -imm, 0); else { NOT_IMPLEMENTED(); return; } addrReg = Rn; if(mAddrMode.preindex == true || mAddrMode.postindex == true) { *mPC++ = A64_ADD_X(mTmpReg2, addrReg, mTmpReg1); if(mAddrMode.preindex == true) addrReg = mTmpReg2; } if(cc != AL) *mPC++ = A64_B_COND(cc^1, 8); *mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, addrReg, mZeroReg); if(mAddrMode.writeback == true) *mPC++ = A64_CSEL_X(Rn, mTmpReg2, Rn, cc); } else if(op_type == OPERAND_REG_OFFSET) { if(cc != AL) *mPC++ = A64_B_COND(cc^1, 8); *mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, Rn, mAddrMode.reg_offset); } else if(op_type > OPERAND_UNSUPPORTED) { if(cc != AL) *mPC++ = A64_B_COND(cc^1, 8); *mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, Rn, mZeroReg); } else { NOT_IMPLEMENTED(); // Not required } return; } void ArmToArm64Assembler::ADDR_LDR(int cc, int Rd, int Rn, uint32_t op_type) { return dataTransfer(opLDR, cc, Rd, Rn, op_type, 64); } void ArmToArm64Assembler::ADDR_STR(int cc, int Rd, int Rn, uint32_t op_type) { return dataTransfer(opSTR, cc, Rd, Rn, op_type, 64); } void ArmToArm64Assembler::LDR(int cc, int Rd, int Rn, uint32_t op_type) { return dataTransfer(opLDR, cc, Rd, Rn, op_type); } void ArmToArm64Assembler::LDRB(int cc, int Rd, int Rn, uint32_t op_type) { return dataTransfer(opLDRB, cc, Rd, Rn, op_type); } void ArmToArm64Assembler::STR(int cc, int Rd, int Rn, uint32_t op_type) { return dataTransfer(opSTR, cc, Rd, Rn, op_type); } void ArmToArm64Assembler::STRB(int cc, int Rd, int Rn, uint32_t op_type) { return dataTransfer(opSTRB, cc, Rd, Rn, op_type); } void ArmToArm64Assembler::LDRH(int cc, int Rd, int Rn, uint32_t op_type) { return dataTransfer(opLDRH, cc, Rd, Rn, op_type); } void ArmToArm64Assembler::LDRSB(int /*cc*/, int /*Rd*/, int /*Rn*/, uint32_t /*offset*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::LDRSH(int /*cc*/, int /*Rd*/, int /*Rn*/, uint32_t /*offset*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::STRH(int cc, int Rd, int Rn, uint32_t op_type) { return dataTransfer(opSTRH, cc, Rd, Rn, op_type); } // ---------------------------------------------------------------------------- // block data transfer... // ---------------------------------------------------------------------------- void ArmToArm64Assembler::LDM(int cc, int dir, int Rn, int W, uint32_t reg_list) { const int XSP = 31; if(cc != AL || dir != IA || W == 0 || Rn != SP) { NOT_IMPLEMENTED(); return; } for(int i = 0; i < 32; ++i) { if((reg_list & (1 << i))) { int reg = i; int size = 16; *mPC++ = A64_LDR_IMM_PostIndex(reg, XSP, size); } } } void ArmToArm64Assembler::STM(int cc, int dir, int Rn, int W, uint32_t reg_list) { const int XSP = 31; if(cc != AL || dir != DB || W == 0 || Rn != SP) { NOT_IMPLEMENTED(); return; } for(int i = 31; i >= 0; --i) { if((reg_list & (1 << i))) { int size = -16; int reg = i; *mPC++ = A64_STR_IMM_PreIndex(reg, XSP, size); } } } // ---------------------------------------------------------------------------- // special... // ---------------------------------------------------------------------------- void ArmToArm64Assembler::SWP(int /*cc*/, int /*Rn*/, int /*Rd*/, int /*Rm*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::SWPB(int /*cc*/, int /*Rn*/, int /*Rd*/, int /*Rm*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::SWI(int /*cc*/, uint32_t /*comment*/) { NOT_IMPLEMENTED(); //Not required } // ---------------------------------------------------------------------------- // DSP instructions... // ---------------------------------------------------------------------------- void ArmToArm64Assembler::PLD(int /*Rn*/, uint32_t /*offset*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::CLZ(int /*cc*/, int /*Rd*/, int /*Rm*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::QADD(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::QDADD(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::QSUB(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/) { NOT_IMPLEMENTED(); //Not required } void ArmToArm64Assembler::QDSUB(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/) { NOT_IMPLEMENTED(); //Not required } // ---------------------------------------------------------------------------- // 16 x 16 multiplication // ---------------------------------------------------------------------------- void ArmToArm64Assembler::SMUL(int cc, int xy, int Rd, int Rm, int Rs) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required if (xy & xyTB) *mPC++ = A64_SBFM_W(mTmpReg1, Rm, 16, 31); else *mPC++ = A64_SBFM_W(mTmpReg1, Rm, 0, 15); if (xy & xyBT) *mPC++ = A64_SBFM_W(mTmpReg2, Rs, 16, 31); else *mPC++ = A64_SBFM_W(mTmpReg2, Rs, 0, 15); *mPC++ = A64_MADD_W(Rd,mTmpReg1,mTmpReg2, mZeroReg); } // ---------------------------------------------------------------------------- // 32 x 16 multiplication // ---------------------------------------------------------------------------- void ArmToArm64Assembler::SMULW(int cc, int y, int Rd, int Rm, int Rs) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required if (y & yT) *mPC++ = A64_SBFM_W(mTmpReg1, Rs, 16, 31); else *mPC++ = A64_SBFM_W(mTmpReg1, Rs, 0, 15); *mPC++ = A64_SBFM_W(mTmpReg2, Rm, 0, 31); *mPC++ = A64_SMADDL(mTmpReg3,mTmpReg1,mTmpReg2, mZeroReg); *mPC++ = A64_UBFM_X(Rd,mTmpReg3, 16, 47); } // ---------------------------------------------------------------------------- // 16 x 16 multiplication and accumulate // ---------------------------------------------------------------------------- void ArmToArm64Assembler::SMLA(int cc, int xy, int Rd, int Rm, int Rs, int Rn) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required if(xy != xyBB) { NOT_IMPLEMENTED(); return;} //Not required *mPC++ = A64_SBFM_W(mTmpReg1, Rm, 0, 15); *mPC++ = A64_SBFM_W(mTmpReg2, Rs, 0, 15); *mPC++ = A64_MADD_W(Rd, mTmpReg1, mTmpReg2, Rn); } void ArmToArm64Assembler::SMLAL(int /*cc*/, int /*xy*/, int /*RdHi*/, int /*RdLo*/, int /*Rs*/, int /*Rm*/) { NOT_IMPLEMENTED(); //Not required return; } void ArmToArm64Assembler::SMLAW(int /*cc*/, int /*y*/, int /*Rd*/, int /*Rm*/, int /*Rs*/, int /*Rn*/) { NOT_IMPLEMENTED(); //Not required return; } // ---------------------------------------------------------------------------- // Byte/half word extract and extend // ---------------------------------------------------------------------------- void ArmToArm64Assembler::UXTB16(int cc, int Rd, int Rm, int rotate) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required *mPC++ = A64_EXTR_W(mTmpReg1, Rm, Rm, rotate * 8); uint32_t imm = 0x00FF00FF; *mPC++ = A64_MOVZ_W(mTmpReg2, imm & 0xFFFF, 0); *mPC++ = A64_MOVK_W(mTmpReg2, (imm >> 16) & 0x0000FFFF, 16); *mPC++ = A64_AND_W(Rd,mTmpReg1, mTmpReg2); } // ---------------------------------------------------------------------------- // Bit manipulation // ---------------------------------------------------------------------------- void ArmToArm64Assembler::UBFX(int cc, int Rd, int Rn, int lsb, int width) { if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required *mPC++ = A64_UBFM_W(Rd, Rn, lsb, lsb + width - 1); } // ---------------------------------------------------------------------------- // Shifters... // ---------------------------------------------------------------------------- int ArmToArm64Assembler::buildImmediate( uint32_t immediate, uint32_t& rot, uint32_t& imm) { rot = 0; imm = immediate; return 0; // Always true } bool ArmToArm64Assembler::isValidImmediate(uint32_t immediate) { uint32_t rot, imm; return buildImmediate(immediate, rot, imm) == 0; } uint32_t ArmToArm64Assembler::imm(uint32_t immediate) { mAddrMode.immediate = immediate; mAddrMode.writeback = false; mAddrMode.preindex = false; mAddrMode.postindex = false; return OPERAND_IMM; } uint32_t ArmToArm64Assembler::reg_imm(int Rm, int type, uint32_t shift) { mAddrMode.reg_imm_Rm = Rm; mAddrMode.reg_imm_type = type; mAddrMode.reg_imm_shift = shift; return OPERAND_REG_IMM; } uint32_t ArmToArm64Assembler::reg_rrx(int /*Rm*/) { NOT_IMPLEMENTED(); return OPERAND_UNSUPPORTED; } uint32_t ArmToArm64Assembler::reg_reg(int /*Rm*/, int /*type*/, int /*Rs*/) { NOT_IMPLEMENTED(); //Not required return OPERAND_UNSUPPORTED; } // ---------------------------------------------------------------------------- // Addressing modes... // ---------------------------------------------------------------------------- uint32_t ArmToArm64Assembler::immed12_pre(int32_t immed12, int W) { mAddrMode.immediate = immed12; mAddrMode.writeback = W; mAddrMode.preindex = true; mAddrMode.postindex = false; return OPERAND_IMM; } uint32_t ArmToArm64Assembler::immed12_post(int32_t immed12) { mAddrMode.immediate = immed12; mAddrMode.writeback = true; mAddrMode.preindex = false; mAddrMode.postindex = true; return OPERAND_IMM; } uint32_t ArmToArm64Assembler::reg_scale_pre(int Rm, int type, uint32_t shift, int W) { if(type != 0 || shift != 0 || W != 0) { NOT_IMPLEMENTED(); //Not required return OPERAND_UNSUPPORTED; } else { mAddrMode.reg_offset = Rm; return OPERAND_REG_OFFSET; } } uint32_t ArmToArm64Assembler::reg_scale_post(int /*Rm*/, int /*type*/, uint32_t /*shift*/) { NOT_IMPLEMENTED(); //Not required return OPERAND_UNSUPPORTED; } uint32_t ArmToArm64Assembler::immed8_pre(int32_t immed8, int W) { mAddrMode.immediate = immed8; mAddrMode.writeback = W; mAddrMode.preindex = true; mAddrMode.postindex = false; return OPERAND_IMM; } uint32_t ArmToArm64Assembler::immed8_post(int32_t immed8) { mAddrMode.immediate = immed8; mAddrMode.writeback = true; mAddrMode.preindex = false; mAddrMode.postindex = true; return OPERAND_IMM; } uint32_t ArmToArm64Assembler::reg_pre(int Rm, int W) { if(W != 0) { NOT_IMPLEMENTED(); //Not required return OPERAND_UNSUPPORTED; } else { mAddrMode.reg_offset = Rm; return OPERAND_REG_OFFSET; } } uint32_t ArmToArm64Assembler::reg_post(int /*Rm*/) { NOT_IMPLEMENTED(); //Not required return OPERAND_UNSUPPORTED; } // ---------------------------------------------------------------------------- // A64 instructions // ---------------------------------------------------------------------------- static __unused const char * dataTransferOpName[] = { "LDR","LDRB","LDRH","STR","STRB","STRH" }; static const uint32_t dataTransferOpCode [] = { ((0xB8u << 24) | (0x3 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)), ((0x38u << 24) | (0x3 << 21) | (0x6 << 13) | (0x1 << 12) |(0x1 << 11)), ((0x78u << 24) | (0x3 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)), ((0xB8u << 24) | (0x1 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)), ((0x38u << 24) | (0x1 << 21) | (0x6 << 13) | (0x1 << 12) |(0x1 << 11)), ((0x78u << 24) | (0x1 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)) }; uint32_t ArmToArm64Assembler::A64_LDRSTR_Wm_SXTW_0(uint32_t op, uint32_t size, uint32_t Rt, uint32_t Rn, uint32_t Rm) { if(size == 32) { LOG_INSTR("%s W%d, [X%d, W%d, SXTW #0]\n", dataTransferOpName[op], Rt, Rn, Rm); return(dataTransferOpCode[op] | (Rm << 16) | (Rn << 5) | Rt); } else { LOG_INSTR("%s X%d, [X%d, W%d, SXTW #0]\n", dataTransferOpName[op], Rt, Rn, Rm); return(dataTransferOpCode[op] | (0x1<<30) | (Rm<<16) | (Rn<<5)|Rt); } } uint32_t ArmToArm64Assembler::A64_STR_IMM_PreIndex(uint32_t Rt, uint32_t Rn, int32_t simm) { if(Rn == 31) LOG_INSTR("STR W%d, [SP, #%d]!\n", Rt, simm); else LOG_INSTR("STR W%d, [X%d, #%d]!\n", Rt, Rn, simm); uint32_t imm9 = (unsigned)(simm) & 0x01FF; return (0xB8 << 24) | (imm9 << 12) | (0x3 << 10) | (Rn << 5) | Rt; } uint32_t ArmToArm64Assembler::A64_LDR_IMM_PostIndex(uint32_t Rt, uint32_t Rn, int32_t simm) { if(Rn == 31) LOG_INSTR("LDR W%d, [SP], #%d\n",Rt,simm); else LOG_INSTR("LDR W%d, [X%d], #%d\n",Rt, Rn, simm); uint32_t imm9 = (unsigned)(simm) & 0x01FF; return (0xB8 << 24) | (0x1 << 22) | (imm9 << 12) | (0x1 << 10) | (Rn << 5) | Rt; } uint32_t ArmToArm64Assembler::A64_ADD_X_Wm_SXTW(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t amount) { LOG_INSTR("ADD X%d, X%d, W%d, SXTW #%d\n", Rd, Rn, Rm, amount); return ((0x8B << 24) | (0x1 << 21) |(Rm << 16) | (0x6 << 13) | (amount << 10) | (Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_SUB_X_Wm_SXTW(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t amount) { LOG_INSTR("SUB X%d, X%d, W%d, SXTW #%d\n", Rd, Rn, Rm, amount); return ((0xCB << 24) | (0x1 << 21) |(Rm << 16) | (0x6 << 13) | (amount << 10) | (Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_B_COND(uint32_t cc, uint32_t offset) { LOG_INSTR("B.%s #.+%d\n", cc_codes[cc], offset); return (0x54 << 24) | ((offset/4) << 5) | (cc); } uint32_t ArmToArm64Assembler::A64_ADD_X(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t shift, uint32_t amount) { LOG_INSTR("ADD X%d, X%d, X%d, %s #%d\n", Rd, Rn, Rm, shift_codes[shift], amount); return ((0x8B << 24) | (shift << 22) | ( Rm << 16) | (amount << 10) |(Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_ADD_IMM_X(uint32_t Rd, uint32_t Rn, uint32_t imm, uint32_t shift) { LOG_INSTR("ADD X%d, X%d, #%d, LSL #%d\n", Rd, Rn, imm, shift); return (0x91 << 24) | ((shift/12) << 22) | (imm << 10) | (Rn << 5) | Rd; } uint32_t ArmToArm64Assembler::A64_SUB_IMM_X(uint32_t Rd, uint32_t Rn, uint32_t imm, uint32_t shift) { LOG_INSTR("SUB X%d, X%d, #%d, LSL #%d\n", Rd, Rn, imm, shift); return (0xD1 << 24) | ((shift/12) << 22) | (imm << 10) | (Rn << 5) | Rd; } uint32_t ArmToArm64Assembler::A64_ADD_W(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t shift, uint32_t amount) { LOG_INSTR("ADD W%d, W%d, W%d, %s #%d\n", Rd, Rn, Rm, shift_codes[shift], amount); return ((0x0B << 24) | (shift << 22) | ( Rm << 16) | (amount << 10) |(Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_SUB_W(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t shift, uint32_t amount, uint32_t setflag) { if(setflag == 0) { LOG_INSTR("SUB W%d, W%d, W%d, %s #%d\n", Rd, Rn, Rm, shift_codes[shift], amount); return ((0x4B << 24) | (shift << 22) | ( Rm << 16) | (amount << 10) |(Rn << 5) | Rd); } else { LOG_INSTR("SUBS W%d, W%d, W%d, %s #%d\n", Rd, Rn, Rm, shift_codes[shift], amount); return ((0x6B << 24) | (shift << 22) | ( Rm << 16) | (amount << 10) |(Rn << 5) | Rd); } } uint32_t ArmToArm64Assembler::A64_AND_W(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t shift, uint32_t amount) { LOG_INSTR("AND W%d, W%d, W%d, %s #%d\n", Rd, Rn, Rm, shift_codes[shift], amount); return ((0x0A << 24) | (shift << 22) | ( Rm << 16) | (amount << 10) |(Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_ORR_W(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t shift, uint32_t amount) { LOG_INSTR("ORR W%d, W%d, W%d, %s #%d\n", Rd, Rn, Rm, shift_codes[shift], amount); return ((0x2A << 24) | (shift << 22) | ( Rm << 16) | (amount << 10) |(Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_ORN_W(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t shift, uint32_t amount) { LOG_INSTR("ORN W%d, W%d, W%d, %s #%d\n", Rd, Rn, Rm, shift_codes[shift], amount); return ((0x2A << 24) | (shift << 22) | (0x1 << 21) | ( Rm << 16) | (amount << 10) |(Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_CSEL_X(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t cond) { LOG_INSTR("CSEL X%d, X%d, X%d, %s\n", Rd, Rn, Rm, cc_codes[cond]); return ((0x9A << 24)|(0x1 << 23)|(Rm << 16) |(cond << 12)| (Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_CSEL_W(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t cond) { LOG_INSTR("CSEL W%d, W%d, W%d, %s\n", Rd, Rn, Rm, cc_codes[cond]); return ((0x1A << 24)|(0x1 << 23)|(Rm << 16) |(cond << 12)| (Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_RET(uint32_t Rn) { LOG_INSTR("RET X%d\n", Rn); return ((0xD6 << 24) | (0x1 << 22) | (0x1F << 16) | (Rn << 5)); } uint32_t ArmToArm64Assembler::A64_MOVZ_X(uint32_t Rd, uint32_t imm, uint32_t shift) { LOG_INSTR("MOVZ X%d, #0x%x, LSL #%d\n", Rd, imm, shift); return(0xD2 << 24) | (0x1 << 23) | ((shift/16) << 21) | (imm << 5) | Rd; } uint32_t ArmToArm64Assembler::A64_MOVK_W(uint32_t Rd, uint32_t imm, uint32_t shift) { LOG_INSTR("MOVK W%d, #0x%x, LSL #%d\n", Rd, imm, shift); return (0x72 << 24) | (0x1 << 23) | ((shift/16) << 21) | (imm << 5) | Rd; } uint32_t ArmToArm64Assembler::A64_MOVZ_W(uint32_t Rd, uint32_t imm, uint32_t shift) { LOG_INSTR("MOVZ W%d, #0x%x, LSL #%d\n", Rd, imm, shift); return(0x52 << 24) | (0x1 << 23) | ((shift/16) << 21) | (imm << 5) | Rd; } uint32_t ArmToArm64Assembler::A64_SMADDL(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t Ra) { LOG_INSTR("SMADDL X%d, W%d, W%d, X%d\n",Rd, Rn, Rm, Ra); return ((0x9B << 24) | (0x1 << 21) | (Rm << 16)|(Ra << 10)|(Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_MADD_W(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t Ra) { LOG_INSTR("MADD W%d, W%d, W%d, W%d\n",Rd, Rn, Rm, Ra); return ((0x1B << 24) | (Rm << 16) | (Ra << 10) |(Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_SBFM_W(uint32_t Rd, uint32_t Rn, uint32_t immr, uint32_t imms) { LOG_INSTR("SBFM W%d, W%d, #%d, #%d\n", Rd, Rn, immr, imms); return ((0x13 << 24) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_UBFM_W(uint32_t Rd, uint32_t Rn, uint32_t immr, uint32_t imms) { LOG_INSTR("UBFM W%d, W%d, #%d, #%d\n", Rd, Rn, immr, imms); return ((0x53 << 24) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_UBFM_X(uint32_t Rd, uint32_t Rn, uint32_t immr, uint32_t imms) { LOG_INSTR("UBFM X%d, X%d, #%d, #%d\n", Rd, Rn, immr, imms); return ((0xD3 << 24) | (0x1 << 22) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd); } uint32_t ArmToArm64Assembler::A64_EXTR_W(uint32_t Rd, uint32_t Rn, uint32_t Rm, uint32_t lsb) { LOG_INSTR("EXTR W%d, W%d, W%d, #%d\n", Rd, Rn, Rm, lsb); return (0x13 << 24)|(0x1 << 23) | (Rm << 16) | (lsb << 10)|(Rn << 5) | Rd; } }; // namespace android