/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "init.h" #include <dirent.h> #include <fcntl.h> #include <paths.h> #include <pthread.h> #include <seccomp_policy.h> #include <signal.h> #include <stdlib.h> #include <string.h> #include <sys/epoll.h> #include <sys/mount.h> #include <sys/signalfd.h> #include <sys/sysmacros.h> #include <sys/types.h> #include <unistd.h> #include <android-base/chrono_utils.h> #include <android-base/file.h> #include <android-base/logging.h> #include <android-base/properties.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <cutils/android_reboot.h> #include <keyutils.h> #include <libavb/libavb.h> #include <private/android_filesystem_config.h> #include <selinux/android.h> #include <memory> #include <optional> #include "action_parser.h" #include "import_parser.h" #include "init_first_stage.h" #include "keychords.h" #include "log.h" #include "property_service.h" #include "reboot.h" #include "security.h" #include "selinux.h" #include "sigchld_handler.h" #include "ueventd.h" #include "util.h" #include "watchdogd.h" using namespace std::string_literals; using android::base::boot_clock; using android::base::GetProperty; using android::base::ReadFileToString; using android::base::StringPrintf; using android::base::Timer; using android::base::Trim; namespace android { namespace init { static int property_triggers_enabled = 0; static char qemu[32]; std::string default_console = "/dev/console"; static int epoll_fd = -1; static int sigterm_signal_fd = -1; static std::unique_ptr<Timer> waiting_for_prop(nullptr); static std::string wait_prop_name; static std::string wait_prop_value; static bool shutting_down; static std::string shutdown_command; static bool do_shutdown = false; std::vector<std::string> late_import_paths; static std::vector<Subcontext>* subcontexts; void DumpState() { ServiceList::GetInstance().DumpState(); ActionManager::GetInstance().DumpState(); } Parser CreateParser(ActionManager& action_manager, ServiceList& service_list) { Parser parser; parser.AddSectionParser("service", std::make_unique<ServiceParser>(&service_list, subcontexts)); parser.AddSectionParser("on", std::make_unique<ActionParser>(&action_manager, subcontexts)); parser.AddSectionParser("import", std::make_unique<ImportParser>(&parser)); return parser; } static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) { Parser parser = CreateParser(action_manager, service_list); std::string bootscript = GetProperty("ro.boot.init_rc", ""); if (bootscript.empty()) { parser.ParseConfig("/init.rc"); if (!parser.ParseConfig("/system/etc/init")) { late_import_paths.emplace_back("/system/etc/init"); } if (!parser.ParseConfig("/product/etc/init")) { late_import_paths.emplace_back("/product/etc/init"); } if (!parser.ParseConfig("/odm/etc/init")) { late_import_paths.emplace_back("/odm/etc/init"); } if (!parser.ParseConfig("/vendor/etc/init")) { late_import_paths.emplace_back("/vendor/etc/init"); } } else { parser.ParseConfig(bootscript); } } void register_epoll_handler(int fd, void (*fn)()) { epoll_event ev; ev.events = EPOLLIN; ev.data.ptr = reinterpret_cast<void*>(fn); if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) { PLOG(ERROR) << "epoll_ctl failed"; } } bool start_waiting_for_property(const char *name, const char *value) { if (waiting_for_prop) { return false; } if (GetProperty(name, "") != value) { // Current property value is not equal to expected value wait_prop_name = name; wait_prop_value = value; waiting_for_prop.reset(new Timer()); } else { LOG(INFO) << "start_waiting_for_property(\"" << name << "\", \"" << value << "\"): already set"; } return true; } void ResetWaitForProp() { wait_prop_name.clear(); wait_prop_value.clear(); waiting_for_prop.reset(); } void property_changed(const std::string& name, const std::string& value) { // If the property is sys.powerctl, we bypass the event queue and immediately handle it. // This is to ensure that init will always and immediately shutdown/reboot, regardless of // if there are other pending events to process or if init is waiting on an exec service or // waiting on a property. // In non-thermal-shutdown case, 'shutdown' trigger will be fired to let device specific // commands to be executed. if (name == "sys.powerctl") { // Despite the above comment, we can't call HandlePowerctlMessage() in this function, // because it modifies the contents of the action queue, which can cause the action queue // to get into a bad state if this function is called from a command being executed by the // action queue. Instead we set this flag and ensure that shutdown happens before the next // command is run in the main init loop. // TODO: once property service is removed from init, this will never happen from a builtin, // but rather from a callback from the property service socket, in which case this hack can // go away. shutdown_command = value; do_shutdown = true; } if (property_triggers_enabled) ActionManager::GetInstance().QueuePropertyChange(name, value); if (waiting_for_prop) { if (wait_prop_name == name && wait_prop_value == value) { LOG(INFO) << "Wait for property took " << *waiting_for_prop; ResetWaitForProp(); } } } static std::optional<boot_clock::time_point> RestartProcesses() { std::optional<boot_clock::time_point> next_process_restart_time; for (const auto& s : ServiceList::GetInstance()) { if (!(s->flags() & SVC_RESTARTING)) continue; auto restart_time = s->time_started() + 5s; if (boot_clock::now() > restart_time) { if (auto result = s->Start(); !result) { LOG(ERROR) << "Could not restart process '" << s->name() << "': " << result.error(); } } else { if (!next_process_restart_time || restart_time < *next_process_restart_time) { next_process_restart_time = restart_time; } } } return next_process_restart_time; } static Result<Success> DoControlStart(Service* service) { return service->Start(); } static Result<Success> DoControlStop(Service* service) { service->Stop(); return Success(); } static Result<Success> DoControlRestart(Service* service) { service->Restart(); return Success(); } enum class ControlTarget { SERVICE, // function gets called for the named service INTERFACE, // action gets called for every service that holds this interface }; struct ControlMessageFunction { ControlTarget target; std::function<Result<Success>(Service*)> action; }; static const std::map<std::string, ControlMessageFunction>& get_control_message_map() { // clang-format off static const std::map<std::string, ControlMessageFunction> control_message_functions = { {"start", {ControlTarget::SERVICE, DoControlStart}}, {"stop", {ControlTarget::SERVICE, DoControlStop}}, {"restart", {ControlTarget::SERVICE, DoControlRestart}}, {"interface_start", {ControlTarget::INTERFACE, DoControlStart}}, {"interface_stop", {ControlTarget::INTERFACE, DoControlStop}}, {"interface_restart", {ControlTarget::INTERFACE, DoControlRestart}}, }; // clang-format on return control_message_functions; } void HandleControlMessage(const std::string& msg, const std::string& name, pid_t pid) { const auto& map = get_control_message_map(); const auto it = map.find(msg); if (it == map.end()) { LOG(ERROR) << "Unknown control msg '" << msg << "'"; return; } std::string cmdline_path = StringPrintf("proc/%d/cmdline", pid); std::string process_cmdline; if (ReadFileToString(cmdline_path, &process_cmdline)) { std::replace(process_cmdline.begin(), process_cmdline.end(), '\0', ' '); process_cmdline = Trim(process_cmdline); } else { process_cmdline = "unknown process"; } LOG(INFO) << "Received control message '" << msg << "' for '" << name << "' from pid: " << pid << " (" << process_cmdline << ")"; const ControlMessageFunction& function = it->second; if (function.target == ControlTarget::SERVICE) { Service* svc = ServiceList::GetInstance().FindService(name); if (svc == nullptr) { LOG(ERROR) << "No such service '" << name << "' for ctl." << msg; return; } if (auto result = function.action(svc); !result) { LOG(ERROR) << "Could not ctl." << msg << " for service " << name << ": " << result.error(); } return; } if (function.target == ControlTarget::INTERFACE) { for (const auto& svc : ServiceList::GetInstance()) { if (svc->interfaces().count(name) == 0) { continue; } if (auto result = function.action(svc.get()); !result) { LOG(ERROR) << "Could not handle ctl." << msg << " for service " << svc->name() << " with interface " << name << ": " << result.error(); } return; } LOG(ERROR) << "Could not find service hosting interface " << name; return; } LOG(ERROR) << "Invalid function target from static map key '" << msg << "': " << static_cast<std::underlying_type<ControlTarget>::type>(function.target); } static Result<Success> wait_for_coldboot_done_action(const BuiltinArguments& args) { Timer t; LOG(VERBOSE) << "Waiting for " COLDBOOT_DONE "..."; // Historically we had a 1s timeout here because we weren't otherwise // tracking boot time, and many OEMs made their sepolicy regular // expressions too expensive (http://b/19899875). // Now we're tracking boot time, just log the time taken to a system // property. We still panic if it takes more than a minute though, // because any build that slow isn't likely to boot at all, and we'd // rather any test lab devices fail back to the bootloader. if (wait_for_file(COLDBOOT_DONE, 60s) < 0) { LOG(FATAL) << "Timed out waiting for " COLDBOOT_DONE; } property_set("ro.boottime.init.cold_boot_wait", std::to_string(t.duration().count())); return Success(); } static Result<Success> keychord_init_action(const BuiltinArguments& args) { keychord_init(); return Success(); } static Result<Success> console_init_action(const BuiltinArguments& args) { std::string console = GetProperty("ro.boot.console", ""); if (!console.empty()) { default_console = "/dev/" + console; } return Success(); } static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) { if (key.empty()) return; if (for_emulator) { // In the emulator, export any kernel option with the "ro.kernel." prefix. property_set("ro.kernel." + key, value); return; } if (key == "qemu") { strlcpy(qemu, value.c_str(), sizeof(qemu)); } else if (android::base::StartsWith(key, "androidboot.")) { property_set("ro.boot." + key.substr(12), value); } } static void export_oem_lock_status() { if (!android::base::GetBoolProperty("ro.oem_unlock_supported", false)) { return; } std::string value = GetProperty("ro.boot.verifiedbootstate", ""); if (!value.empty()) { property_set("ro.boot.flash.locked", value == "orange" ? "0" : "1"); } } static void export_kernel_boot_props() { struct { const char *src_prop; const char *dst_prop; const char *default_value; } prop_map[] = { { "ro.boot.serialno", "ro.serialno", "", }, { "ro.boot.mode", "ro.bootmode", "unknown", }, { "ro.boot.baseband", "ro.baseband", "unknown", }, { "ro.boot.bootloader", "ro.bootloader", "unknown", }, { "ro.boot.hardware", "ro.hardware", "unknown", }, { "ro.boot.revision", "ro.revision", "0", }, }; for (size_t i = 0; i < arraysize(prop_map); i++) { std::string value = GetProperty(prop_map[i].src_prop, ""); property_set(prop_map[i].dst_prop, (!value.empty()) ? value : prop_map[i].default_value); } } static void process_kernel_dt() { if (!is_android_dt_value_expected("compatible", "android,firmware")) { return; } std::unique_ptr<DIR, int (*)(DIR*)> dir(opendir(get_android_dt_dir().c_str()), closedir); if (!dir) return; std::string dt_file; struct dirent *dp; while ((dp = readdir(dir.get())) != NULL) { if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible") || !strcmp(dp->d_name, "name")) { continue; } std::string file_name = get_android_dt_dir() + dp->d_name; android::base::ReadFileToString(file_name, &dt_file); std::replace(dt_file.begin(), dt_file.end(), ',', '.'); property_set("ro.boot."s + dp->d_name, dt_file); } } static void process_kernel_cmdline() { // The first pass does the common stuff, and finds if we are in qemu. // The second pass is only necessary for qemu to export all kernel params // as properties. import_kernel_cmdline(false, import_kernel_nv); if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv); } static Result<Success> property_enable_triggers_action(const BuiltinArguments& args) { /* Enable property triggers. */ property_triggers_enabled = 1; return Success(); } static Result<Success> queue_property_triggers_action(const BuiltinArguments& args) { ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger"); ActionManager::GetInstance().QueueAllPropertyActions(); return Success(); } static void global_seccomp() { import_kernel_cmdline(false, [](const std::string& key, const std::string& value, bool in_qemu) { if (key == "androidboot.seccomp" && value == "global" && !set_global_seccomp_filter()) { LOG(FATAL) << "Failed to globally enable seccomp!"; } }); } // Set the UDC controller for the ConfigFS USB Gadgets. // Read the UDC controller in use from "/sys/class/udc". // In case of multiple UDC controllers select the first one. static void set_usb_controller() { std::unique_ptr<DIR, decltype(&closedir)>dir(opendir("/sys/class/udc"), closedir); if (!dir) return; dirent* dp; while ((dp = readdir(dir.get())) != nullptr) { if (dp->d_name[0] == '.') continue; property_set("sys.usb.controller", dp->d_name); break; } } static void InstallRebootSignalHandlers() { // Instead of panic'ing the kernel as is the default behavior when init crashes, // we prefer to reboot to bootloader on development builds, as this will prevent // boot looping bad configurations and allow both developers and test farms to easily // recover. struct sigaction action; memset(&action, 0, sizeof(action)); sigfillset(&action.sa_mask); action.sa_handler = [](int signal) { // These signal handlers are also caught for processes forked from init, however we do not // want them to trigger reboot, so we directly call _exit() for children processes here. if (getpid() != 1) { _exit(signal); } // Calling DoReboot() or LOG(FATAL) is not a good option as this is a signal handler. // RebootSystem uses syscall() which isn't actually async-signal-safe, but our only option // and probably good enough given this is already an error case and only enabled for // development builds. RebootSystem(ANDROID_RB_RESTART2, "bootloader"); }; action.sa_flags = SA_RESTART; sigaction(SIGABRT, &action, nullptr); sigaction(SIGBUS, &action, nullptr); sigaction(SIGFPE, &action, nullptr); sigaction(SIGILL, &action, nullptr); sigaction(SIGSEGV, &action, nullptr); #if defined(SIGSTKFLT) sigaction(SIGSTKFLT, &action, nullptr); #endif sigaction(SIGSYS, &action, nullptr); sigaction(SIGTRAP, &action, nullptr); } static void HandleSigtermSignal() { signalfd_siginfo siginfo; ssize_t bytes_read = TEMP_FAILURE_RETRY(read(sigterm_signal_fd, &siginfo, sizeof(siginfo))); if (bytes_read != sizeof(siginfo)) { PLOG(ERROR) << "Failed to read siginfo from sigterm_signal_fd"; return; } if (siginfo.ssi_pid != 0) { // Drop any userspace SIGTERM requests. LOG(DEBUG) << "Ignoring SIGTERM from pid " << siginfo.ssi_pid; return; } HandlePowerctlMessage("shutdown,container"); } static void UnblockSigterm() { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, SIGTERM); if (sigprocmask(SIG_UNBLOCK, &mask, nullptr) == -1) { PLOG(FATAL) << "failed to unblock SIGTERM for PID " << getpid(); } } static void InstallSigtermHandler() { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, SIGTERM); if (sigprocmask(SIG_BLOCK, &mask, nullptr) == -1) { PLOG(FATAL) << "failed to block SIGTERM"; } // Register a handler to unblock SIGTERM in the child processes. const int result = pthread_atfork(nullptr, nullptr, &UnblockSigterm); if (result != 0) { LOG(FATAL) << "Failed to register a fork handler: " << strerror(result); } sigterm_signal_fd = signalfd(-1, &mask, SFD_CLOEXEC); if (sigterm_signal_fd == -1) { PLOG(FATAL) << "failed to create signalfd for SIGTERM"; } register_epoll_handler(sigterm_signal_fd, HandleSigtermSignal); } int main(int argc, char** argv) { if (!strcmp(basename(argv[0]), "ueventd")) { return ueventd_main(argc, argv); } if (!strcmp(basename(argv[0]), "watchdogd")) { return watchdogd_main(argc, argv); } if (argc > 1 && !strcmp(argv[1], "subcontext")) { InitKernelLogging(argv); const BuiltinFunctionMap function_map; return SubcontextMain(argc, argv, &function_map); } if (REBOOT_BOOTLOADER_ON_PANIC) { InstallRebootSignalHandlers(); } bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr); if (is_first_stage) { boot_clock::time_point start_time = boot_clock::now(); // Clear the umask. umask(0); clearenv(); setenv("PATH", _PATH_DEFPATH, 1); // Get the basic filesystem setup we need put together in the initramdisk // on / and then we'll let the rc file figure out the rest. mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); #define MAKE_STR(x) __STRING(x) mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)); // Don't expose the raw commandline to unprivileged processes. chmod("/proc/cmdline", 0440); gid_t groups[] = { AID_READPROC }; setgroups(arraysize(groups), groups); mount("sysfs", "/sys", "sysfs", 0, NULL); mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL); mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)); if constexpr (WORLD_WRITABLE_KMSG) { mknod("/dev/kmsg_debug", S_IFCHR | 0622, makedev(1, 11)); } mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8)); mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9)); // Mount staging areas for devices managed by vold // See storage config details at http://source.android.com/devices/storage/ mount("tmpfs", "/mnt", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV, "mode=0755,uid=0,gid=1000"); // /mnt/vendor is used to mount vendor-specific partitions that can not be // part of the vendor partition, e.g. because they are mounted read-write. mkdir("/mnt/vendor", 0755); // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually // talk to the outside world... InitKernelLogging(argv); LOG(INFO) << "init first stage started!"; if (!DoFirstStageMount()) { LOG(FATAL) << "Failed to mount required partitions early ..."; } SetInitAvbVersionInRecovery(); // Enable seccomp if global boot option was passed (otherwise it is enabled in zygote). global_seccomp(); // Set up SELinux, loading the SELinux policy. SelinuxSetupKernelLogging(); SelinuxInitialize(); // We're in the kernel domain, so re-exec init to transition to the init domain now // that the SELinux policy has been loaded. if (selinux_android_restorecon("/init", 0) == -1) { PLOG(FATAL) << "restorecon failed of /init failed"; } setenv("INIT_SECOND_STAGE", "true", 1); static constexpr uint32_t kNanosecondsPerMillisecond = 1e6; uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond; setenv("INIT_STARTED_AT", std::to_string(start_ms).c_str(), 1); char* path = argv[0]; char* args[] = { path, nullptr }; execv(path, args); // execv() only returns if an error happened, in which case we // panic and never fall through this conditional. PLOG(FATAL) << "execv(\"" << path << "\") failed"; } // At this point we're in the second stage of init. InitKernelLogging(argv); LOG(INFO) << "init second stage started!"; // Set up a session keyring that all processes will have access to. It // will hold things like FBE encryption keys. No process should override // its session keyring. keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1); // Indicate that booting is in progress to background fw loaders, etc. close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); property_init(); // If arguments are passed both on the command line and in DT, // properties set in DT always have priority over the command-line ones. process_kernel_dt(); process_kernel_cmdline(); // Propagate the kernel variables to internal variables // used by init as well as the current required properties. export_kernel_boot_props(); // Make the time that init started available for bootstat to log. property_set("ro.boottime.init", getenv("INIT_STARTED_AT")); property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK")); // Set libavb version for Framework-only OTA match in Treble build. const char* avb_version = getenv("INIT_AVB_VERSION"); if (avb_version) property_set("ro.boot.avb_version", avb_version); // Clean up our environment. unsetenv("INIT_SECOND_STAGE"); unsetenv("INIT_STARTED_AT"); unsetenv("INIT_SELINUX_TOOK"); unsetenv("INIT_AVB_VERSION"); // Now set up SELinux for second stage. SelinuxSetupKernelLogging(); SelabelInitialize(); SelinuxRestoreContext(); epoll_fd = epoll_create1(EPOLL_CLOEXEC); if (epoll_fd == -1) { PLOG(FATAL) << "epoll_create1 failed"; } sigchld_handler_init(); if (!IsRebootCapable()) { // If init does not have the CAP_SYS_BOOT capability, it is running in a container. // In that case, receiving SIGTERM will cause the system to shut down. InstallSigtermHandler(); } property_load_boot_defaults(); export_oem_lock_status(); start_property_service(); set_usb_controller(); const BuiltinFunctionMap function_map; Action::set_function_map(&function_map); subcontexts = InitializeSubcontexts(); ActionManager& am = ActionManager::GetInstance(); ServiceList& sm = ServiceList::GetInstance(); LoadBootScripts(am, sm); // Turning this on and letting the INFO logging be discarded adds 0.2s to // Nexus 9 boot time, so it's disabled by default. if (false) DumpState(); am.QueueEventTrigger("early-init"); // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev... am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done"); // ... so that we can start queuing up actions that require stuff from /dev. am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng"); am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits"); am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict"); am.QueueBuiltinAction(keychord_init_action, "keychord_init"); am.QueueBuiltinAction(console_init_action, "console_init"); // Trigger all the boot actions to get us started. am.QueueEventTrigger("init"); // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random // wasn't ready immediately after wait_for_coldboot_done am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng"); // Don't mount filesystems or start core system services in charger mode. std::string bootmode = GetProperty("ro.bootmode", ""); if (bootmode == "charger") { am.QueueEventTrigger("charger"); } else { am.QueueEventTrigger("late-init"); } // Run all property triggers based on current state of the properties. am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers"); while (true) { // By default, sleep until something happens. int epoll_timeout_ms = -1; if (do_shutdown && !shutting_down) { do_shutdown = false; if (HandlePowerctlMessage(shutdown_command)) { shutting_down = true; } } if (!(waiting_for_prop || Service::is_exec_service_running())) { am.ExecuteOneCommand(); } if (!(waiting_for_prop || Service::is_exec_service_running())) { if (!shutting_down) { auto next_process_restart_time = RestartProcesses(); // If there's a process that needs restarting, wake up in time for that. if (next_process_restart_time) { epoll_timeout_ms = std::chrono::ceil<std::chrono::milliseconds>( *next_process_restart_time - boot_clock::now()) .count(); if (epoll_timeout_ms < 0) epoll_timeout_ms = 0; } } // If there's more work to do, wake up again immediately. if (am.HasMoreCommands()) epoll_timeout_ms = 0; } epoll_event ev; int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms)); if (nr == -1) { PLOG(ERROR) << "epoll_wait failed"; } else if (nr == 1) { ((void (*)()) ev.data.ptr)(); } } return 0; } } // namespace init } // namespace android