/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_BASE_MACROS_H #define ANDROID_BASE_MACROS_H #include <stddef.h> // for size_t #include <unistd.h> // for TEMP_FAILURE_RETRY // bionic and glibc both have TEMP_FAILURE_RETRY, but eg Mac OS' libc doesn't. #ifndef TEMP_FAILURE_RETRY #define TEMP_FAILURE_RETRY(exp) \ ({ \ decltype(exp) _rc; \ do { \ _rc = (exp); \ } while (_rc == -1 && errno == EINTR); \ _rc; \ }) #endif // A macro to disallow the copy constructor and operator= functions // This must be placed in the private: declarations for a class. // // For disallowing only assign or copy, delete the relevant operator or // constructor, for example: // void operator=(const TypeName&) = delete; // Note, that most uses of DISALLOW_ASSIGN and DISALLOW_COPY are broken // semantically, one should either use disallow both or neither. Try to // avoid these in new code. #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&) = delete; \ void operator=(const TypeName&) = delete // A macro to disallow all the implicit constructors, namely the // default constructor, copy constructor and operator= functions. // // This should be used in the private: declarations for a class // that wants to prevent anyone from instantiating it. This is // especially useful for classes containing only static methods. #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ TypeName() = delete; \ DISALLOW_COPY_AND_ASSIGN(TypeName) // The arraysize(arr) macro returns the # of elements in an array arr. // The expression is a compile-time constant, and therefore can be // used in defining new arrays, for example. If you use arraysize on // a pointer by mistake, you will get a compile-time error. // // One caveat is that arraysize() doesn't accept any array of an // anonymous type or a type defined inside a function. In these rare // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is // due to a limitation in C++'s template system. The limitation might // eventually be removed, but it hasn't happened yet. // This template function declaration is used in defining arraysize. // Note that the function doesn't need an implementation, as we only // use its type. template <typename T, size_t N> char(&ArraySizeHelper(T(&array)[N]))[N]; // NOLINT(readability/casting) #define arraysize(array) (sizeof(ArraySizeHelper(array))) // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize, // but can be used on anonymous types or types defined inside // functions. It's less safe than arraysize as it accepts some // (although not all) pointers. Therefore, you should use arraysize // whenever possible. // // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type // size_t. // // ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error // // "warning: division by zero in ..." // // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer. // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays. // // The following comments are on the implementation details, and can // be ignored by the users. // // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in // the array) and sizeof(*(arr)) (the # of bytes in one array // element). If the former is divisible by the latter, perhaps arr is // indeed an array, in which case the division result is the # of // elements in the array. Otherwise, arr cannot possibly be an array, // and we generate a compiler error to prevent the code from // compiling. // // Since the size of bool is implementation-defined, we need to cast // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final // result has type size_t. // // This macro is not perfect as it wrongfully accepts certain // pointers, namely where the pointer size is divisible by the pointee // size. Since all our code has to go through a 32-bit compiler, // where a pointer is 4 bytes, this means all pointers to a type whose // size is 3 or greater than 4 will be (righteously) rejected. #define ARRAYSIZE_UNSAFE(a) \ ((sizeof(a) / sizeof(*(a))) / \ static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) // Changing this definition will cause you a lot of pain. A majority of // vendor code defines LIKELY and UNLIKELY this way, and includes // this header through an indirect path. #define LIKELY( exp ) (__builtin_expect( (exp) != 0, true )) #define UNLIKELY( exp ) (__builtin_expect( (exp) != 0, false )) #define WARN_UNUSED __attribute__((warn_unused_result)) // A deprecated function to call to create a false use of the parameter, for // example: // int foo(int x) { UNUSED(x); return 10; } // to avoid compiler warnings. Going forward we prefer ATTRIBUTE_UNUSED. template <typename... T> void UNUSED(const T&...) { } // An attribute to place on a parameter to a function, for example: // int foo(int x ATTRIBUTE_UNUSED) { return 10; } // to avoid compiler warnings. #define ATTRIBUTE_UNUSED __attribute__((__unused__)) // The FALLTHROUGH_INTENDED macro can be used to annotate implicit fall-through // between switch labels: // switch (x) { // case 40: // case 41: // if (truth_is_out_there) { // ++x; // FALLTHROUGH_INTENDED; // Use instead of/along with annotations in // // comments. // } else { // return x; // } // case 42: // ... // // As shown in the example above, the FALLTHROUGH_INTENDED macro should be // followed by a semicolon. It is designed to mimic control-flow statements // like 'break;', so it can be placed in most places where 'break;' can, but // only if there are no statements on the execution path between it and the // next switch label. // // When compiled with clang, the FALLTHROUGH_INTENDED macro is expanded to // [[clang::fallthrough]] attribute, which is analysed when performing switch // labels fall-through diagnostic ('-Wimplicit-fallthrough'). See clang // documentation on language extensions for details: // http://clang.llvm.org/docs/LanguageExtensions.html#clang__fallthrough // // When used with unsupported compilers, the FALLTHROUGH_INTENDED macro has no // effect on diagnostics. // // In either case this macro has no effect on runtime behavior and performance // of code. #if defined(__clang__) && defined(__has_warning) #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough") #define FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT #endif #endif #ifndef FALLTHROUGH_INTENDED #define FALLTHROUGH_INTENDED \ do { \ } while (0) #endif // Current ABI string #if defined(__arm__) #define ABI_STRING "arm" #elif defined(__aarch64__) #define ABI_STRING "arm64" #elif defined(__i386__) #define ABI_STRING "x86" #elif defined(__x86_64__) #define ABI_STRING "x86_64" #elif defined(__mips__) && !defined(__LP64__) #define ABI_STRING "mips" #elif defined(__mips__) && defined(__LP64__) #define ABI_STRING "mips64" #endif #endif // ANDROID_BASE_MACROS_H