/*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---=== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * *===-----------------------------------------------------------------------=== */ #ifndef __CLANG_CUDA_INTRINSICS_H__ #define __CLANG_CUDA_INTRINSICS_H__ #ifndef __CUDA__ #error "This file is for CUDA compilation only." #endif // sm_30 intrinsics: __shfl_{up,down,xor}. #define __SM_30_INTRINSICS_H__ #define __SM_30_INTRINSICS_HPP__ #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 #pragma push_macro("__MAKE_SHUFFLES") #define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask) \ inline __device__ int __FnName(int __in, int __offset, \ int __width = warpSize) { \ return __IntIntrinsic(__in, __offset, \ ((warpSize - __width) << 8) | (__Mask)); \ } \ inline __device__ float __FnName(float __in, int __offset, \ int __width = warpSize) { \ return __FloatIntrinsic(__in, __offset, \ ((warpSize - __width) << 8) | (__Mask)); \ } \ inline __device__ unsigned int __FnName(unsigned int __in, int __offset, \ int __width = warpSize) { \ return static_cast<unsigned int>( \ ::__FnName(static_cast<int>(__in), __offset, __width)); \ } \ inline __device__ long long __FnName(long long __in, int __offset, \ int __width = warpSize) { \ struct __Bits { \ int __a, __b; \ }; \ _Static_assert(sizeof(__in) == sizeof(__Bits)); \ _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \ __Bits __tmp; \ memcpy(&__in, &__tmp, sizeof(__in)); \ __tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \ __tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \ long long __out; \ memcpy(&__out, &__tmp, sizeof(__tmp)); \ return __out; \ } \ inline __device__ unsigned long long __FnName( \ unsigned long long __in, int __offset, int __width = warpSize) { \ return static_cast<unsigned long long>( \ ::__FnName(static_cast<unsigned long long>(__in), __offset, __width)); \ } \ inline __device__ double __FnName(double __in, int __offset, \ int __width = warpSize) { \ long long __tmp; \ _Static_assert(sizeof(__tmp) == sizeof(__in)); \ memcpy(&__tmp, &__in, sizeof(__in)); \ __tmp = ::__FnName(__tmp, __offset, __width); \ double __out; \ memcpy(&__out, &__tmp, sizeof(__out)); \ return __out; \ } __MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f); // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >= // maxLane. __MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0); __MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f); __MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f); #pragma pop_macro("__MAKE_SHUFFLES") #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 // sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}. // Prevent the vanilla sm_32 intrinsics header from being included. #define __SM_32_INTRINSICS_H__ #define __SM_32_INTRINSICS_HPP__ #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320 inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); } inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); } inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); } inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); } inline __device__ long long __ldg(const long long *ptr) { return __nvvm_ldg_ll(ptr); } inline __device__ unsigned char __ldg(const unsigned char *ptr) { return __nvvm_ldg_uc(ptr); } inline __device__ unsigned short __ldg(const unsigned short *ptr) { return __nvvm_ldg_us(ptr); } inline __device__ unsigned int __ldg(const unsigned int *ptr) { return __nvvm_ldg_ui(ptr); } inline __device__ unsigned long __ldg(const unsigned long *ptr) { return __nvvm_ldg_ul(ptr); } inline __device__ unsigned long long __ldg(const unsigned long long *ptr) { return __nvvm_ldg_ull(ptr); } inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); } inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); } inline __device__ char2 __ldg(const char2 *ptr) { typedef char c2 __attribute__((ext_vector_type(2))); // We can assume that ptr is aligned at least to char2's alignment, but the // load will assume that ptr is aligned to char2's alignment. This is only // safe if alignof(c2) <= alignof(char2). c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr)); char2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ char4 __ldg(const char4 *ptr) { typedef char c4 __attribute__((ext_vector_type(4))); c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr)); char4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ short2 __ldg(const short2 *ptr) { typedef short s2 __attribute__((ext_vector_type(2))); s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr)); short2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ short4 __ldg(const short4 *ptr) { typedef short s4 __attribute__((ext_vector_type(4))); s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr)); short4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ int2 __ldg(const int2 *ptr) { typedef int i2 __attribute__((ext_vector_type(2))); i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr)); int2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ int4 __ldg(const int4 *ptr) { typedef int i4 __attribute__((ext_vector_type(4))); i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr)); int4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ longlong2 __ldg(const longlong2 *ptr) { typedef long long ll2 __attribute__((ext_vector_type(2))); ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr)); longlong2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ uchar2 __ldg(const uchar2 *ptr) { typedef unsigned char uc2 __attribute__((ext_vector_type(2))); uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr)); uchar2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ uchar4 __ldg(const uchar4 *ptr) { typedef unsigned char uc4 __attribute__((ext_vector_type(4))); uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr)); uchar4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ ushort2 __ldg(const ushort2 *ptr) { typedef unsigned short us2 __attribute__((ext_vector_type(2))); us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr)); ushort2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ ushort4 __ldg(const ushort4 *ptr) { typedef unsigned short us4 __attribute__((ext_vector_type(4))); us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr)); ushort4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ uint2 __ldg(const uint2 *ptr) { typedef unsigned int ui2 __attribute__((ext_vector_type(2))); ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr)); uint2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ uint4 __ldg(const uint4 *ptr) { typedef unsigned int ui4 __attribute__((ext_vector_type(4))); ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr)); uint4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) { typedef unsigned long long ull2 __attribute__((ext_vector_type(2))); ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr)); ulonglong2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ float2 __ldg(const float2 *ptr) { typedef float f2 __attribute__((ext_vector_type(2))); f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr)); float2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ float4 __ldg(const float4 *ptr) { typedef float f4 __attribute__((ext_vector_type(4))); f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr)); float4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ double2 __ldg(const double2 *ptr) { typedef double d2 __attribute__((ext_vector_type(2))); d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr)); double2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } // TODO: Implement these as intrinsics, so the backend can work its magic on // these. Alternatively, we could implement these as plain C and try to get // llvm to recognize the relevant patterns. inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32, unsigned shiftWidth) { unsigned result; asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result) : "r"(low32), "r"(high32), "r"(shiftWidth)); return result; } inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32, unsigned shiftWidth) { unsigned result; asm("shf.l.clamp.b32 %0, %1, %2, %3;" : "=r"(result) : "r"(low32), "r"(high32), "r"(shiftWidth)); return result; } inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32, unsigned shiftWidth) { unsigned result; asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result) : "r"(low32), "r"(high32), "r"(shiftWidth)); return result; } inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32, unsigned shiftWidth) { unsigned ret; asm("shf.r.clamp.b32 %0, %1, %2, %3;" : "=r"(ret) : "r"(low32), "r"(high32), "r"(shiftWidth)); return ret; } #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320 #endif // defined(__CLANG_CUDA_INTRINSICS_H__)