import __builtin__ import gc import sys import types import unittest import weakref from copy import deepcopy from test import test_support class OperatorsTest(unittest.TestCase): def __init__(self, *args, **kwargs): unittest.TestCase.__init__(self, *args, **kwargs) self.binops = { 'add': '+', 'sub': '-', 'mul': '*', 'div': '/', 'divmod': 'divmod', 'pow': '**', 'lshift': '<<', 'rshift': '>>', 'and': '&', 'xor': '^', 'or': '|', 'cmp': 'cmp', 'lt': '<', 'le': '<=', 'eq': '==', 'ne': '!=', 'gt': '>', 'ge': '>=', } for name, expr in self.binops.items(): if expr.islower(): expr = expr + "(a, b)" else: expr = 'a %s b' % expr self.binops[name] = expr self.unops = { 'pos': '+', 'neg': '-', 'abs': 'abs', 'invert': '~', 'int': 'int', 'long': 'long', 'float': 'float', 'oct': 'oct', 'hex': 'hex', } for name, expr in self.unops.items(): if expr.islower(): expr = expr + "(a)" else: expr = '%s a' % expr self.unops[name] = expr def unop_test(self, a, res, expr="len(a)", meth="__len__"): d = {'a': a} self.assertEqual(eval(expr, d), res) t = type(a) m = getattr(t, meth) # Find method in parent class while meth not in t.__dict__: t = t.__bases__[0] # in some implementations (e.g. PyPy), 'm' can be a regular unbound # method object; the getattr() below obtains its underlying function. self.assertEqual(getattr(m, 'im_func', m), t.__dict__[meth]) self.assertEqual(m(a), res) bm = getattr(a, meth) self.assertEqual(bm(), res) def binop_test(self, a, b, res, expr="a+b", meth="__add__"): d = {'a': a, 'b': b} # XXX Hack so this passes before 2.3 when -Qnew is specified. if meth == "__div__" and 1/2 == 0.5: meth = "__truediv__" if meth == '__divmod__': pass self.assertEqual(eval(expr, d), res) t = type(a) m = getattr(t, meth) while meth not in t.__dict__: t = t.__bases__[0] # in some implementations (e.g. PyPy), 'm' can be a regular unbound # method object; the getattr() below obtains its underlying function. self.assertEqual(getattr(m, 'im_func', m), t.__dict__[meth]) self.assertEqual(m(a, b), res) bm = getattr(a, meth) self.assertEqual(bm(b), res) def ternop_test(self, a, b, c, res, expr="a[b:c]", meth="__getslice__"): d = {'a': a, 'b': b, 'c': c} self.assertEqual(eval(expr, d), res) t = type(a) m = getattr(t, meth) while meth not in t.__dict__: t = t.__bases__[0] # in some implementations (e.g. PyPy), 'm' can be a regular unbound # method object; the getattr() below obtains its underlying function. self.assertEqual(getattr(m, 'im_func', m), t.__dict__[meth]) self.assertEqual(m(a, b, c), res) bm = getattr(a, meth) self.assertEqual(bm(b, c), res) def setop_test(self, a, b, res, stmt="a+=b", meth="__iadd__"): d = {'a': deepcopy(a), 'b': b} exec stmt in d self.assertEqual(d['a'], res) t = type(a) m = getattr(t, meth) while meth not in t.__dict__: t = t.__bases__[0] # in some implementations (e.g. PyPy), 'm' can be a regular unbound # method object; the getattr() below obtains its underlying function. self.assertEqual(getattr(m, 'im_func', m), t.__dict__[meth]) d['a'] = deepcopy(a) m(d['a'], b) self.assertEqual(d['a'], res) d['a'] = deepcopy(a) bm = getattr(d['a'], meth) bm(b) self.assertEqual(d['a'], res) def set2op_test(self, a, b, c, res, stmt="a[b]=c", meth="__setitem__"): d = {'a': deepcopy(a), 'b': b, 'c': c} exec stmt in d self.assertEqual(d['a'], res) t = type(a) m = getattr(t, meth) while meth not in t.__dict__: t = t.__bases__[0] # in some implementations (e.g. PyPy), 'm' can be a regular unbound # method object; the getattr() below obtains its underlying function. self.assertEqual(getattr(m, 'im_func', m), t.__dict__[meth]) d['a'] = deepcopy(a) m(d['a'], b, c) self.assertEqual(d['a'], res) d['a'] = deepcopy(a) bm = getattr(d['a'], meth) bm(b, c) self.assertEqual(d['a'], res) def set3op_test(self, a, b, c, d, res, stmt="a[b:c]=d", meth="__setslice__"): dictionary = {'a': deepcopy(a), 'b': b, 'c': c, 'd': d} exec stmt in dictionary self.assertEqual(dictionary['a'], res) t = type(a) while meth not in t.__dict__: t = t.__bases__[0] m = getattr(t, meth) # in some implementations (e.g. PyPy), 'm' can be a regular unbound # method object; the getattr() below obtains its underlying function. self.assertEqual(getattr(m, 'im_func', m), t.__dict__[meth]) dictionary['a'] = deepcopy(a) m(dictionary['a'], b, c, d) self.assertEqual(dictionary['a'], res) dictionary['a'] = deepcopy(a) bm = getattr(dictionary['a'], meth) bm(b, c, d) self.assertEqual(dictionary['a'], res) def test_lists(self): # Testing list operations... # Asserts are within individual test methods self.binop_test([1], [2], [1,2], "a+b", "__add__") self.binop_test([1,2,3], 2, 1, "b in a", "__contains__") self.binop_test([1,2,3], 4, 0, "b in a", "__contains__") self.binop_test([1,2,3], 1, 2, "a[b]", "__getitem__") self.ternop_test([1,2,3], 0, 2, [1,2], "a[b:c]", "__getslice__") self.setop_test([1], [2], [1,2], "a+=b", "__iadd__") self.setop_test([1,2], 3, [1,2,1,2,1,2], "a*=b", "__imul__") self.unop_test([1,2,3], 3, "len(a)", "__len__") self.binop_test([1,2], 3, [1,2,1,2,1,2], "a*b", "__mul__") self.binop_test([1,2], 3, [1,2,1,2,1,2], "b*a", "__rmul__") self.set2op_test([1,2], 1, 3, [1,3], "a[b]=c", "__setitem__") self.set3op_test([1,2,3,4], 1, 3, [5,6], [1,5,6,4], "a[b:c]=d", "__setslice__") def test_dicts(self): # Testing dict operations... if hasattr(dict, '__cmp__'): # PyPy has only rich comparison on dicts self.binop_test({1:2}, {2:1}, -1, "cmp(a,b)", "__cmp__") else: self.binop_test({1:2}, {2:1}, True, "a < b", "__lt__") self.binop_test({1:2,3:4}, 1, 1, "b in a", "__contains__") self.binop_test({1:2,3:4}, 2, 0, "b in a", "__contains__") self.binop_test({1:2,3:4}, 1, 2, "a[b]", "__getitem__") d = {1:2, 3:4} l1 = [] for i in d.keys(): l1.append(i) l = [] for i in iter(d): l.append(i) self.assertEqual(l, l1) l = [] for i in d.__iter__(): l.append(i) self.assertEqual(l, l1) l = [] for i in dict.__iter__(d): l.append(i) self.assertEqual(l, l1) d = {1:2, 3:4} self.unop_test(d, 2, "len(a)", "__len__") self.assertEqual(eval(repr(d), {}), d) self.assertEqual(eval(d.__repr__(), {}), d) self.set2op_test({1:2,3:4}, 2, 3, {1:2,2:3,3:4}, "a[b]=c", "__setitem__") # Tests for unary and binary operators def number_operators(self, a, b, skip=[]): dict = {'a': a, 'b': b} for name, expr in self.binops.items(): if name not in skip: name = "__%s__" % name if hasattr(a, name): res = eval(expr, dict) self.binop_test(a, b, res, expr, name) for name, expr in self.unops.items(): if name not in skip: name = "__%s__" % name if hasattr(a, name): res = eval(expr, dict) self.unop_test(a, res, expr, name) def test_ints(self): # Testing int operations... self.number_operators(100, 3) # The following crashes in Python 2.2 self.assertEqual((1).__nonzero__(), 1) self.assertEqual((0).__nonzero__(), 0) # This returns 'NotImplemented' in Python 2.2 class C(int): def __add__(self, other): return NotImplemented self.assertEqual(C(5L), 5) try: C() + "" except TypeError: pass else: self.fail("NotImplemented should have caused TypeError") try: C(sys.maxint+1) except OverflowError: pass else: self.fail("should have raised OverflowError") def test_longs(self): # Testing long operations... self.number_operators(100L, 3L) def test_floats(self): # Testing float operations... self.number_operators(100.0, 3.0) def test_complexes(self): # Testing complex operations... self.number_operators(100.0j, 3.0j, skip=['lt', 'le', 'gt', 'ge', 'int', 'long', 'float']) class Number(complex): __slots__ = ['prec'] def __new__(cls, *args, **kwds): result = complex.__new__(cls, *args) result.prec = kwds.get('prec', 12) return result def __repr__(self): prec = self.prec if self.imag == 0.0: return "%.*g" % (prec, self.real) if self.real == 0.0: return "%.*gj" % (prec, self.imag) return "(%.*g+%.*gj)" % (prec, self.real, prec, self.imag) __str__ = __repr__ a = Number(3.14, prec=6) self.assertEqual(repr(a), "3.14") self.assertEqual(a.prec, 6) a = Number(a, prec=2) self.assertEqual(repr(a), "3.1") self.assertEqual(a.prec, 2) a = Number(234.5) self.assertEqual(repr(a), "234.5") self.assertEqual(a.prec, 12) @test_support.impl_detail("the module 'xxsubtype' is internal") def test_spam_lists(self): # Testing spamlist operations... import copy, xxsubtype as spam def spamlist(l, memo=None): import xxsubtype as spam return spam.spamlist(l) # This is an ugly hack: copy._deepcopy_dispatch[spam.spamlist] = spamlist self.binop_test(spamlist([1]), spamlist([2]), spamlist([1,2]), "a+b", "__add__") self.binop_test(spamlist([1,2,3]), 2, 1, "b in a", "__contains__") self.binop_test(spamlist([1,2,3]), 4, 0, "b in a", "__contains__") self.binop_test(spamlist([1,2,3]), 1, 2, "a[b]", "__getitem__") self.ternop_test(spamlist([1,2,3]), 0, 2, spamlist([1,2]), "a[b:c]", "__getslice__") self.setop_test(spamlist([1]), spamlist([2]), spamlist([1,2]), "a+=b", "__iadd__") self.setop_test(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "a*=b", "__imul__") self.unop_test(spamlist([1,2,3]), 3, "len(a)", "__len__") self.binop_test(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "a*b", "__mul__") self.binop_test(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "b*a", "__rmul__") self.set2op_test(spamlist([1,2]), 1, 3, spamlist([1,3]), "a[b]=c", "__setitem__") self.set3op_test(spamlist([1,2,3,4]), 1, 3, spamlist([5,6]), spamlist([1,5,6,4]), "a[b:c]=d", "__setslice__") # Test subclassing class C(spam.spamlist): def foo(self): return 1 a = C() self.assertEqual(a, []) self.assertEqual(a.foo(), 1) a.append(100) self.assertEqual(a, [100]) self.assertEqual(a.getstate(), 0) a.setstate(42) self.assertEqual(a.getstate(), 42) @test_support.impl_detail("the module 'xxsubtype' is internal") def test_spam_dicts(self): # Testing spamdict operations... import copy, xxsubtype as spam def spamdict(d, memo=None): import xxsubtype as spam sd = spam.spamdict() for k, v in d.items(): sd[k] = v return sd # This is an ugly hack: copy._deepcopy_dispatch[spam.spamdict] = spamdict self.binop_test(spamdict({1:2}), spamdict({2:1}), -1, "cmp(a,b)", "__cmp__") self.binop_test(spamdict({1:2,3:4}), 1, 1, "b in a", "__contains__") self.binop_test(spamdict({1:2,3:4}), 2, 0, "b in a", "__contains__") self.binop_test(spamdict({1:2,3:4}), 1, 2, "a[b]", "__getitem__") d = spamdict({1:2,3:4}) l1 = [] for i in d.keys(): l1.append(i) l = [] for i in iter(d): l.append(i) self.assertEqual(l, l1) l = [] for i in d.__iter__(): l.append(i) self.assertEqual(l, l1) l = [] for i in type(spamdict({})).__iter__(d): l.append(i) self.assertEqual(l, l1) straightd = {1:2, 3:4} spamd = spamdict(straightd) self.unop_test(spamd, 2, "len(a)", "__len__") self.unop_test(spamd, repr(straightd), "repr(a)", "__repr__") self.set2op_test(spamdict({1:2,3:4}), 2, 3, spamdict({1:2,2:3,3:4}), "a[b]=c", "__setitem__") # Test subclassing class C(spam.spamdict): def foo(self): return 1 a = C() self.assertEqual(a.items(), []) self.assertEqual(a.foo(), 1) a['foo'] = 'bar' self.assertEqual(a.items(), [('foo', 'bar')]) self.assertEqual(a.getstate(), 0) a.setstate(100) self.assertEqual(a.getstate(), 100) class ClassPropertiesAndMethods(unittest.TestCase): def test_python_dicts(self): # Testing Python subclass of dict... self.assertTrue(issubclass(dict, dict)) self.assertIsInstance({}, dict) d = dict() self.assertEqual(d, {}) self.assertTrue(d.__class__ is dict) self.assertIsInstance(d, dict) class C(dict): state = -1 def __init__(self_local, *a, **kw): if a: self.assertEqual(len(a), 1) self_local.state = a[0] if kw: for k, v in kw.items(): self_local[v] = k def __getitem__(self, key): return self.get(key, 0) def __setitem__(self_local, key, value): self.assertIsInstance(key, type(0)) dict.__setitem__(self_local, key, value) def setstate(self, state): self.state = state def getstate(self): return self.state self.assertTrue(issubclass(C, dict)) a1 = C(12) self.assertEqual(a1.state, 12) a2 = C(foo=1, bar=2) self.assertEqual(a2[1] == 'foo' and a2[2], 'bar') a = C() self.assertEqual(a.state, -1) self.assertEqual(a.getstate(), -1) a.setstate(0) self.assertEqual(a.state, 0) self.assertEqual(a.getstate(), 0) a.setstate(10) self.assertEqual(a.state, 10) self.assertEqual(a.getstate(), 10) self.assertEqual(a[42], 0) a[42] = 24 self.assertEqual(a[42], 24) N = 50 for i in range(N): a[i] = C() for j in range(N): a[i][j] = i*j for i in range(N): for j in range(N): self.assertEqual(a[i][j], i*j) def test_python_lists(self): # Testing Python subclass of list... class C(list): def __getitem__(self, i): return list.__getitem__(self, i) + 100 def __getslice__(self, i, j): return (i, j) a = C() a.extend([0,1,2]) self.assertEqual(a[0], 100) self.assertEqual(a[1], 101) self.assertEqual(a[2], 102) self.assertEqual(a[100:200], (100,200)) def test_metaclass(self): # Testing __metaclass__... class C: __metaclass__ = type def __init__(self): self.__state = 0 def getstate(self): return self.__state def setstate(self, state): self.__state = state a = C() self.assertEqual(a.getstate(), 0) a.setstate(10) self.assertEqual(a.getstate(), 10) class D: class __metaclass__(type): def myself(cls): return cls self.assertEqual(D.myself(), D) d = D() self.assertEqual(d.__class__, D) class M1(type): def __new__(cls, name, bases, dict): dict['__spam__'] = 1 return type.__new__(cls, name, bases, dict) class C: __metaclass__ = M1 self.assertEqual(C.__spam__, 1) c = C() self.assertEqual(c.__spam__, 1) class _instance(object): pass class M2(object): @staticmethod def __new__(cls, name, bases, dict): self = object.__new__(cls) self.name = name self.bases = bases self.dict = dict return self def __call__(self): it = _instance() # Early binding of methods for key in self.dict: if key.startswith("__"): continue setattr(it, key, self.dict[key].__get__(it, self)) return it class C: __metaclass__ = M2 def spam(self): return 42 self.assertEqual(C.name, 'C') self.assertEqual(C.bases, ()) self.assertIn('spam', C.dict) c = C() self.assertEqual(c.spam(), 42) # More metaclass examples class autosuper(type): # Automatically add __super to the class # This trick only works for dynamic classes def __new__(metaclass, name, bases, dict): cls = super(autosuper, metaclass).__new__(metaclass, name, bases, dict) # Name mangling for __super removes leading underscores while name[:1] == "_": name = name[1:] if name: name = "_%s__super" % name else: name = "__super" setattr(cls, name, super(cls)) return cls class A: __metaclass__ = autosuper def meth(self): return "A" class B(A): def meth(self): return "B" + self.__super.meth() class C(A): def meth(self): return "C" + self.__super.meth() class D(C, B): def meth(self): return "D" + self.__super.meth() self.assertEqual(D().meth(), "DCBA") class E(B, C): def meth(self): return "E" + self.__super.meth() self.assertEqual(E().meth(), "EBCA") class autoproperty(type): # Automatically create property attributes when methods # named _get_x and/or _set_x are found def __new__(metaclass, name, bases, dict): hits = {} for key, val in dict.iteritems(): if key.startswith("_get_"): key = key[5:] get, set = hits.get(key, (None, None)) get = val hits[key] = get, set elif key.startswith("_set_"): key = key[5:] get, set = hits.get(key, (None, None)) set = val hits[key] = get, set for key, (get, set) in hits.iteritems(): dict[key] = property(get, set) return super(autoproperty, metaclass).__new__(metaclass, name, bases, dict) class A: __metaclass__ = autoproperty def _get_x(self): return -self.__x def _set_x(self, x): self.__x = -x a = A() self.assertTrue(not hasattr(a, "x")) a.x = 12 self.assertEqual(a.x, 12) self.assertEqual(a._A__x, -12) class multimetaclass(autoproperty, autosuper): # Merge of multiple cooperating metaclasses pass class A: __metaclass__ = multimetaclass def _get_x(self): return "A" class B(A): def _get_x(self): return "B" + self.__super._get_x() class C(A): def _get_x(self): return "C" + self.__super._get_x() class D(C, B): def _get_x(self): return "D" + self.__super._get_x() self.assertEqual(D().x, "DCBA") # Make sure type(x) doesn't call x.__class__.__init__ class T(type): counter = 0 def __init__(self, *args): T.counter += 1 class C: __metaclass__ = T self.assertEqual(T.counter, 1) a = C() self.assertEqual(type(a), C) self.assertEqual(T.counter, 1) class C(object): pass c = C() try: c() except TypeError: pass else: self.fail("calling object w/o call method should raise " "TypeError") # Testing code to find most derived baseclass class A(type): def __new__(*args, **kwargs): return type.__new__(*args, **kwargs) class B(object): pass class C(object): __metaclass__ = A # The most derived metaclass of D is A rather than type. class D(B, C): pass def test_module_subclasses(self): # Testing Python subclass of module... log = [] MT = type(sys) class MM(MT): def __init__(self, name): MT.__init__(self, name) def __getattribute__(self, name): log.append(("getattr", name)) return MT.__getattribute__(self, name) def __setattr__(self, name, value): log.append(("setattr", name, value)) MT.__setattr__(self, name, value) def __delattr__(self, name): log.append(("delattr", name)) MT.__delattr__(self, name) a = MM("a") a.foo = 12 x = a.foo del a.foo self.assertEqual(log, [("setattr", "foo", 12), ("getattr", "foo"), ("delattr", "foo")]) # http://python.org/sf/1174712 try: class Module(types.ModuleType, str): pass except TypeError: pass else: self.fail("inheriting from ModuleType and str at the same time " "should fail") def test_multiple_inheritence(self): # Testing multiple inheritance... class C(object): def __init__(self): self.__state = 0 def getstate(self): return self.__state def setstate(self, state): self.__state = state a = C() self.assertEqual(a.getstate(), 0) a.setstate(10) self.assertEqual(a.getstate(), 10) class D(dict, C): def __init__(self): type({}).__init__(self) C.__init__(self) d = D() self.assertEqual(d.keys(), []) d["hello"] = "world" self.assertEqual(d.items(), [("hello", "world")]) self.assertEqual(d["hello"], "world") self.assertEqual(d.getstate(), 0) d.setstate(10) self.assertEqual(d.getstate(), 10) self.assertEqual(D.__mro__, (D, dict, C, object)) # SF bug #442833 class Node(object): def __int__(self): return int(self.foo()) def foo(self): return "23" class Frag(Node, list): def foo(self): return "42" self.assertEqual(Node().__int__(), 23) self.assertEqual(int(Node()), 23) self.assertEqual(Frag().__int__(), 42) self.assertEqual(int(Frag()), 42) # MI mixing classic and new-style classes. class A: x = 1 class B(A): pass class C(A): x = 2 class D(B, C): pass self.assertEqual(D.x, 1) # Classic MRO is preserved for a classic base class. class E(D, object): pass self.assertEqual(E.__mro__, (E, D, B, A, C, object)) self.assertEqual(E.x, 1) # But with a mix of classic bases, their MROs are combined using # new-style MRO. class F(B, C, object): pass self.assertEqual(F.__mro__, (F, B, C, A, object)) self.assertEqual(F.x, 2) # Try something else. class C: def cmethod(self): return "C a" def all_method(self): return "C b" class M1(C, object): def m1method(self): return "M1 a" def all_method(self): return "M1 b" self.assertEqual(M1.__mro__, (M1, C, object)) m = M1() self.assertEqual(m.cmethod(), "C a") self.assertEqual(m.m1method(), "M1 a") self.assertEqual(m.all_method(), "M1 b") class D(C): def dmethod(self): return "D a" def all_method(self): return "D b" class M2(D, object): def m2method(self): return "M2 a" def all_method(self): return "M2 b" self.assertEqual(M2.__mro__, (M2, D, C, object)) m = M2() self.assertEqual(m.cmethod(), "C a") self.assertEqual(m.dmethod(), "D a") self.assertEqual(m.m2method(), "M2 a") self.assertEqual(m.all_method(), "M2 b") class M3(M1, M2, object): def m3method(self): return "M3 a" def all_method(self): return "M3 b" self.assertEqual(M3.__mro__, (M3, M1, M2, D, C, object)) m = M3() self.assertEqual(m.cmethod(), "C a") self.assertEqual(m.dmethod(), "D a") self.assertEqual(m.m1method(), "M1 a") self.assertEqual(m.m2method(), "M2 a") self.assertEqual(m.m3method(), "M3 a") self.assertEqual(m.all_method(), "M3 b") class Classic: pass try: class New(Classic): __metaclass__ = type except TypeError: pass else: self.fail("new class with only classic bases - shouldn't be") def test_diamond_inheritence(self): # Testing multiple inheritance special cases... class A(object): def spam(self): return "A" self.assertEqual(A().spam(), "A") class B(A): def boo(self): return "B" def spam(self): return "B" self.assertEqual(B().spam(), "B") self.assertEqual(B().boo(), "B") class C(A): def boo(self): return "C" self.assertEqual(C().spam(), "A") self.assertEqual(C().boo(), "C") class D(B, C): pass self.assertEqual(D().spam(), "B") self.assertEqual(D().boo(), "B") self.assertEqual(D.__mro__, (D, B, C, A, object)) class E(C, B): pass self.assertEqual(E().spam(), "B") self.assertEqual(E().boo(), "C") self.assertEqual(E.__mro__, (E, C, B, A, object)) # MRO order disagreement try: class F(D, E): pass except TypeError: pass else: self.fail("expected MRO order disagreement (F)") try: class G(E, D): pass except TypeError: pass else: self.fail("expected MRO order disagreement (G)") # see thread python-dev/2002-October/029035.html def test_ex5_from_c3_switch(self): # Testing ex5 from C3 switch discussion... class A(object): pass class B(object): pass class C(object): pass class X(A): pass class Y(A): pass class Z(X,B,Y,C): pass self.assertEqual(Z.__mro__, (Z, X, B, Y, A, C, object)) # see "A Monotonic Superclass Linearization for Dylan", # by Kim Barrett et al. (OOPSLA 1996) def test_monotonicity(self): # Testing MRO monotonicity... class Boat(object): pass class DayBoat(Boat): pass class WheelBoat(Boat): pass class EngineLess(DayBoat): pass class SmallMultihull(DayBoat): pass class PedalWheelBoat(EngineLess,WheelBoat): pass class SmallCatamaran(SmallMultihull): pass class Pedalo(PedalWheelBoat,SmallCatamaran): pass self.assertEqual(PedalWheelBoat.__mro__, (PedalWheelBoat, EngineLess, DayBoat, WheelBoat, Boat, object)) self.assertEqual(SmallCatamaran.__mro__, (SmallCatamaran, SmallMultihull, DayBoat, Boat, object)) self.assertEqual(Pedalo.__mro__, (Pedalo, PedalWheelBoat, EngineLess, SmallCatamaran, SmallMultihull, DayBoat, WheelBoat, Boat, object)) # see "A Monotonic Superclass Linearization for Dylan", # by Kim Barrett et al. (OOPSLA 1996) def test_consistency_with_epg(self): # Testing consistency with EPG... class Pane(object): pass class ScrollingMixin(object): pass class EditingMixin(object): pass class ScrollablePane(Pane,ScrollingMixin): pass class EditablePane(Pane,EditingMixin): pass class EditableScrollablePane(ScrollablePane,EditablePane): pass self.assertEqual(EditableScrollablePane.__mro__, (EditableScrollablePane, ScrollablePane, EditablePane, Pane, ScrollingMixin, EditingMixin, object)) def test_mro_disagreement(self): # Testing error messages for MRO disagreement... mro_err_msg = """Cannot create a consistent method resolution order (MRO) for bases """ def raises(exc, expected, callable, *args): try: callable(*args) except exc, msg: # the exact msg is generally considered an impl detail if test_support.check_impl_detail(): if not str(msg).startswith(expected): self.fail("Message %r, expected %r" % (str(msg), expected)) else: self.fail("Expected %s" % exc) class A(object): pass class B(A): pass class C(object): pass # Test some very simple errors raises(TypeError, "duplicate base class A", type, "X", (A, A), {}) raises(TypeError, mro_err_msg, type, "X", (A, B), {}) raises(TypeError, mro_err_msg, type, "X", (A, C, B), {}) # Test a slightly more complex error class GridLayout(object): pass class HorizontalGrid(GridLayout): pass class VerticalGrid(GridLayout): pass class HVGrid(HorizontalGrid, VerticalGrid): pass class VHGrid(VerticalGrid, HorizontalGrid): pass raises(TypeError, mro_err_msg, type, "ConfusedGrid", (HVGrid, VHGrid), {}) def test_object_class(self): # Testing object class... a = object() self.assertEqual(a.__class__, object) self.assertEqual(type(a), object) b = object() self.assertNotEqual(a, b) self.assertFalse(hasattr(a, "foo")) try: a.foo = 12 except (AttributeError, TypeError): pass else: self.fail("object() should not allow setting a foo attribute") self.assertFalse(hasattr(object(), "__dict__")) class Cdict(object): pass x = Cdict() self.assertEqual(x.__dict__, {}) x.foo = 1 self.assertEqual(x.foo, 1) self.assertEqual(x.__dict__, {'foo': 1}) def test_slots(self): # Testing __slots__... class C0(object): __slots__ = [] x = C0() self.assertFalse(hasattr(x, "__dict__")) self.assertFalse(hasattr(x, "foo")) class C1(object): __slots__ = ['a'] x = C1() self.assertFalse(hasattr(x, "__dict__")) self.assertFalse(hasattr(x, "a")) x.a = 1 self.assertEqual(x.a, 1) x.a = None self.assertEqual(x.a, None) del x.a self.assertFalse(hasattr(x, "a")) class C3(object): __slots__ = ['a', 'b', 'c'] x = C3() self.assertFalse(hasattr(x, "__dict__")) self.assertFalse(hasattr(x, 'a')) self.assertFalse(hasattr(x, 'b')) self.assertFalse(hasattr(x, 'c')) x.a = 1 x.b = 2 x.c = 3 self.assertEqual(x.a, 1) self.assertEqual(x.b, 2) self.assertEqual(x.c, 3) class C4(object): """Validate name mangling""" __slots__ = ['__a'] def __init__(self, value): self.__a = value def get(self): return self.__a x = C4(5) self.assertFalse(hasattr(x, '__dict__')) self.assertFalse(hasattr(x, '__a')) self.assertEqual(x.get(), 5) try: x.__a = 6 except AttributeError: pass else: self.fail("Double underscored names not mangled") # Make sure slot names are proper identifiers try: class C(object): __slots__ = [None] except TypeError: pass else: self.fail("[None] slots not caught") try: class C(object): __slots__ = ["foo bar"] except TypeError: pass else: self.fail("['foo bar'] slots not caught") try: class C(object): __slots__ = ["foo\0bar"] except TypeError: pass else: self.fail("['foo\\0bar'] slots not caught") try: class C(object): __slots__ = ["1"] except TypeError: pass else: self.fail("['1'] slots not caught") try: class C(object): __slots__ = [""] except TypeError: pass else: self.fail("[''] slots not caught") class C(object): __slots__ = ["a", "a_b", "_a", "A0123456789Z"] # XXX(nnorwitz): was there supposed to be something tested # from the class above? # Test a single string is not expanded as a sequence. class C(object): __slots__ = "abc" c = C() c.abc = 5 self.assertEqual(c.abc, 5) # Test unicode slot names try: unicode except NameError: pass else: # Test a single unicode string is not expanded as a sequence. class C(object): __slots__ = unicode("abc") c = C() c.abc = 5 self.assertEqual(c.abc, 5) # _unicode_to_string used to modify slots in certain circumstances slots = (unicode("foo"), unicode("bar")) class C(object): __slots__ = slots x = C() x.foo = 5 self.assertEqual(x.foo, 5) self.assertEqual(type(slots[0]), unicode) # this used to leak references try: class C(object): __slots__ = [unichr(128)] except (TypeError, UnicodeEncodeError): pass else: self.fail("[unichr(128)] slots not caught") # Test leaks class Counted(object): counter = 0 # counts the number of instances alive def __init__(self): Counted.counter += 1 def __del__(self): Counted.counter -= 1 class C(object): __slots__ = ['a', 'b', 'c'] x = C() x.a = Counted() x.b = Counted() x.c = Counted() self.assertEqual(Counted.counter, 3) del x test_support.gc_collect() self.assertEqual(Counted.counter, 0) class D(C): pass x = D() x.a = Counted() x.z = Counted() self.assertEqual(Counted.counter, 2) del x test_support.gc_collect() self.assertEqual(Counted.counter, 0) class E(D): __slots__ = ['e'] x = E() x.a = Counted() x.z = Counted() x.e = Counted() self.assertEqual(Counted.counter, 3) del x test_support.gc_collect() self.assertEqual(Counted.counter, 0) # Test cyclical leaks [SF bug 519621] class F(object): __slots__ = ['a', 'b'] s = F() s.a = [Counted(), s] self.assertEqual(Counted.counter, 1) s = None test_support.gc_collect() self.assertEqual(Counted.counter, 0) # Test lookup leaks [SF bug 572567] if hasattr(gc, 'get_objects'): class G(object): def __cmp__(self, other): return 0 __hash__ = None # Silence Py3k warning g = G() orig_objects = len(gc.get_objects()) for i in xrange(10): g==g new_objects = len(gc.get_objects()) self.assertEqual(orig_objects, new_objects) class H(object): __slots__ = ['a', 'b'] def __init__(self): self.a = 1 self.b = 2 def __del__(self_): self.assertEqual(self_.a, 1) self.assertEqual(self_.b, 2) with test_support.captured_output('stderr') as s: h = H() del h self.assertEqual(s.getvalue(), '') class X(object): __slots__ = "a" with self.assertRaises(AttributeError): del X().a def test_slots_special(self): # Testing __dict__ and __weakref__ in __slots__... class D(object): __slots__ = ["__dict__"] a = D() self.assertTrue(hasattr(a, "__dict__")) self.assertFalse(hasattr(a, "__weakref__")) a.foo = 42 self.assertEqual(a.__dict__, {"foo": 42}) class W(object): __slots__ = ["__weakref__"] a = W() self.assertTrue(hasattr(a, "__weakref__")) self.assertFalse(hasattr(a, "__dict__")) try: a.foo = 42 except AttributeError: pass else: self.fail("shouldn't be allowed to set a.foo") class C1(W, D): __slots__ = [] a = C1() self.assertTrue(hasattr(a, "__dict__")) self.assertTrue(hasattr(a, "__weakref__")) a.foo = 42 self.assertEqual(a.__dict__, {"foo": 42}) class C2(D, W): __slots__ = [] a = C2() self.assertTrue(hasattr(a, "__dict__")) self.assertTrue(hasattr(a, "__weakref__")) a.foo = 42 self.assertEqual(a.__dict__, {"foo": 42}) def test_slots_descriptor(self): # Issue2115: slot descriptors did not correctly check # the type of the given object import abc class MyABC: __metaclass__ = abc.ABCMeta __slots__ = "a" class Unrelated(object): pass MyABC.register(Unrelated) u = Unrelated() self.assertIsInstance(u, MyABC) # This used to crash self.assertRaises(TypeError, MyABC.a.__set__, u, 3) def test_metaclass_cmp(self): # See bug 7491. class M(type): def __cmp__(self, other): return -1 class X(object): __metaclass__ = M self.assertTrue(X < M) def test_dynamics(self): # Testing class attribute propagation... class D(object): pass class E(D): pass class F(D): pass D.foo = 1 self.assertEqual(D.foo, 1) # Test that dynamic attributes are inherited self.assertEqual(E.foo, 1) self.assertEqual(F.foo, 1) # Test dynamic instances class C(object): pass a = C() self.assertFalse(hasattr(a, "foobar")) C.foobar = 2 self.assertEqual(a.foobar, 2) C.method = lambda self: 42 self.assertEqual(a.method(), 42) C.__repr__ = lambda self: "C()" self.assertEqual(repr(a), "C()") C.__int__ = lambda self: 100 self.assertEqual(int(a), 100) self.assertEqual(a.foobar, 2) self.assertFalse(hasattr(a, "spam")) def mygetattr(self, name): if name == "spam": return "spam" raise AttributeError C.__getattr__ = mygetattr self.assertEqual(a.spam, "spam") a.new = 12 self.assertEqual(a.new, 12) def mysetattr(self, name, value): if name == "spam": raise AttributeError return object.__setattr__(self, name, value) C.__setattr__ = mysetattr try: a.spam = "not spam" except AttributeError: pass else: self.fail("expected AttributeError") self.assertEqual(a.spam, "spam") class D(C): pass d = D() d.foo = 1 self.assertEqual(d.foo, 1) # Test handling of int*seq and seq*int class I(int): pass self.assertEqual("a"*I(2), "aa") self.assertEqual(I(2)*"a", "aa") self.assertEqual(2*I(3), 6) self.assertEqual(I(3)*2, 6) self.assertEqual(I(3)*I(2), 6) # Test handling of long*seq and seq*long class L(long): pass self.assertEqual("a"*L(2L), "aa") self.assertEqual(L(2L)*"a", "aa") self.assertEqual(2*L(3), 6) self.assertEqual(L(3)*2, 6) self.assertEqual(L(3)*L(2), 6) # Test comparison of classes with dynamic metaclasses class dynamicmetaclass(type): pass class someclass: __metaclass__ = dynamicmetaclass self.assertNotEqual(someclass, object) def test_errors(self): # Testing errors... try: class C(list, dict): pass except TypeError: pass else: self.fail("inheritance from both list and dict should be illegal") try: class C(object, None): pass except TypeError: pass else: self.fail("inheritance from non-type should be illegal") class Classic: pass try: class C(type(len)): pass except TypeError: pass else: self.fail("inheritance from CFunction should be illegal") try: class C(object): __slots__ = 1 except TypeError: pass else: self.fail("__slots__ = 1 should be illegal") try: class C(object): __slots__ = [1] except TypeError: pass else: self.fail("__slots__ = [1] should be illegal") class M1(type): pass class M2(type): pass class A1(object): __metaclass__ = M1 class A2(object): __metaclass__ = M2 try: class B(A1, A2): pass except TypeError: pass else: self.fail("finding the most derived metaclass should have failed") def test_classmethods(self): # Testing class methods... class C(object): def foo(*a): return a goo = classmethod(foo) c = C() self.assertEqual(C.goo(1), (C, 1)) self.assertEqual(c.goo(1), (C, 1)) self.assertEqual(c.foo(1), (c, 1)) class D(C): pass d = D() self.assertEqual(D.goo(1), (D, 1)) self.assertEqual(d.goo(1), (D, 1)) self.assertEqual(d.foo(1), (d, 1)) self.assertEqual(D.foo(d, 1), (d, 1)) # Test for a specific crash (SF bug 528132) def f(cls, arg): return (cls, arg) ff = classmethod(f) self.assertEqual(ff.__get__(0, int)(42), (int, 42)) self.assertEqual(ff.__get__(0)(42), (int, 42)) # Test super() with classmethods (SF bug 535444) self.assertEqual(C.goo.im_self, C) self.assertEqual(D.goo.im_self, D) self.assertEqual(super(D,D).goo.im_self, D) self.assertEqual(super(D,d).goo.im_self, D) self.assertEqual(super(D,D).goo(), (D,)) self.assertEqual(super(D,d).goo(), (D,)) # Verify that a non-callable will raise meth = classmethod(1).__get__(1) self.assertRaises(TypeError, meth) # Verify that classmethod() doesn't allow keyword args try: classmethod(f, kw=1) except TypeError: pass else: self.fail("classmethod shouldn't accept keyword args") @test_support.impl_detail("the module 'xxsubtype' is internal") def test_classmethods_in_c(self): # Testing C-based class methods... import xxsubtype as spam a = (1, 2, 3) d = {'abc': 123} x, a1, d1 = spam.spamlist.classmeth(*a, **d) self.assertEqual(x, spam.spamlist) self.assertEqual(a, a1) self.assertEqual(d, d1) x, a1, d1 = spam.spamlist().classmeth(*a, **d) self.assertEqual(x, spam.spamlist) self.assertEqual(a, a1) self.assertEqual(d, d1) spam_cm = spam.spamlist.__dict__['classmeth'] x2, a2, d2 = spam_cm(spam.spamlist, *a, **d) self.assertEqual(x2, spam.spamlist) self.assertEqual(a2, a1) self.assertEqual(d2, d1) class SubSpam(spam.spamlist): pass x2, a2, d2 = spam_cm(SubSpam, *a, **d) self.assertEqual(x2, SubSpam) self.assertEqual(a2, a1) self.assertEqual(d2, d1) with self.assertRaises(TypeError): spam_cm() with self.assertRaises(TypeError): spam_cm(spam.spamlist()) with self.assertRaises(TypeError): spam_cm(list) def test_staticmethods(self): # Testing static methods... class C(object): def foo(*a): return a goo = staticmethod(foo) c = C() self.assertEqual(C.goo(1), (1,)) self.assertEqual(c.goo(1), (1,)) self.assertEqual(c.foo(1), (c, 1,)) class D(C): pass d = D() self.assertEqual(D.goo(1), (1,)) self.assertEqual(d.goo(1), (1,)) self.assertEqual(d.foo(1), (d, 1)) self.assertEqual(D.foo(d, 1), (d, 1)) @test_support.impl_detail("the module 'xxsubtype' is internal") def test_staticmethods_in_c(self): # Testing C-based static methods... import xxsubtype as spam a = (1, 2, 3) d = {"abc": 123} x, a1, d1 = spam.spamlist.staticmeth(*a, **d) self.assertEqual(x, None) self.assertEqual(a, a1) self.assertEqual(d, d1) x, a1, d2 = spam.spamlist().staticmeth(*a, **d) self.assertEqual(x, None) self.assertEqual(a, a1) self.assertEqual(d, d1) def test_classic(self): # Testing classic classes... class C: def foo(*a): return a goo = classmethod(foo) c = C() self.assertEqual(C.goo(1), (C, 1)) self.assertEqual(c.goo(1), (C, 1)) self.assertEqual(c.foo(1), (c, 1)) class D(C): pass d = D() self.assertEqual(D.goo(1), (D, 1)) self.assertEqual(d.goo(1), (D, 1)) self.assertEqual(d.foo(1), (d, 1)) self.assertEqual(D.foo(d, 1), (d, 1)) class E: # *not* subclassing from C foo = C.foo self.assertEqual(E().foo, C.foo) # i.e., unbound self.assertTrue(repr(C.foo.__get__(C())).startswith("<bound method ")) def test_compattr(self): # Testing computed attributes... class C(object): class computed_attribute(object): def __init__(self, get, set=None, delete=None): self.__get = get self.__set = set self.__delete = delete def __get__(self, obj, type=None): return self.__get(obj) def __set__(self, obj, value): return self.__set(obj, value) def __delete__(self, obj): return self.__delete(obj) def __init__(self): self.__x = 0 def __get_x(self): x = self.__x self.__x = x+1 return x def __set_x(self, x): self.__x = x def __delete_x(self): del self.__x x = computed_attribute(__get_x, __set_x, __delete_x) a = C() self.assertEqual(a.x, 0) self.assertEqual(a.x, 1) a.x = 10 self.assertEqual(a.x, 10) self.assertEqual(a.x, 11) del a.x self.assertEqual(hasattr(a, 'x'), 0) def test_newslots(self): # Testing __new__ slot override... class C(list): def __new__(cls): self = list.__new__(cls) self.foo = 1 return self def __init__(self): self.foo = self.foo + 2 a = C() self.assertEqual(a.foo, 3) self.assertEqual(a.__class__, C) class D(C): pass b = D() self.assertEqual(b.foo, 3) self.assertEqual(b.__class__, D) def test_altmro(self): # Testing mro() and overriding it... class A(object): def f(self): return "A" class B(A): pass class C(A): def f(self): return "C" class D(B, C): pass self.assertEqual(D.mro(), [D, B, C, A, object]) self.assertEqual(D.__mro__, (D, B, C, A, object)) self.assertEqual(D().f(), "C") class PerverseMetaType(type): def mro(cls): L = type.mro(cls) L.reverse() return L class X(D,B,C,A): __metaclass__ = PerverseMetaType self.assertEqual(X.__mro__, (object, A, C, B, D, X)) self.assertEqual(X().f(), "A") try: class X(object): class __metaclass__(type): def mro(self): return [self, dict, object] # In CPython, the class creation above already raises # TypeError, as a protection against the fact that # instances of X would segfault it. In other Python # implementations it would be ok to let the class X # be created, but instead get a clean TypeError on the # __setitem__ below. x = object.__new__(X) x[5] = 6 except TypeError: pass else: self.fail("devious mro() return not caught") try: class X(object): class __metaclass__(type): def mro(self): return [1] except TypeError: pass else: self.fail("non-class mro() return not caught") try: class X(object): class __metaclass__(type): def mro(self): return 1 except TypeError: pass else: self.fail("non-sequence mro() return not caught") def test_overloading(self): # Testing operator overloading... class B(object): "Intermediate class because object doesn't have a __setattr__" class C(B): def __getattr__(self, name): if name == "foo": return ("getattr", name) else: raise AttributeError def __setattr__(self, name, value): if name == "foo": self.setattr = (name, value) else: return B.__setattr__(self, name, value) def __delattr__(self, name): if name == "foo": self.delattr = name else: return B.__delattr__(self, name) def __getitem__(self, key): return ("getitem", key) def __setitem__(self, key, value): self.setitem = (key, value) def __delitem__(self, key): self.delitem = key def __getslice__(self, i, j): return ("getslice", i, j) def __setslice__(self, i, j, value): self.setslice = (i, j, value) def __delslice__(self, i, j): self.delslice = (i, j) a = C() self.assertEqual(a.foo, ("getattr", "foo")) a.foo = 12 self.assertEqual(a.setattr, ("foo", 12)) del a.foo self.assertEqual(a.delattr, "foo") self.assertEqual(a[12], ("getitem", 12)) a[12] = 21 self.assertEqual(a.setitem, (12, 21)) del a[12] self.assertEqual(a.delitem, 12) self.assertEqual(a[0:10], ("getslice", 0, 10)) a[0:10] = "foo" self.assertEqual(a.setslice, (0, 10, "foo")) del a[0:10] self.assertEqual(a.delslice, (0, 10)) def test_methods(self): # Testing methods... class C(object): def __init__(self, x): self.x = x def foo(self): return self.x c1 = C(1) self.assertEqual(c1.foo(), 1) class D(C): boo = C.foo goo = c1.foo d2 = D(2) self.assertEqual(d2.foo(), 2) self.assertEqual(d2.boo(), 2) self.assertEqual(d2.goo(), 1) class E(object): foo = C.foo self.assertEqual(E().foo, C.foo) # i.e., unbound self.assertTrue(repr(C.foo.__get__(C(1))).startswith("<bound method ")) def test_special_method_lookup(self): # The lookup of special methods bypasses __getattr__ and # __getattribute__, but they still can be descriptors. def run_context(manager): with manager: pass def iden(self): return self def hello(self): return "hello" def empty_seq(self): return [] def zero(self): return 0 def complex_num(self): return 1j def stop(self): raise StopIteration def return_true(self, thing=None): return True def do_isinstance(obj): return isinstance(int, obj) def do_issubclass(obj): return issubclass(int, obj) def swallow(*args): pass def do_dict_missing(checker): class DictSub(checker.__class__, dict): pass self.assertEqual(DictSub()["hi"], 4) def some_number(self_, key): self.assertEqual(key, "hi") return 4 def format_impl(self, spec): return "hello" # It would be nice to have every special method tested here, but I'm # only listing the ones I can remember outside of typeobject.c, since it # does it right. specials = [ ("__unicode__", unicode, hello, set(), {}), ("__reversed__", reversed, empty_seq, set(), {}), ("__length_hint__", list, zero, set(), {"__iter__" : iden, "next" : stop}), ("__sizeof__", sys.getsizeof, zero, set(), {}), ("__instancecheck__", do_isinstance, return_true, set(), {}), ("__missing__", do_dict_missing, some_number, set(("__class__",)), {}), ("__subclasscheck__", do_issubclass, return_true, set(("__bases__",)), {}), ("__enter__", run_context, iden, set(), {"__exit__" : swallow}), ("__exit__", run_context, swallow, set(), {"__enter__" : iden}), ("__complex__", complex, complex_num, set(), {}), ("__format__", format, format_impl, set(), {}), ("__dir__", dir, empty_seq, set(), {}), ] class Checker(object): def __getattr__(self, attr, test=self): test.fail("__getattr__ called with {0}".format(attr)) def __getattribute__(self, attr, test=self): if attr not in ok: test.fail("__getattribute__ called with {0}".format(attr)) return object.__getattribute__(self, attr) class SpecialDescr(object): def __init__(self, impl): self.impl = impl def __get__(self, obj, owner): record.append(1) return self.impl.__get__(obj, owner) class MyException(Exception): pass class ErrDescr(object): def __get__(self, obj, owner): raise MyException for name, runner, meth_impl, ok, env in specials: class X(Checker): pass for attr, obj in env.iteritems(): setattr(X, attr, obj) setattr(X, name, meth_impl) runner(X()) record = [] class X(Checker): pass for attr, obj in env.iteritems(): setattr(X, attr, obj) setattr(X, name, SpecialDescr(meth_impl)) runner(X()) self.assertEqual(record, [1], name) class X(Checker): pass for attr, obj in env.iteritems(): setattr(X, attr, obj) setattr(X, name, ErrDescr()) try: runner(X()) except MyException: pass else: self.fail("{0!r} didn't raise".format(name)) def test_specials(self): # Testing special operators... # Test operators like __hash__ for which a built-in default exists # Test the default behavior for static classes class C(object): def __getitem__(self, i): if 0 <= i < 10: return i raise IndexError c1 = C() c2 = C() self.assertTrue(not not c1) # What? self.assertNotEqual(id(c1), id(c2)) hash(c1) hash(c2) self.assertEqual(cmp(c1, c2), cmp(id(c1), id(c2))) self.assertEqual(c1, c1) self.assertTrue(c1 != c2) self.assertTrue(not c1 != c1) self.assertTrue(not c1 == c2) # Note that the module name appears in str/repr, and that varies # depending on whether this test is run standalone or from a framework. self.assertTrue(str(c1).find('C object at ') >= 0) self.assertEqual(str(c1), repr(c1)) self.assertNotIn(-1, c1) for i in range(10): self.assertIn(i, c1) self.assertNotIn(10, c1) # Test the default behavior for dynamic classes class D(object): def __getitem__(self, i): if 0 <= i < 10: return i raise IndexError d1 = D() d2 = D() self.assertTrue(not not d1) self.assertNotEqual(id(d1), id(d2)) hash(d1) hash(d2) self.assertEqual(cmp(d1, d2), cmp(id(d1), id(d2))) self.assertEqual(d1, d1) self.assertNotEqual(d1, d2) self.assertTrue(not d1 != d1) self.assertTrue(not d1 == d2) # Note that the module name appears in str/repr, and that varies # depending on whether this test is run standalone or from a framework. self.assertTrue(str(d1).find('D object at ') >= 0) self.assertEqual(str(d1), repr(d1)) self.assertNotIn(-1, d1) for i in range(10): self.assertIn(i, d1) self.assertNotIn(10, d1) # Test overridden behavior for static classes class Proxy(object): def __init__(self, x): self.x = x def __nonzero__(self): return not not self.x def __hash__(self): return hash(self.x) def __eq__(self, other): return self.x == other def __ne__(self, other): return self.x != other def __cmp__(self, other): return cmp(self.x, other.x) def __str__(self): return "Proxy:%s" % self.x def __repr__(self): return "Proxy(%r)" % self.x def __contains__(self, value): return value in self.x p0 = Proxy(0) p1 = Proxy(1) p_1 = Proxy(-1) self.assertFalse(p0) self.assertTrue(not not p1) self.assertEqual(hash(p0), hash(0)) self.assertEqual(p0, p0) self.assertNotEqual(p0, p1) self.assertTrue(not p0 != p0) self.assertEqual(not p0, p1) self.assertEqual(cmp(p0, p1), -1) self.assertEqual(cmp(p0, p0), 0) self.assertEqual(cmp(p0, p_1), 1) self.assertEqual(str(p0), "Proxy:0") self.assertEqual(repr(p0), "Proxy(0)") p10 = Proxy(range(10)) self.assertNotIn(-1, p10) for i in range(10): self.assertIn(i, p10) self.assertNotIn(10, p10) # Test overridden behavior for dynamic classes class DProxy(object): def __init__(self, x): self.x = x def __nonzero__(self): return not not self.x def __hash__(self): return hash(self.x) def __eq__(self, other): return self.x == other def __ne__(self, other): return self.x != other def __cmp__(self, other): return cmp(self.x, other.x) def __str__(self): return "DProxy:%s" % self.x def __repr__(self): return "DProxy(%r)" % self.x def __contains__(self, value): return value in self.x p0 = DProxy(0) p1 = DProxy(1) p_1 = DProxy(-1) self.assertFalse(p0) self.assertTrue(not not p1) self.assertEqual(hash(p0), hash(0)) self.assertEqual(p0, p0) self.assertNotEqual(p0, p1) self.assertNotEqual(not p0, p0) self.assertEqual(not p0, p1) self.assertEqual(cmp(p0, p1), -1) self.assertEqual(cmp(p0, p0), 0) self.assertEqual(cmp(p0, p_1), 1) self.assertEqual(str(p0), "DProxy:0") self.assertEqual(repr(p0), "DProxy(0)") p10 = DProxy(range(10)) self.assertNotIn(-1, p10) for i in range(10): self.assertIn(i, p10) self.assertNotIn(10, p10) # Safety test for __cmp__ def unsafecmp(a, b): if not hasattr(a, '__cmp__'): return # some types don't have a __cmp__ any more (so the # test doesn't make sense any more), or maybe they # never had a __cmp__ at all, e.g. in PyPy try: a.__class__.__cmp__(a, b) except TypeError: pass else: self.fail("shouldn't allow %s.__cmp__(%r, %r)" % ( a.__class__, a, b)) unsafecmp(u"123", "123") unsafecmp("123", u"123") unsafecmp(1, 1.0) unsafecmp(1.0, 1) unsafecmp(1, 1L) unsafecmp(1L, 1) @test_support.impl_detail("custom logic for printing to real file objects") def test_recursions_1(self): # Testing recursion checks ... class Letter(str): def __new__(cls, letter): if letter == 'EPS': return str.__new__(cls) return str.__new__(cls, letter) def __str__(self): if not self: return 'EPS' return self # sys.stdout needs to be the original to trigger the recursion bug test_stdout = sys.stdout sys.stdout = test_support.get_original_stdout() try: # nothing should actually be printed, this should raise an exception print Letter('w') except RuntimeError: pass else: self.fail("expected a RuntimeError for print recursion") finally: sys.stdout = test_stdout def test_recursions_2(self): # Bug #1202533. class A(object): pass A.__mul__ = types.MethodType(lambda self, x: self * x, None, A) try: A()*2 except RuntimeError: pass else: self.fail("expected a RuntimeError") def test_weakrefs(self): # Testing weak references... import weakref class C(object): pass c = C() r = weakref.ref(c) self.assertEqual(r(), c) del c test_support.gc_collect() self.assertEqual(r(), None) del r class NoWeak(object): __slots__ = ['foo'] no = NoWeak() try: weakref.ref(no) except TypeError, msg: self.assertTrue(str(msg).find("weak reference") >= 0) else: self.fail("weakref.ref(no) should be illegal") class Weak(object): __slots__ = ['foo', '__weakref__'] yes = Weak() r = weakref.ref(yes) self.assertEqual(r(), yes) del yes test_support.gc_collect() self.assertEqual(r(), None) del r def test_properties(self): # Testing property... class C(object): def getx(self): return self.__x def setx(self, value): self.__x = value def delx(self): del self.__x x = property(getx, setx, delx, doc="I'm the x property.") a = C() self.assertFalse(hasattr(a, "x")) a.x = 42 self.assertEqual(a._C__x, 42) self.assertEqual(a.x, 42) del a.x self.assertFalse(hasattr(a, "x")) self.assertFalse(hasattr(a, "_C__x")) C.x.__set__(a, 100) self.assertEqual(C.x.__get__(a), 100) C.x.__delete__(a) self.assertFalse(hasattr(a, "x")) raw = C.__dict__['x'] self.assertIsInstance(raw, property) attrs = dir(raw) self.assertIn("__doc__", attrs) self.assertIn("fget", attrs) self.assertIn("fset", attrs) self.assertIn("fdel", attrs) self.assertEqual(raw.__doc__, "I'm the x property.") self.assertTrue(raw.fget is C.__dict__['getx']) self.assertTrue(raw.fset is C.__dict__['setx']) self.assertTrue(raw.fdel is C.__dict__['delx']) for attr in "__doc__", "fget", "fset", "fdel": try: setattr(raw, attr, 42) except TypeError, msg: if str(msg).find('readonly') < 0: self.fail("when setting readonly attr %r on a property, " "got unexpected TypeError msg %r" % (attr, str(msg))) else: self.fail("expected TypeError from trying to set readonly %r " "attr on a property" % attr) class D(object): __getitem__ = property(lambda s: 1/0) d = D() try: for i in d: str(i) except ZeroDivisionError: pass else: self.fail("expected ZeroDivisionError from bad property") @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_properties_doc_attrib(self): class E(object): def getter(self): "getter method" return 0 def setter(self_, value): "setter method" pass prop = property(getter) self.assertEqual(prop.__doc__, "getter method") prop2 = property(fset=setter) self.assertEqual(prop2.__doc__, None) def test_testcapi_no_segfault(self): # this segfaulted in 2.5b2 try: import _testcapi except ImportError: pass else: class X(object): p = property(_testcapi.test_with_docstring) def test_properties_plus(self): class C(object): foo = property(doc="hello") @foo.getter def foo(self): return self._foo @foo.setter def foo(self, value): self._foo = abs(value) @foo.deleter def foo(self): del self._foo c = C() self.assertEqual(C.foo.__doc__, "hello") self.assertFalse(hasattr(c, "foo")) c.foo = -42 self.assertTrue(hasattr(c, '_foo')) self.assertEqual(c._foo, 42) self.assertEqual(c.foo, 42) del c.foo self.assertFalse(hasattr(c, '_foo')) self.assertFalse(hasattr(c, "foo")) class D(C): @C.foo.deleter def foo(self): try: del self._foo except AttributeError: pass d = D() d.foo = 24 self.assertEqual(d.foo, 24) del d.foo del d.foo class E(object): @property def foo(self): return self._foo @foo.setter def foo(self, value): raise RuntimeError @foo.setter def foo(self, value): self._foo = abs(value) @foo.deleter def foo(self, value=None): del self._foo e = E() e.foo = -42 self.assertEqual(e.foo, 42) del e.foo class F(E): @E.foo.deleter def foo(self): del self._foo @foo.setter def foo(self, value): self._foo = max(0, value) f = F() f.foo = -10 self.assertEqual(f.foo, 0) del f.foo def test_dict_constructors(self): # Testing dict constructor ... d = dict() self.assertEqual(d, {}) d = dict({}) self.assertEqual(d, {}) d = dict({1: 2, 'a': 'b'}) self.assertEqual(d, {1: 2, 'a': 'b'}) self.assertEqual(d, dict(d.items())) self.assertEqual(d, dict(d.iteritems())) d = dict({'one':1, 'two':2}) self.assertEqual(d, dict(one=1, two=2)) self.assertEqual(d, dict(**d)) self.assertEqual(d, dict({"one": 1}, two=2)) self.assertEqual(d, dict([("two", 2)], one=1)) self.assertEqual(d, dict([("one", 100), ("two", 200)], **d)) self.assertEqual(d, dict(**d)) for badarg in 0, 0L, 0j, "0", [0], (0,): try: dict(badarg) except TypeError: pass except ValueError: if badarg == "0": # It's a sequence, and its elements are also sequences (gotta # love strings <wink>), but they aren't of length 2, so this # one seemed better as a ValueError than a TypeError. pass else: self.fail("no TypeError from dict(%r)" % badarg) else: self.fail("no TypeError from dict(%r)" % badarg) try: dict({}, {}) except TypeError: pass else: self.fail("no TypeError from dict({}, {})") class Mapping: # Lacks a .keys() method; will be added later. dict = {1:2, 3:4, 'a':1j} try: dict(Mapping()) except TypeError: pass else: self.fail("no TypeError from dict(incomplete mapping)") Mapping.keys = lambda self: self.dict.keys() Mapping.__getitem__ = lambda self, i: self.dict[i] d = dict(Mapping()) self.assertEqual(d, Mapping.dict) # Init from sequence of iterable objects, each producing a 2-sequence. class AddressBookEntry: def __init__(self, first, last): self.first = first self.last = last def __iter__(self): return iter([self.first, self.last]) d = dict([AddressBookEntry('Tim', 'Warsaw'), AddressBookEntry('Barry', 'Peters'), AddressBookEntry('Tim', 'Peters'), AddressBookEntry('Barry', 'Warsaw')]) self.assertEqual(d, {'Barry': 'Warsaw', 'Tim': 'Peters'}) d = dict(zip(range(4), range(1, 5))) self.assertEqual(d, dict([(i, i+1) for i in range(4)])) # Bad sequence lengths. for bad in [('tooshort',)], [('too', 'long', 'by 1')]: try: dict(bad) except ValueError: pass else: self.fail("no ValueError from dict(%r)" % bad) def test_dir(self): # Testing dir() ... junk = 12 self.assertEqual(dir(), ['junk', 'self']) del junk # Just make sure these don't blow up! for arg in 2, 2L, 2j, 2e0, [2], "2", u"2", (2,), {2:2}, type, self.test_dir: dir(arg) # Try classic classes. class C: Cdata = 1 def Cmethod(self): pass cstuff = ['Cdata', 'Cmethod', '__doc__', '__module__'] self.assertEqual(dir(C), cstuff) self.assertIn('im_self', dir(C.Cmethod)) c = C() # c.__doc__ is an odd thing to see here; ditto c.__module__. self.assertEqual(dir(c), cstuff) c.cdata = 2 c.cmethod = lambda self: 0 self.assertEqual(dir(c), cstuff + ['cdata', 'cmethod']) self.assertIn('im_self', dir(c.Cmethod)) class A(C): Adata = 1 def Amethod(self): pass astuff = ['Adata', 'Amethod'] + cstuff self.assertEqual(dir(A), astuff) self.assertIn('im_self', dir(A.Amethod)) a = A() self.assertEqual(dir(a), astuff) self.assertIn('im_self', dir(a.Amethod)) a.adata = 42 a.amethod = lambda self: 3 self.assertEqual(dir(a), astuff + ['adata', 'amethod']) # The same, but with new-style classes. Since these have object as a # base class, a lot more gets sucked in. def interesting(strings): return [s for s in strings if not s.startswith('_')] class C(object): Cdata = 1 def Cmethod(self): pass cstuff = ['Cdata', 'Cmethod'] self.assertEqual(interesting(dir(C)), cstuff) c = C() self.assertEqual(interesting(dir(c)), cstuff) self.assertIn('im_self', dir(C.Cmethod)) c.cdata = 2 c.cmethod = lambda self: 0 self.assertEqual(interesting(dir(c)), cstuff + ['cdata', 'cmethod']) self.assertIn('im_self', dir(c.Cmethod)) class A(C): Adata = 1 def Amethod(self): pass astuff = ['Adata', 'Amethod'] + cstuff self.assertEqual(interesting(dir(A)), astuff) self.assertIn('im_self', dir(A.Amethod)) a = A() self.assertEqual(interesting(dir(a)), astuff) a.adata = 42 a.amethod = lambda self: 3 self.assertEqual(interesting(dir(a)), astuff + ['adata', 'amethod']) self.assertIn('im_self', dir(a.Amethod)) # Try a module subclass. class M(type(sys)): pass minstance = M("m") minstance.b = 2 minstance.a = 1 names = [x for x in dir(minstance) if x not in ["__name__", "__doc__"]] self.assertEqual(names, ['a', 'b']) class M2(M): def getdict(self): return "Not a dict!" __dict__ = property(getdict) m2instance = M2("m2") m2instance.b = 2 m2instance.a = 1 self.assertEqual(m2instance.__dict__, "Not a dict!") try: dir(m2instance) except TypeError: pass # Two essentially featureless objects, just inheriting stuff from # object. self.assertEqual(dir(NotImplemented), dir(Ellipsis)) if test_support.check_impl_detail(): # None differs in PyPy: it has a __nonzero__ self.assertEqual(dir(None), dir(Ellipsis)) # Nasty test case for proxied objects class Wrapper(object): def __init__(self, obj): self.__obj = obj def __repr__(self): return "Wrapper(%s)" % repr(self.__obj) def __getitem__(self, key): return Wrapper(self.__obj[key]) def __len__(self): return len(self.__obj) def __getattr__(self, name): return Wrapper(getattr(self.__obj, name)) class C(object): def __getclass(self): return Wrapper(type(self)) __class__ = property(__getclass) dir(C()) # This used to segfault def test_supers(self): # Testing super... class A(object): def meth(self, a): return "A(%r)" % a self.assertEqual(A().meth(1), "A(1)") class B(A): def __init__(self): self.__super = super(B, self) def meth(self, a): return "B(%r)" % a + self.__super.meth(a) self.assertEqual(B().meth(2), "B(2)A(2)") class C(A): def meth(self, a): return "C(%r)" % a + self.__super.meth(a) C._C__super = super(C) self.assertEqual(C().meth(3), "C(3)A(3)") class D(C, B): def meth(self, a): return "D(%r)" % a + super(D, self).meth(a) self.assertEqual(D().meth(4), "D(4)C(4)B(4)A(4)") # Test for subclassing super class mysuper(super): def __init__(self, *args): return super(mysuper, self).__init__(*args) class E(D): def meth(self, a): return "E(%r)" % a + mysuper(E, self).meth(a) self.assertEqual(E().meth(5), "E(5)D(5)C(5)B(5)A(5)") class F(E): def meth(self, a): s = self.__super # == mysuper(F, self) return "F(%r)[%s]" % (a, s.__class__.__name__) + s.meth(a) F._F__super = mysuper(F) self.assertEqual(F().meth(6), "F(6)[mysuper]E(6)D(6)C(6)B(6)A(6)") # Make sure certain errors are raised try: super(D, 42) except TypeError: pass else: self.fail("shouldn't allow super(D, 42)") try: super(D, C()) except TypeError: pass else: self.fail("shouldn't allow super(D, C())") try: super(D).__get__(12) except TypeError: pass else: self.fail("shouldn't allow super(D).__get__(12)") try: super(D).__get__(C()) except TypeError: pass else: self.fail("shouldn't allow super(D).__get__(C())") # Make sure data descriptors can be overridden and accessed via super # (new feature in Python 2.3) class DDbase(object): def getx(self): return 42 x = property(getx) class DDsub(DDbase): def getx(self): return "hello" x = property(getx) dd = DDsub() self.assertEqual(dd.x, "hello") self.assertEqual(super(DDsub, dd).x, 42) # Ensure that super() lookup of descriptor from classmethod # works (SF ID# 743627) class Base(object): aProp = property(lambda self: "foo") class Sub(Base): @classmethod def test(klass): return super(Sub,klass).aProp self.assertEqual(Sub.test(), Base.aProp) # Verify that super() doesn't allow keyword args try: super(Base, kw=1) except TypeError: pass else: self.assertEqual("super shouldn't accept keyword args") def test_basic_inheritance(self): # Testing inheritance from basic types... class hexint(int): def __repr__(self): return hex(self) def __add__(self, other): return hexint(int.__add__(self, other)) # (Note that overriding __radd__ doesn't work, # because the int type gets first dibs.) self.assertEqual(repr(hexint(7) + 9), "0x10") self.assertEqual(repr(hexint(1000) + 7), "0x3ef") a = hexint(12345) self.assertEqual(a, 12345) self.assertEqual(int(a), 12345) self.assertTrue(int(a).__class__ is int) self.assertEqual(hash(a), hash(12345)) self.assertTrue((+a).__class__ is int) self.assertTrue((a >> 0).__class__ is int) self.assertTrue((a << 0).__class__ is int) self.assertTrue((hexint(0) << 12).__class__ is int) self.assertTrue((hexint(0) >> 12).__class__ is int) class octlong(long): __slots__ = [] def __str__(self): s = oct(self) if s[-1] == 'L': s = s[:-1] return s def __add__(self, other): return self.__class__(super(octlong, self).__add__(other)) __radd__ = __add__ self.assertEqual(str(octlong(3) + 5), "010") # (Note that overriding __radd__ here only seems to work # because the example uses a short int left argument.) self.assertEqual(str(5 + octlong(3000)), "05675") a = octlong(12345) self.assertEqual(a, 12345L) self.assertEqual(long(a), 12345L) self.assertEqual(hash(a), hash(12345L)) self.assertTrue(long(a).__class__ is long) self.assertTrue((+a).__class__ is long) self.assertTrue((-a).__class__ is long) self.assertTrue((-octlong(0)).__class__ is long) self.assertTrue((a >> 0).__class__ is long) self.assertTrue((a << 0).__class__ is long) self.assertTrue((a - 0).__class__ is long) self.assertTrue((a * 1).__class__ is long) self.assertTrue((a ** 1).__class__ is long) self.assertTrue((a // 1).__class__ is long) self.assertTrue((1 * a).__class__ is long) self.assertTrue((a | 0).__class__ is long) self.assertTrue((a ^ 0).__class__ is long) self.assertTrue((a & -1L).__class__ is long) self.assertTrue((octlong(0) << 12).__class__ is long) self.assertTrue((octlong(0) >> 12).__class__ is long) self.assertTrue(abs(octlong(0)).__class__ is long) # Because octlong overrides __add__, we can't check the absence of +0 # optimizations using octlong. class longclone(long): pass a = longclone(1) self.assertTrue((a + 0).__class__ is long) self.assertTrue((0 + a).__class__ is long) # Check that negative clones don't segfault a = longclone(-1) self.assertEqual(a.__dict__, {}) self.assertEqual(long(a), -1) # self.assertTrue PyNumber_Long() copies the sign bit class precfloat(float): __slots__ = ['prec'] def __init__(self, value=0.0, prec=12): self.prec = int(prec) def __repr__(self): return "%.*g" % (self.prec, self) self.assertEqual(repr(precfloat(1.1)), "1.1") a = precfloat(12345) self.assertEqual(a, 12345.0) self.assertEqual(float(a), 12345.0) self.assertTrue(float(a).__class__ is float) self.assertEqual(hash(a), hash(12345.0)) self.assertTrue((+a).__class__ is float) class madcomplex(complex): def __repr__(self): return "%.17gj%+.17g" % (self.imag, self.real) a = madcomplex(-3, 4) self.assertEqual(repr(a), "4j-3") base = complex(-3, 4) self.assertEqual(base.__class__, complex) self.assertEqual(a, base) self.assertEqual(complex(a), base) self.assertEqual(complex(a).__class__, complex) a = madcomplex(a) # just trying another form of the constructor self.assertEqual(repr(a), "4j-3") self.assertEqual(a, base) self.assertEqual(complex(a), base) self.assertEqual(complex(a).__class__, complex) self.assertEqual(hash(a), hash(base)) self.assertEqual((+a).__class__, complex) self.assertEqual((a + 0).__class__, complex) self.assertEqual(a + 0, base) self.assertEqual((a - 0).__class__, complex) self.assertEqual(a - 0, base) self.assertEqual((a * 1).__class__, complex) self.assertEqual(a * 1, base) self.assertEqual((a / 1).__class__, complex) self.assertEqual(a / 1, base) class madtuple(tuple): _rev = None def rev(self): if self._rev is not None: return self._rev L = list(self) L.reverse() self._rev = self.__class__(L) return self._rev a = madtuple((1,2,3,4,5,6,7,8,9,0)) self.assertEqual(a, (1,2,3,4,5,6,7,8,9,0)) self.assertEqual(a.rev(), madtuple((0,9,8,7,6,5,4,3,2,1))) self.assertEqual(a.rev().rev(), madtuple((1,2,3,4,5,6,7,8,9,0))) for i in range(512): t = madtuple(range(i)) u = t.rev() v = u.rev() self.assertEqual(v, t) a = madtuple((1,2,3,4,5)) self.assertEqual(tuple(a), (1,2,3,4,5)) self.assertTrue(tuple(a).__class__ is tuple) self.assertEqual(hash(a), hash((1,2,3,4,5))) self.assertTrue(a[:].__class__ is tuple) self.assertTrue((a * 1).__class__ is tuple) self.assertTrue((a * 0).__class__ is tuple) self.assertTrue((a + ()).__class__ is tuple) a = madtuple(()) self.assertEqual(tuple(a), ()) self.assertTrue(tuple(a).__class__ is tuple) self.assertTrue((a + a).__class__ is tuple) self.assertTrue((a * 0).__class__ is tuple) self.assertTrue((a * 1).__class__ is tuple) self.assertTrue((a * 2).__class__ is tuple) self.assertTrue(a[:].__class__ is tuple) class madstring(str): _rev = None def rev(self): if self._rev is not None: return self._rev L = list(self) L.reverse() self._rev = self.__class__("".join(L)) return self._rev s = madstring("abcdefghijklmnopqrstuvwxyz") self.assertEqual(s, "abcdefghijklmnopqrstuvwxyz") self.assertEqual(s.rev(), madstring("zyxwvutsrqponmlkjihgfedcba")) self.assertEqual(s.rev().rev(), madstring("abcdefghijklmnopqrstuvwxyz")) for i in range(256): s = madstring("".join(map(chr, range(i)))) t = s.rev() u = t.rev() self.assertEqual(u, s) s = madstring("12345") self.assertEqual(str(s), "12345") self.assertTrue(str(s).__class__ is str) base = "\x00" * 5 s = madstring(base) self.assertEqual(s, base) self.assertEqual(str(s), base) self.assertTrue(str(s).__class__ is str) self.assertEqual(hash(s), hash(base)) self.assertEqual({s: 1}[base], 1) self.assertEqual({base: 1}[s], 1) self.assertTrue((s + "").__class__ is str) self.assertEqual(s + "", base) self.assertTrue(("" + s).__class__ is str) self.assertEqual("" + s, base) self.assertTrue((s * 0).__class__ is str) self.assertEqual(s * 0, "") self.assertTrue((s * 1).__class__ is str) self.assertEqual(s * 1, base) self.assertTrue((s * 2).__class__ is str) self.assertEqual(s * 2, base + base) self.assertTrue(s[:].__class__ is str) self.assertEqual(s[:], base) self.assertTrue(s[0:0].__class__ is str) self.assertEqual(s[0:0], "") self.assertTrue(s.strip().__class__ is str) self.assertEqual(s.strip(), base) self.assertTrue(s.lstrip().__class__ is str) self.assertEqual(s.lstrip(), base) self.assertTrue(s.rstrip().__class__ is str) self.assertEqual(s.rstrip(), base) identitytab = ''.join([chr(i) for i in range(256)]) self.assertTrue(s.translate(identitytab).__class__ is str) self.assertEqual(s.translate(identitytab), base) self.assertTrue(s.translate(identitytab, "x").__class__ is str) self.assertEqual(s.translate(identitytab, "x"), base) self.assertEqual(s.translate(identitytab, "\x00"), "") self.assertTrue(s.replace("x", "x").__class__ is str) self.assertEqual(s.replace("x", "x"), base) self.assertTrue(s.ljust(len(s)).__class__ is str) self.assertEqual(s.ljust(len(s)), base) self.assertTrue(s.rjust(len(s)).__class__ is str) self.assertEqual(s.rjust(len(s)), base) self.assertTrue(s.center(len(s)).__class__ is str) self.assertEqual(s.center(len(s)), base) self.assertTrue(s.lower().__class__ is str) self.assertEqual(s.lower(), base) class madunicode(unicode): _rev = None def rev(self): if self._rev is not None: return self._rev L = list(self) L.reverse() self._rev = self.__class__(u"".join(L)) return self._rev u = madunicode("ABCDEF") self.assertEqual(u, u"ABCDEF") self.assertEqual(u.rev(), madunicode(u"FEDCBA")) self.assertEqual(u.rev().rev(), madunicode(u"ABCDEF")) base = u"12345" u = madunicode(base) self.assertEqual(unicode(u), base) self.assertTrue(unicode(u).__class__ is unicode) self.assertEqual(hash(u), hash(base)) self.assertEqual({u: 1}[base], 1) self.assertEqual({base: 1}[u], 1) self.assertTrue(u.strip().__class__ is unicode) self.assertEqual(u.strip(), base) self.assertTrue(u.lstrip().__class__ is unicode) self.assertEqual(u.lstrip(), base) self.assertTrue(u.rstrip().__class__ is unicode) self.assertEqual(u.rstrip(), base) self.assertTrue(u.replace(u"x", u"x").__class__ is unicode) self.assertEqual(u.replace(u"x", u"x"), base) self.assertTrue(u.replace(u"xy", u"xy").__class__ is unicode) self.assertEqual(u.replace(u"xy", u"xy"), base) self.assertTrue(u.center(len(u)).__class__ is unicode) self.assertEqual(u.center(len(u)), base) self.assertTrue(u.ljust(len(u)).__class__ is unicode) self.assertEqual(u.ljust(len(u)), base) self.assertTrue(u.rjust(len(u)).__class__ is unicode) self.assertEqual(u.rjust(len(u)), base) self.assertTrue(u.lower().__class__ is unicode) self.assertEqual(u.lower(), base) self.assertTrue(u.upper().__class__ is unicode) self.assertEqual(u.upper(), base) self.assertTrue(u.capitalize().__class__ is unicode) self.assertEqual(u.capitalize(), base) self.assertTrue(u.title().__class__ is unicode) self.assertEqual(u.title(), base) self.assertTrue((u + u"").__class__ is unicode) self.assertEqual(u + u"", base) self.assertTrue((u"" + u).__class__ is unicode) self.assertEqual(u"" + u, base) self.assertTrue((u * 0).__class__ is unicode) self.assertEqual(u * 0, u"") self.assertTrue((u * 1).__class__ is unicode) self.assertEqual(u * 1, base) self.assertTrue((u * 2).__class__ is unicode) self.assertEqual(u * 2, base + base) self.assertTrue(u[:].__class__ is unicode) self.assertEqual(u[:], base) self.assertTrue(u[0:0].__class__ is unicode) self.assertEqual(u[0:0], u"") class sublist(list): pass a = sublist(range(5)) self.assertEqual(a, range(5)) a.append("hello") self.assertEqual(a, range(5) + ["hello"]) a[5] = 5 self.assertEqual(a, range(6)) a.extend(range(6, 20)) self.assertEqual(a, range(20)) a[-5:] = [] self.assertEqual(a, range(15)) del a[10:15] self.assertEqual(len(a), 10) self.assertEqual(a, range(10)) self.assertEqual(list(a), range(10)) self.assertEqual(a[0], 0) self.assertEqual(a[9], 9) self.assertEqual(a[-10], 0) self.assertEqual(a[-1], 9) self.assertEqual(a[:5], range(5)) class CountedInput(file): """Counts lines read by self.readline(). self.lineno is the 0-based ordinal of the last line read, up to a maximum of one greater than the number of lines in the file. self.ateof is true if and only if the final "" line has been read, at which point self.lineno stops incrementing, and further calls to readline() continue to return "". """ lineno = 0 ateof = 0 def readline(self): if self.ateof: return "" s = file.readline(self) # Next line works too. # s = super(CountedInput, self).readline() self.lineno += 1 if s == "": self.ateof = 1 return s f = file(name=test_support.TESTFN, mode='w') lines = ['a\n', 'b\n', 'c\n'] try: f.writelines(lines) f.close() f = CountedInput(test_support.TESTFN) for (i, expected) in zip(range(1, 5) + [4], lines + 2 * [""]): got = f.readline() self.assertEqual(expected, got) self.assertEqual(f.lineno, i) self.assertEqual(f.ateof, (i > len(lines))) f.close() finally: try: f.close() except: pass test_support.unlink(test_support.TESTFN) def test_keywords(self): # Testing keyword args to basic type constructors ... self.assertEqual(int(x=1), 1) self.assertEqual(float(x=2), 2.0) self.assertEqual(long(x=3), 3L) self.assertEqual(complex(imag=42, real=666), complex(666, 42)) self.assertEqual(str(object=500), '500') self.assertEqual(unicode(string='abc', errors='strict'), u'abc') self.assertEqual(tuple(sequence=range(3)), (0, 1, 2)) self.assertEqual(list(sequence=(0, 1, 2)), range(3)) # note: as of Python 2.3, dict() no longer has an "items" keyword arg for constructor in (int, float, long, complex, str, unicode, tuple, list, file): try: constructor(bogus_keyword_arg=1) except TypeError: pass else: self.fail("expected TypeError from bogus keyword argument to %r" % constructor) def test_str_subclass_as_dict_key(self): # Testing a str subclass used as dict key .. class cistr(str): """Sublcass of str that computes __eq__ case-insensitively. Also computes a hash code of the string in canonical form. """ def __init__(self, value): self.canonical = value.lower() self.hashcode = hash(self.canonical) def __eq__(self, other): if not isinstance(other, cistr): other = cistr(other) return self.canonical == other.canonical def __hash__(self): return self.hashcode self.assertEqual(cistr('ABC'), 'abc') self.assertEqual('aBc', cistr('ABC')) self.assertEqual(str(cistr('ABC')), 'ABC') d = {cistr('one'): 1, cistr('two'): 2, cistr('tHree'): 3} self.assertEqual(d[cistr('one')], 1) self.assertEqual(d[cistr('tWo')], 2) self.assertEqual(d[cistr('THrEE')], 3) self.assertIn(cistr('ONe'), d) self.assertEqual(d.get(cistr('thrEE')), 3) def test_classic_comparisons(self): # Testing classic comparisons... class classic: pass for base in (classic, int, object): class C(base): def __init__(self, value): self.value = int(value) def __cmp__(self, other): if isinstance(other, C): return cmp(self.value, other.value) if isinstance(other, int) or isinstance(other, long): return cmp(self.value, other) return NotImplemented __hash__ = None # Silence Py3k warning c1 = C(1) c2 = C(2) c3 = C(3) self.assertEqual(c1, 1) c = {1: c1, 2: c2, 3: c3} for x in 1, 2, 3: for y in 1, 2, 3: self.assertTrue(cmp(c[x], c[y]) == cmp(x, y), "x=%d, y=%d" % (x, y)) for op in "<", "<=", "==", "!=", ">", ">=": self.assertTrue(eval("c[x] %s c[y]" % op) == eval("x %s y" % op), "x=%d, y=%d" % (x, y)) self.assertTrue(cmp(c[x], y) == cmp(x, y), "x=%d, y=%d" % (x, y)) self.assertTrue(cmp(x, c[y]) == cmp(x, y), "x=%d, y=%d" % (x, y)) def test_rich_comparisons(self): # Testing rich comparisons... class Z(complex): pass z = Z(1) self.assertEqual(z, 1+0j) self.assertEqual(1+0j, z) class ZZ(complex): def __eq__(self, other): try: return abs(self - other) <= 1e-6 except: return NotImplemented __hash__ = None # Silence Py3k warning zz = ZZ(1.0000003) self.assertEqual(zz, 1+0j) self.assertEqual(1+0j, zz) class classic: pass for base in (classic, int, object, list): class C(base): def __init__(self, value): self.value = int(value) def __cmp__(self_, other): self.fail("shouldn't call __cmp__") __hash__ = None # Silence Py3k warning def __eq__(self, other): if isinstance(other, C): return self.value == other.value if isinstance(other, int) or isinstance(other, long): return self.value == other return NotImplemented def __ne__(self, other): if isinstance(other, C): return self.value != other.value if isinstance(other, int) or isinstance(other, long): return self.value != other return NotImplemented def __lt__(self, other): if isinstance(other, C): return self.value < other.value if isinstance(other, int) or isinstance(other, long): return self.value < other return NotImplemented def __le__(self, other): if isinstance(other, C): return self.value <= other.value if isinstance(other, int) or isinstance(other, long): return self.value <= other return NotImplemented def __gt__(self, other): if isinstance(other, C): return self.value > other.value if isinstance(other, int) or isinstance(other, long): return self.value > other return NotImplemented def __ge__(self, other): if isinstance(other, C): return self.value >= other.value if isinstance(other, int) or isinstance(other, long): return self.value >= other return NotImplemented c1 = C(1) c2 = C(2) c3 = C(3) self.assertEqual(c1, 1) c = {1: c1, 2: c2, 3: c3} for x in 1, 2, 3: for y in 1, 2, 3: for op in "<", "<=", "==", "!=", ">", ">=": self.assertTrue(eval("c[x] %s c[y]" % op) == eval("x %s y" % op), "x=%d, y=%d" % (x, y)) self.assertTrue(eval("c[x] %s y" % op) == eval("x %s y" % op), "x=%d, y=%d" % (x, y)) self.assertTrue(eval("x %s c[y]" % op) == eval("x %s y" % op), "x=%d, y=%d" % (x, y)) def test_coercions(self): # Testing coercions... class I(int): pass coerce(I(0), 0) coerce(0, I(0)) class L(long): pass coerce(L(0), 0) coerce(L(0), 0L) coerce(0, L(0)) coerce(0L, L(0)) class F(float): pass coerce(F(0), 0) coerce(F(0), 0L) coerce(F(0), 0.) coerce(0, F(0)) coerce(0L, F(0)) coerce(0., F(0)) class C(complex): pass coerce(C(0), 0) coerce(C(0), 0L) coerce(C(0), 0.) coerce(C(0), 0j) coerce(0, C(0)) coerce(0L, C(0)) coerce(0., C(0)) coerce(0j, C(0)) def test_descrdoc(self): # Testing descriptor doc strings... def check(descr, what): self.assertEqual(descr.__doc__, what) check(file.closed, "True if the file is closed") # getset descriptor check(file.name, "file name") # member descriptor def test_doc_descriptor(self): # Testing __doc__ descriptor... # SF bug 542984 class DocDescr(object): def __get__(self, object, otype): if object: object = object.__class__.__name__ + ' instance' if otype: otype = otype.__name__ return 'object=%s; type=%s' % (object, otype) class OldClass: __doc__ = DocDescr() class NewClass(object): __doc__ = DocDescr() self.assertEqual(OldClass.__doc__, 'object=None; type=OldClass') self.assertEqual(OldClass().__doc__, 'object=OldClass instance; type=OldClass') self.assertEqual(NewClass.__doc__, 'object=None; type=NewClass') self.assertEqual(NewClass().__doc__, 'object=NewClass instance; type=NewClass') def test_set_class(self): # Testing __class__ assignment... class C(object): pass class D(object): pass class E(object): pass class F(D, E): pass for cls in C, D, E, F: for cls2 in C, D, E, F: x = cls() x.__class__ = cls2 self.assertTrue(x.__class__ is cls2) x.__class__ = cls self.assertTrue(x.__class__ is cls) def cant(x, C): try: x.__class__ = C except TypeError: pass else: self.fail("shouldn't allow %r.__class__ = %r" % (x, C)) try: delattr(x, "__class__") except (TypeError, AttributeError): pass else: self.fail("shouldn't allow del %r.__class__" % x) cant(C(), list) cant(list(), C) cant(C(), 1) cant(C(), object) cant(object(), list) cant(list(), object) class Int(int): __slots__ = [] cant(2, Int) cant(Int(), int) cant(True, int) cant(2, bool) o = object() cant(o, type(1)) cant(o, type(None)) del o class G(object): __slots__ = ["a", "b"] class H(object): __slots__ = ["b", "a"] try: unicode except NameError: class I(object): __slots__ = ["a", "b"] else: class I(object): __slots__ = [unicode("a"), unicode("b")] class J(object): __slots__ = ["c", "b"] class K(object): __slots__ = ["a", "b", "d"] class L(H): __slots__ = ["e"] class M(I): __slots__ = ["e"] class N(J): __slots__ = ["__weakref__"] class P(J): __slots__ = ["__dict__"] class Q(J): pass class R(J): __slots__ = ["__dict__", "__weakref__"] for cls, cls2 in ((G, H), (G, I), (I, H), (Q, R), (R, Q)): x = cls() x.a = 1 x.__class__ = cls2 self.assertTrue(x.__class__ is cls2, "assigning %r as __class__ for %r silently failed" % (cls2, x)) self.assertEqual(x.a, 1) x.__class__ = cls self.assertTrue(x.__class__ is cls, "assigning %r as __class__ for %r silently failed" % (cls, x)) self.assertEqual(x.a, 1) for cls in G, J, K, L, M, N, P, R, list, Int: for cls2 in G, J, K, L, M, N, P, R, list, Int: if cls is cls2: continue cant(cls(), cls2) # Issue5283: when __class__ changes in __del__, the wrong # type gets DECREF'd. class O(object): pass class A(object): def __del__(self): self.__class__ = O l = [A() for x in range(100)] del l def test_set_dict(self): # Testing __dict__ assignment... class C(object): pass a = C() a.__dict__ = {'b': 1} self.assertEqual(a.b, 1) def cant(x, dict): try: x.__dict__ = dict except (AttributeError, TypeError): pass else: self.fail("shouldn't allow %r.__dict__ = %r" % (x, dict)) cant(a, None) cant(a, []) cant(a, 1) del a.__dict__ # Deleting __dict__ is allowed class Base(object): pass def verify_dict_readonly(x): """ x has to be an instance of a class inheriting from Base. """ cant(x, {}) try: del x.__dict__ except (AttributeError, TypeError): pass else: self.fail("shouldn't allow del %r.__dict__" % x) dict_descr = Base.__dict__["__dict__"] try: dict_descr.__set__(x, {}) except (AttributeError, TypeError): pass else: self.fail("dict_descr allowed access to %r's dict" % x) # Classes don't allow __dict__ assignment and have readonly dicts class Meta1(type, Base): pass class Meta2(Base, type): pass class D(object): __metaclass__ = Meta1 class E(object): __metaclass__ = Meta2 for cls in C, D, E: verify_dict_readonly(cls) class_dict = cls.__dict__ try: class_dict["spam"] = "eggs" except TypeError: pass else: self.fail("%r's __dict__ can be modified" % cls) # Modules also disallow __dict__ assignment class Module1(types.ModuleType, Base): pass class Module2(Base, types.ModuleType): pass for ModuleType in Module1, Module2: mod = ModuleType("spam") verify_dict_readonly(mod) mod.__dict__["spam"] = "eggs" # Exception's __dict__ can be replaced, but not deleted # (at least not any more than regular exception's __dict__ can # be deleted; on CPython it is not the case, whereas on PyPy they # can, just like any other new-style instance's __dict__.) def can_delete_dict(e): try: del e.__dict__ except (TypeError, AttributeError): return False else: return True class Exception1(Exception, Base): pass class Exception2(Base, Exception): pass for ExceptionType in Exception, Exception1, Exception2: e = ExceptionType() e.__dict__ = {"a": 1} self.assertEqual(e.a, 1) self.assertEqual(can_delete_dict(e), can_delete_dict(ValueError())) def test_pickles(self): # Testing pickling and copying new-style classes and objects... import pickle, cPickle def sorteditems(d): L = d.items() L.sort() return L global C class C(object): def __init__(self, a, b): super(C, self).__init__() self.a = a self.b = b def __repr__(self): return "C(%r, %r)" % (self.a, self.b) global C1 class C1(list): def __new__(cls, a, b): return super(C1, cls).__new__(cls) def __getnewargs__(self): return (self.a, self.b) def __init__(self, a, b): self.a = a self.b = b def __repr__(self): return "C1(%r, %r)<%r>" % (self.a, self.b, list(self)) global C2 class C2(int): def __new__(cls, a, b, val=0): return super(C2, cls).__new__(cls, val) def __getnewargs__(self): return (self.a, self.b, int(self)) def __init__(self, a, b, val=0): self.a = a self.b = b def __repr__(self): return "C2(%r, %r)<%r>" % (self.a, self.b, int(self)) global C3 class C3(object): def __init__(self, foo): self.foo = foo def __getstate__(self): return self.foo def __setstate__(self, foo): self.foo = foo global C4classic, C4 class C4classic: # classic pass class C4(C4classic, object): # mixed inheritance pass for p in pickle, cPickle: for bin in 0, 1: for cls in C, C1, C2: s = p.dumps(cls, bin) cls2 = p.loads(s) self.assertTrue(cls2 is cls) a = C1(1, 2); a.append(42); a.append(24) b = C2("hello", "world", 42) s = p.dumps((a, b), bin) x, y = p.loads(s) self.assertEqual(x.__class__, a.__class__) self.assertEqual(sorteditems(x.__dict__), sorteditems(a.__dict__)) self.assertEqual(y.__class__, b.__class__) self.assertEqual(sorteditems(y.__dict__), sorteditems(b.__dict__)) self.assertEqual(repr(x), repr(a)) self.assertEqual(repr(y), repr(b)) # Test for __getstate__ and __setstate__ on new style class u = C3(42) s = p.dumps(u, bin) v = p.loads(s) self.assertEqual(u.__class__, v.__class__) self.assertEqual(u.foo, v.foo) # Test for picklability of hybrid class u = C4() u.foo = 42 s = p.dumps(u, bin) v = p.loads(s) self.assertEqual(u.__class__, v.__class__) self.assertEqual(u.foo, v.foo) # Testing copy.deepcopy() import copy for cls in C, C1, C2: cls2 = copy.deepcopy(cls) self.assertTrue(cls2 is cls) a = C1(1, 2); a.append(42); a.append(24) b = C2("hello", "world", 42) x, y = copy.deepcopy((a, b)) self.assertEqual(x.__class__, a.__class__) self.assertEqual(sorteditems(x.__dict__), sorteditems(a.__dict__)) self.assertEqual(y.__class__, b.__class__) self.assertEqual(sorteditems(y.__dict__), sorteditems(b.__dict__)) self.assertEqual(repr(x), repr(a)) self.assertEqual(repr(y), repr(b)) def test_pickle_slots(self): # Testing pickling of classes with __slots__ ... import pickle, cPickle # Pickling of classes with __slots__ but without __getstate__ should fail global B, C, D, E class B(object): pass for base in [object, B]: class C(base): __slots__ = ['a'] class D(C): pass try: pickle.dumps(C()) except TypeError: pass else: self.fail("should fail: pickle C instance - %s" % base) try: cPickle.dumps(C()) except TypeError: pass else: self.fail("should fail: cPickle C instance - %s" % base) try: pickle.dumps(C()) except TypeError: pass else: self.fail("should fail: pickle D instance - %s" % base) try: cPickle.dumps(D()) except TypeError: pass else: self.fail("should fail: cPickle D instance - %s" % base) # Give C a nice generic __getstate__ and __setstate__ class C(base): __slots__ = ['a'] def __getstate__(self): try: d = self.__dict__.copy() except AttributeError: d = {} for cls in self.__class__.__mro__: for sn in cls.__dict__.get('__slots__', ()): try: d[sn] = getattr(self, sn) except AttributeError: pass return d def __setstate__(self, d): for k, v in d.items(): setattr(self, k, v) class D(C): pass # Now it should work x = C() y = pickle.loads(pickle.dumps(x)) self.assertEqual(hasattr(y, 'a'), 0) y = cPickle.loads(cPickle.dumps(x)) self.assertEqual(hasattr(y, 'a'), 0) x.a = 42 y = pickle.loads(pickle.dumps(x)) self.assertEqual(y.a, 42) y = cPickle.loads(cPickle.dumps(x)) self.assertEqual(y.a, 42) x = D() x.a = 42 x.b = 100 y = pickle.loads(pickle.dumps(x)) self.assertEqual(y.a + y.b, 142) y = cPickle.loads(cPickle.dumps(x)) self.assertEqual(y.a + y.b, 142) # A subclass that adds a slot should also work class E(C): __slots__ = ['b'] x = E() x.a = 42 x.b = "foo" y = pickle.loads(pickle.dumps(x)) self.assertEqual(y.a, x.a) self.assertEqual(y.b, x.b) y = cPickle.loads(cPickle.dumps(x)) self.assertEqual(y.a, x.a) self.assertEqual(y.b, x.b) def test_binary_operator_override(self): # Testing overrides of binary operations... class I(int): def __repr__(self): return "I(%r)" % int(self) def __add__(self, other): return I(int(self) + int(other)) __radd__ = __add__ def __pow__(self, other, mod=None): if mod is None: return I(pow(int(self), int(other))) else: return I(pow(int(self), int(other), int(mod))) def __rpow__(self, other, mod=None): if mod is None: return I(pow(int(other), int(self), mod)) else: return I(pow(int(other), int(self), int(mod))) self.assertEqual(repr(I(1) + I(2)), "I(3)") self.assertEqual(repr(I(1) + 2), "I(3)") self.assertEqual(repr(1 + I(2)), "I(3)") self.assertEqual(repr(I(2) ** I(3)), "I(8)") self.assertEqual(repr(2 ** I(3)), "I(8)") self.assertEqual(repr(I(2) ** 3), "I(8)") self.assertEqual(repr(pow(I(2), I(3), I(5))), "I(3)") class S(str): def __eq__(self, other): return self.lower() == other.lower() __hash__ = None # Silence Py3k warning def test_subclass_propagation(self): # Testing propagation of slot functions to subclasses... class A(object): pass class B(A): pass class C(A): pass class D(B, C): pass d = D() orig_hash = hash(d) # related to id(d) in platform-dependent ways A.__hash__ = lambda self: 42 self.assertEqual(hash(d), 42) C.__hash__ = lambda self: 314 self.assertEqual(hash(d), 314) B.__hash__ = lambda self: 144 self.assertEqual(hash(d), 144) D.__hash__ = lambda self: 100 self.assertEqual(hash(d), 100) D.__hash__ = None self.assertRaises(TypeError, hash, d) del D.__hash__ self.assertEqual(hash(d), 144) B.__hash__ = None self.assertRaises(TypeError, hash, d) del B.__hash__ self.assertEqual(hash(d), 314) C.__hash__ = None self.assertRaises(TypeError, hash, d) del C.__hash__ self.assertEqual(hash(d), 42) A.__hash__ = None self.assertRaises(TypeError, hash, d) del A.__hash__ self.assertEqual(hash(d), orig_hash) d.foo = 42 d.bar = 42 self.assertEqual(d.foo, 42) self.assertEqual(d.bar, 42) def __getattribute__(self, name): if name == "foo": return 24 return object.__getattribute__(self, name) A.__getattribute__ = __getattribute__ self.assertEqual(d.foo, 24) self.assertEqual(d.bar, 42) def __getattr__(self, name): if name in ("spam", "foo", "bar"): return "hello" raise AttributeError, name B.__getattr__ = __getattr__ self.assertEqual(d.spam, "hello") self.assertEqual(d.foo, 24) self.assertEqual(d.bar, 42) del A.__getattribute__ self.assertEqual(d.foo, 42) del d.foo self.assertEqual(d.foo, "hello") self.assertEqual(d.bar, 42) del B.__getattr__ try: d.foo except AttributeError: pass else: self.fail("d.foo should be undefined now") # Test a nasty bug in recurse_down_subclasses() class A(object): pass class B(A): pass del B test_support.gc_collect() A.__setitem__ = lambda *a: None # crash def test_buffer_inheritance(self): # Testing that buffer interface is inherited ... import binascii # SF bug [#470040] ParseTuple t# vs subclasses. class MyStr(str): pass base = 'abc' m = MyStr(base) # b2a_hex uses the buffer interface to get its argument's value, via # PyArg_ParseTuple 't#' code. self.assertEqual(binascii.b2a_hex(m), binascii.b2a_hex(base)) # It's not clear that unicode will continue to support the character # buffer interface, and this test will fail if that's taken away. class MyUni(unicode): pass base = u'abc' m = MyUni(base) self.assertEqual(binascii.b2a_hex(m), binascii.b2a_hex(base)) class MyInt(int): pass m = MyInt(42) try: binascii.b2a_hex(m) self.fail('subclass of int should not have a buffer interface') except TypeError: pass def test_str_of_str_subclass(self): # Testing __str__ defined in subclass of str ... import binascii import cStringIO class octetstring(str): def __str__(self): return binascii.b2a_hex(self) def __repr__(self): return self + " repr" o = octetstring('A') self.assertEqual(type(o), octetstring) self.assertEqual(type(str(o)), str) self.assertEqual(type(repr(o)), str) self.assertEqual(ord(o), 0x41) self.assertEqual(str(o), '41') self.assertEqual(repr(o), 'A repr') self.assertEqual(o.__str__(), '41') self.assertEqual(o.__repr__(), 'A repr') capture = cStringIO.StringIO() # Calling str() or not exercises different internal paths. print >> capture, o print >> capture, str(o) self.assertEqual(capture.getvalue(), '41\n41\n') capture.close() def test_keyword_arguments(self): # Testing keyword arguments to __init__, __call__... def f(a): return a self.assertEqual(f.__call__(a=42), 42) a = [] list.__init__(a, sequence=[0, 1, 2]) self.assertEqual(a, [0, 1, 2]) def test_recursive_call(self): # Testing recursive __call__() by setting to instance of class... class A(object): pass A.__call__ = A() try: A()() except RuntimeError: pass else: self.fail("Recursion limit should have been reached for __call__()") def test_delete_hook(self): # Testing __del__ hook... log = [] class C(object): def __del__(self): log.append(1) c = C() self.assertEqual(log, []) del c test_support.gc_collect() self.assertEqual(log, [1]) class D(object): pass d = D() try: del d[0] except TypeError: pass else: self.fail("invalid del() didn't raise TypeError") def test_hash_inheritance(self): # Testing hash of mutable subclasses... class mydict(dict): pass d = mydict() try: hash(d) except TypeError: pass else: self.fail("hash() of dict subclass should fail") class mylist(list): pass d = mylist() try: hash(d) except TypeError: pass else: self.fail("hash() of list subclass should fail") def test_str_operations(self): try: 'a' + 5 except TypeError: pass else: self.fail("'' + 5 doesn't raise TypeError") try: ''.split('') except ValueError: pass else: self.fail("''.split('') doesn't raise ValueError") try: ''.join([0]) except TypeError: pass else: self.fail("''.join([0]) doesn't raise TypeError") try: ''.rindex('5') except ValueError: pass else: self.fail("''.rindex('5') doesn't raise ValueError") try: '%(n)s' % None except TypeError: pass else: self.fail("'%(n)s' % None doesn't raise TypeError") try: '%(n' % {} except ValueError: pass else: self.fail("'%(n' % {} '' doesn't raise ValueError") try: '%*s' % ('abc') except TypeError: pass else: self.fail("'%*s' % ('abc') doesn't raise TypeError") try: '%*.*s' % ('abc', 5) except TypeError: pass else: self.fail("'%*.*s' % ('abc', 5) doesn't raise TypeError") try: '%s' % (1, 2) except TypeError: pass else: self.fail("'%s' % (1, 2) doesn't raise TypeError") try: '%' % None except ValueError: pass else: self.fail("'%' % None doesn't raise ValueError") self.assertEqual('534253'.isdigit(), 1) self.assertEqual('534253x'.isdigit(), 0) self.assertEqual('%c' % 5, '\x05') self.assertEqual('%c' % '5', '5') def test_deepcopy_recursive(self): # Testing deepcopy of recursive objects... class Node: pass a = Node() b = Node() a.b = b b.a = a z = deepcopy(a) # This blew up before def test_unintialized_modules(self): # Testing uninitialized module objects... from types import ModuleType as M m = M.__new__(M) str(m) self.assertEqual(hasattr(m, "__name__"), 0) self.assertEqual(hasattr(m, "__file__"), 0) self.assertEqual(hasattr(m, "foo"), 0) self.assertFalse(m.__dict__) # None or {} are both reasonable answers m.foo = 1 self.assertEqual(m.__dict__, {"foo": 1}) def test_funny_new(self): # Testing __new__ returning something unexpected... class C(object): def __new__(cls, arg): if isinstance(arg, str): return [1, 2, 3] elif isinstance(arg, int): return object.__new__(D) else: return object.__new__(cls) class D(C): def __init__(self, arg): self.foo = arg self.assertEqual(C("1"), [1, 2, 3]) self.assertEqual(D("1"), [1, 2, 3]) d = D(None) self.assertEqual(d.foo, None) d = C(1) self.assertEqual(isinstance(d, D), True) self.assertEqual(d.foo, 1) d = D(1) self.assertEqual(isinstance(d, D), True) self.assertEqual(d.foo, 1) def test_imul_bug(self): # Testing for __imul__ problems... # SF bug 544647 class C(object): def __imul__(self, other): return (self, other) x = C() y = x y *= 1.0 self.assertEqual(y, (x, 1.0)) y = x y *= 2 self.assertEqual(y, (x, 2)) y = x y *= 3L self.assertEqual(y, (x, 3L)) y = x y *= 1L<<100 self.assertEqual(y, (x, 1L<<100)) y = x y *= None self.assertEqual(y, (x, None)) y = x y *= "foo" self.assertEqual(y, (x, "foo")) def test_copy_setstate(self): # Testing that copy.*copy() correctly uses __setstate__... import copy class C(object): def __init__(self, foo=None): self.foo = foo self.__foo = foo def setfoo(self, foo=None): self.foo = foo def getfoo(self): return self.__foo def __getstate__(self): return [self.foo] def __setstate__(self_, lst): self.assertEqual(len(lst), 1) self_.__foo = self_.foo = lst[0] a = C(42) a.setfoo(24) self.assertEqual(a.foo, 24) self.assertEqual(a.getfoo(), 42) b = copy.copy(a) self.assertEqual(b.foo, 24) self.assertEqual(b.getfoo(), 24) b = copy.deepcopy(a) self.assertEqual(b.foo, 24) self.assertEqual(b.getfoo(), 24) def test_slices(self): # Testing cases with slices and overridden __getitem__ ... # Strings self.assertEqual("hello"[:4], "hell") self.assertEqual("hello"[slice(4)], "hell") self.assertEqual(str.__getitem__("hello", slice(4)), "hell") class S(str): def __getitem__(self, x): return str.__getitem__(self, x) self.assertEqual(S("hello")[:4], "hell") self.assertEqual(S("hello")[slice(4)], "hell") self.assertEqual(S("hello").__getitem__(slice(4)), "hell") # Tuples self.assertEqual((1,2,3)[:2], (1,2)) self.assertEqual((1,2,3)[slice(2)], (1,2)) self.assertEqual(tuple.__getitem__((1,2,3), slice(2)), (1,2)) class T(tuple): def __getitem__(self, x): return tuple.__getitem__(self, x) self.assertEqual(T((1,2,3))[:2], (1,2)) self.assertEqual(T((1,2,3))[slice(2)], (1,2)) self.assertEqual(T((1,2,3)).__getitem__(slice(2)), (1,2)) # Lists self.assertEqual([1,2,3][:2], [1,2]) self.assertEqual([1,2,3][slice(2)], [1,2]) self.assertEqual(list.__getitem__([1,2,3], slice(2)), [1,2]) class L(list): def __getitem__(self, x): return list.__getitem__(self, x) self.assertEqual(L([1,2,3])[:2], [1,2]) self.assertEqual(L([1,2,3])[slice(2)], [1,2]) self.assertEqual(L([1,2,3]).__getitem__(slice(2)), [1,2]) # Now do lists and __setitem__ a = L([1,2,3]) a[slice(1, 3)] = [3,2] self.assertEqual(a, [1,3,2]) a[slice(0, 2, 1)] = [3,1] self.assertEqual(a, [3,1,2]) a.__setitem__(slice(1, 3), [2,1]) self.assertEqual(a, [3,2,1]) a.__setitem__(slice(0, 2, 1), [2,3]) self.assertEqual(a, [2,3,1]) def test_subtype_resurrection(self): # Testing resurrection of new-style instance... class C(object): container = [] def __del__(self): # resurrect the instance C.container.append(self) c = C() c.attr = 42 # The most interesting thing here is whether this blows up, due to # flawed GC tracking logic in typeobject.c's call_finalizer() (a 2.2.1 # bug). del c # If that didn't blow up, it's also interesting to see whether clearing # the last container slot works: that will attempt to delete c again, # which will cause c to get appended back to the container again # "during" the del. (On non-CPython implementations, however, __del__ # is typically not called again.) test_support.gc_collect() self.assertEqual(len(C.container), 1) del C.container[-1] if test_support.check_impl_detail(): test_support.gc_collect() self.assertEqual(len(C.container), 1) self.assertEqual(C.container[-1].attr, 42) # Make c mortal again, so that the test framework with -l doesn't report # it as a leak. del C.__del__ def test_slots_trash(self): # Testing slot trash... # Deallocating deeply nested slotted trash caused stack overflows class trash(object): __slots__ = ['x'] def __init__(self, x): self.x = x o = None for i in xrange(50000): o = trash(o) del o def test_slots_multiple_inheritance(self): # SF bug 575229, multiple inheritance w/ slots dumps core class A(object): __slots__=() class B(object): pass class C(A,B) : __slots__=() if test_support.check_impl_detail(): self.assertEqual(C.__basicsize__, B.__basicsize__) self.assertTrue(hasattr(C, '__dict__')) self.assertTrue(hasattr(C, '__weakref__')) C().x = 2 def test_rmul(self): # Testing correct invocation of __rmul__... # SF patch 592646 class C(object): def __mul__(self, other): return "mul" def __rmul__(self, other): return "rmul" a = C() self.assertEqual(a*2, "mul") self.assertEqual(a*2.2, "mul") self.assertEqual(2*a, "rmul") self.assertEqual(2.2*a, "rmul") def test_ipow(self): # Testing correct invocation of __ipow__... # [SF bug 620179] class C(object): def __ipow__(self, other): pass a = C() a **= 2 def test_mutable_bases(self): # Testing mutable bases... # stuff that should work: class C(object): pass class C2(object): def __getattribute__(self, attr): if attr == 'a': return 2 else: return super(C2, self).__getattribute__(attr) def meth(self): return 1 class D(C): pass class E(D): pass d = D() e = E() D.__bases__ = (C,) D.__bases__ = (C2,) self.assertEqual(d.meth(), 1) self.assertEqual(e.meth(), 1) self.assertEqual(d.a, 2) self.assertEqual(e.a, 2) self.assertEqual(C2.__subclasses__(), [D]) try: del D.__bases__ except (TypeError, AttributeError): pass else: self.fail("shouldn't be able to delete .__bases__") try: D.__bases__ = () except TypeError, msg: if str(msg) == "a new-style class can't have only classic bases": self.fail("wrong error message for .__bases__ = ()") else: self.fail("shouldn't be able to set .__bases__ to ()") try: D.__bases__ = (D,) except TypeError: pass else: # actually, we'll have crashed by here... self.fail("shouldn't be able to create inheritance cycles") try: D.__bases__ = (C, C) except TypeError: pass else: self.fail("didn't detect repeated base classes") try: D.__bases__ = (E,) except TypeError: pass else: self.fail("shouldn't be able to create inheritance cycles") # let's throw a classic class into the mix: class Classic: def meth2(self): return 3 D.__bases__ = (C, Classic) self.assertEqual(d.meth2(), 3) self.assertEqual(e.meth2(), 3) try: d.a except AttributeError: pass else: self.fail("attribute should have vanished") try: D.__bases__ = (Classic,) except TypeError: pass else: self.fail("new-style class must have a new-style base") def test_builtin_bases(self): # Make sure all the builtin types can have their base queried without # segfaulting. See issue #5787. builtin_types = [tp for tp in __builtin__.__dict__.itervalues() if isinstance(tp, type)] for tp in builtin_types: object.__getattribute__(tp, "__bases__") if tp is not object: self.assertEqual(len(tp.__bases__), 1, tp) class L(list): pass class C(object): pass class D(C): pass try: L.__bases__ = (dict,) except TypeError: pass else: self.fail("shouldn't turn list subclass into dict subclass") try: list.__bases__ = (dict,) except TypeError: pass else: self.fail("shouldn't be able to assign to list.__bases__") try: D.__bases__ = (C, list) except TypeError: pass else: assert 0, "best_base calculation found wanting" def test_mutable_bases_with_failing_mro(self): # Testing mutable bases with failing mro... class WorkOnce(type): def __new__(self, name, bases, ns): self.flag = 0 return super(WorkOnce, self).__new__(WorkOnce, name, bases, ns) def mro(self): if self.flag > 0: raise RuntimeError, "bozo" else: self.flag += 1 return type.mro(self) class WorkAlways(type): def mro(self): # this is here to make sure that .mro()s aren't called # with an exception set (which was possible at one point). # An error message will be printed in a debug build. # What's a good way to test for this? return type.mro(self) class C(object): pass class C2(object): pass class D(C): pass class E(D): pass class F(D): __metaclass__ = WorkOnce class G(D): __metaclass__ = WorkAlways # Immediate subclasses have their mro's adjusted in alphabetical # order, so E's will get adjusted before adjusting F's fails. We # check here that E's gets restored. E_mro_before = E.__mro__ D_mro_before = D.__mro__ try: D.__bases__ = (C2,) except RuntimeError: self.assertEqual(E.__mro__, E_mro_before) self.assertEqual(D.__mro__, D_mro_before) else: self.fail("exception not propagated") def test_mutable_bases_catch_mro_conflict(self): # Testing mutable bases catch mro conflict... class A(object): pass class B(object): pass class C(A, B): pass class D(A, B): pass class E(C, D): pass try: C.__bases__ = (B, A) except TypeError: pass else: self.fail("didn't catch MRO conflict") def test_mutable_names(self): # Testing mutable names... class C(object): pass # C.__module__ could be 'test_descr' or '__main__' mod = C.__module__ C.__name__ = 'D' self.assertEqual((C.__module__, C.__name__), (mod, 'D')) C.__name__ = 'D.E' self.assertEqual((C.__module__, C.__name__), (mod, 'D.E')) def test_evil_type_name(self): # A badly placed Py_DECREF in type_set_name led to arbitrary code # execution while the type structure was not in a sane state, and a # possible segmentation fault as a result. See bug #16447. class Nasty(str): def __del__(self): C.__name__ = "other" class C(object): pass C.__name__ = Nasty("abc") C.__name__ = "normal" def test_subclass_right_op(self): # Testing correct dispatch of subclass overloading __r<op>__... # This code tests various cases where right-dispatch of a subclass # should be preferred over left-dispatch of a base class. # Case 1: subclass of int; this tests code in abstract.c::binary_op1() class B(int): def __floordiv__(self, other): return "B.__floordiv__" def __rfloordiv__(self, other): return "B.__rfloordiv__" self.assertEqual(B(1) // 1, "B.__floordiv__") self.assertEqual(1 // B(1), "B.__rfloordiv__") # Case 2: subclass of object; this is just the baseline for case 3 class C(object): def __floordiv__(self, other): return "C.__floordiv__" def __rfloordiv__(self, other): return "C.__rfloordiv__" self.assertEqual(C() // 1, "C.__floordiv__") self.assertEqual(1 // C(), "C.__rfloordiv__") # Case 3: subclass of new-style class; here it gets interesting class D(C): def __floordiv__(self, other): return "D.__floordiv__" def __rfloordiv__(self, other): return "D.__rfloordiv__" self.assertEqual(D() // C(), "D.__floordiv__") self.assertEqual(C() // D(), "D.__rfloordiv__") # Case 4: this didn't work right in 2.2.2 and 2.3a1 class E(C): pass self.assertEqual(E.__rfloordiv__, C.__rfloordiv__) self.assertEqual(E() // 1, "C.__floordiv__") self.assertEqual(1 // E(), "C.__rfloordiv__") self.assertEqual(E() // C(), "C.__floordiv__") self.assertEqual(C() // E(), "C.__floordiv__") # This one would fail @test_support.impl_detail("testing an internal kind of method object") def test_meth_class_get(self): # Testing __get__ method of METH_CLASS C methods... # Full coverage of descrobject.c::classmethod_get() # Baseline arg = [1, 2, 3] res = {1: None, 2: None, 3: None} self.assertEqual(dict.fromkeys(arg), res) self.assertEqual({}.fromkeys(arg), res) # Now get the descriptor descr = dict.__dict__["fromkeys"] # More baseline using the descriptor directly self.assertEqual(descr.__get__(None, dict)(arg), res) self.assertEqual(descr.__get__({})(arg), res) # Now check various error cases try: descr.__get__(None, None) except TypeError: pass else: self.fail("shouldn't have allowed descr.__get__(None, None)") try: descr.__get__(42) except TypeError: pass else: self.fail("shouldn't have allowed descr.__get__(42)") try: descr.__get__(None, 42) except TypeError: pass else: self.fail("shouldn't have allowed descr.__get__(None, 42)") try: descr.__get__(None, int) except TypeError: pass else: self.fail("shouldn't have allowed descr.__get__(None, int)") def test_isinst_isclass(self): # Testing proxy isinstance() and isclass()... class Proxy(object): def __init__(self, obj): self.__obj = obj def __getattribute__(self, name): if name.startswith("_Proxy__"): return object.__getattribute__(self, name) else: return getattr(self.__obj, name) # Test with a classic class class C: pass a = C() pa = Proxy(a) self.assertIsInstance(a, C) # Baseline self.assertIsInstance(pa, C) # Test # Test with a classic subclass class D(C): pass a = D() pa = Proxy(a) self.assertIsInstance(a, C) # Baseline self.assertIsInstance(pa, C) # Test # Test with a new-style class class C(object): pass a = C() pa = Proxy(a) self.assertIsInstance(a, C) # Baseline self.assertIsInstance(pa, C) # Test # Test with a new-style subclass class D(C): pass a = D() pa = Proxy(a) self.assertIsInstance(a, C) # Baseline self.assertIsInstance(pa, C) # Test def test_proxy_super(self): # Testing super() for a proxy object... class Proxy(object): def __init__(self, obj): self.__obj = obj def __getattribute__(self, name): if name.startswith("_Proxy__"): return object.__getattribute__(self, name) else: return getattr(self.__obj, name) class B(object): def f(self): return "B.f" class C(B): def f(self): return super(C, self).f() + "->C.f" obj = C() p = Proxy(obj) self.assertEqual(C.__dict__["f"](p), "B.f->C.f") def test_carloverre(self): # Testing prohibition of Carlo Verre's hack... try: object.__setattr__(str, "foo", 42) except TypeError: pass else: self.fail("Carlo Verre __setattr__ succeeded!") try: object.__delattr__(str, "lower") except TypeError: pass else: self.fail("Carlo Verre __delattr__ succeeded!") def test_weakref_segfault(self): # Testing weakref segfault... # SF 742911 import weakref class Provoker: def __init__(self, referrent): self.ref = weakref.ref(referrent) def __del__(self): x = self.ref() class Oops(object): pass o = Oops() o.whatever = Provoker(o) del o def test_wrapper_segfault(self): # SF 927248: deeply nested wrappers could cause stack overflow f = lambda:None for i in xrange(1000000): f = f.__call__ f = None def test_file_fault(self): # Testing sys.stdout is changed in getattr... test_stdout = sys.stdout class StdoutGuard: def __getattr__(self, attr): sys.stdout = sys.__stdout__ raise RuntimeError("Premature access to sys.stdout.%s" % attr) sys.stdout = StdoutGuard() try: print "Oops!" except RuntimeError: pass finally: sys.stdout = test_stdout def test_vicious_descriptor_nonsense(self): # Testing vicious_descriptor_nonsense... # A potential segfault spotted by Thomas Wouters in mail to # python-dev 2003-04-17, turned into an example & fixed by Michael # Hudson just less than four months later... class Evil(object): def __hash__(self): return hash('attr') def __eq__(self, other): del C.attr return 0 class Descr(object): def __get__(self, ob, type=None): return 1 class C(object): attr = Descr() c = C() c.__dict__[Evil()] = 0 self.assertEqual(c.attr, 1) # this makes a crash more likely: test_support.gc_collect() self.assertEqual(hasattr(c, 'attr'), False) def test_init(self): # SF 1155938 class Foo(object): def __init__(self): return 10 try: Foo() except TypeError: pass else: self.fail("did not test __init__() for None return") def test_method_wrapper(self): # Testing method-wrapper objects... # <type 'method-wrapper'> did not support any reflection before 2.5 l = [] self.assertEqual(l.__add__, l.__add__) self.assertEqual(l.__add__, [].__add__) self.assertTrue(l.__add__ != [5].__add__) self.assertTrue(l.__add__ != l.__mul__) self.assertTrue(l.__add__.__name__ == '__add__') if hasattr(l.__add__, '__self__'): # CPython self.assertTrue(l.__add__.__self__ is l) self.assertTrue(l.__add__.__objclass__ is list) else: # Python implementations where [].__add__ is a normal bound method self.assertTrue(l.__add__.im_self is l) self.assertTrue(l.__add__.im_class is list) self.assertEqual(l.__add__.__doc__, list.__add__.__doc__) try: hash(l.__add__) except TypeError: pass else: self.fail("no TypeError from hash([].__add__)") t = () t += (7,) self.assertEqual(t.__add__, (7,).__add__) self.assertEqual(hash(t.__add__), hash((7,).__add__)) def test_not_implemented(self): # Testing NotImplemented... # all binary methods should be able to return a NotImplemented import operator def specialmethod(self, other): return NotImplemented def check(expr, x, y): try: exec expr in {'x': x, 'y': y, 'operator': operator} except TypeError: pass else: self.fail("no TypeError from %r" % (expr,)) N1 = sys.maxint + 1L # might trigger OverflowErrors instead of # TypeErrors N2 = sys.maxint # if sizeof(int) < sizeof(long), might trigger # ValueErrors instead of TypeErrors for metaclass in [type, types.ClassType]: for name, expr, iexpr in [ ('__add__', 'x + y', 'x += y'), ('__sub__', 'x - y', 'x -= y'), ('__mul__', 'x * y', 'x *= y'), ('__truediv__', 'operator.truediv(x, y)', None), ('__floordiv__', 'operator.floordiv(x, y)', None), ('__div__', 'x / y', 'x /= y'), ('__mod__', 'x % y', 'x %= y'), ('__divmod__', 'divmod(x, y)', None), ('__pow__', 'x ** y', 'x **= y'), ('__lshift__', 'x << y', 'x <<= y'), ('__rshift__', 'x >> y', 'x >>= y'), ('__and__', 'x & y', 'x &= y'), ('__or__', 'x | y', 'x |= y'), ('__xor__', 'x ^ y', 'x ^= y'), ('__coerce__', 'coerce(x, y)', None)]: if name == '__coerce__': rname = name else: rname = '__r' + name[2:] A = metaclass('A', (), {name: specialmethod}) B = metaclass('B', (), {rname: specialmethod}) a = A() b = B() check(expr, a, a) check(expr, a, b) check(expr, b, a) check(expr, b, b) check(expr, a, N1) check(expr, a, N2) check(expr, N1, b) check(expr, N2, b) if iexpr: check(iexpr, a, a) check(iexpr, a, b) check(iexpr, b, a) check(iexpr, b, b) check(iexpr, a, N1) check(iexpr, a, N2) iname = '__i' + name[2:] C = metaclass('C', (), {iname: specialmethod}) c = C() check(iexpr, c, a) check(iexpr, c, b) check(iexpr, c, N1) check(iexpr, c, N2) def test_assign_slice(self): # ceval.c's assign_slice used to check for # tp->tp_as_sequence->sq_slice instead of # tp->tp_as_sequence->sq_ass_slice class C(object): def __setslice__(self, start, stop, value): self.value = value c = C() c[1:2] = 3 self.assertEqual(c.value, 3) def test_set_and_no_get(self): # See # http://mail.python.org/pipermail/python-dev/2010-January/095637.html class Descr(object): def __init__(self, name): self.name = name def __set__(self, obj, value): obj.__dict__[self.name] = value descr = Descr("a") class X(object): a = descr x = X() self.assertIs(x.a, descr) x.a = 42 self.assertEqual(x.a, 42) # Also check type_getattro for correctness. class Meta(type): pass class X(object): __metaclass__ = Meta X.a = 42 Meta.a = Descr("a") self.assertEqual(X.a, 42) def test_getattr_hooks(self): # issue 4230 class Descriptor(object): counter = 0 def __get__(self, obj, objtype=None): def getter(name): self.counter += 1 raise AttributeError(name) return getter descr = Descriptor() class A(object): __getattribute__ = descr class B(object): __getattr__ = descr class C(object): __getattribute__ = descr __getattr__ = descr self.assertRaises(AttributeError, getattr, A(), "attr") self.assertEqual(descr.counter, 1) self.assertRaises(AttributeError, getattr, B(), "attr") self.assertEqual(descr.counter, 2) self.assertRaises(AttributeError, getattr, C(), "attr") self.assertEqual(descr.counter, 4) class EvilGetattribute(object): # This used to segfault def __getattr__(self, name): raise AttributeError(name) def __getattribute__(self, name): del EvilGetattribute.__getattr__ for i in range(5): gc.collect() raise AttributeError(name) self.assertRaises(AttributeError, getattr, EvilGetattribute(), "attr") def test_type___getattribute__(self): self.assertRaises(TypeError, type.__getattribute__, list, type) def test_abstractmethods(self): # type pretends not to have __abstractmethods__. self.assertRaises(AttributeError, getattr, type, "__abstractmethods__") class meta(type): pass self.assertRaises(AttributeError, getattr, meta, "__abstractmethods__") class X(object): pass with self.assertRaises(AttributeError): del X.__abstractmethods__ def test_proxy_call(self): class FakeStr(object): __class__ = str fake_str = FakeStr() # isinstance() reads __class__ on new style classes self.assertTrue(isinstance(fake_str, str)) # call a method descriptor with self.assertRaises(TypeError): str.split(fake_str) # call a slot wrapper descriptor with self.assertRaises(TypeError): str.__add__(fake_str, "abc") def test_repr_as_str(self): # Issue #11603: crash or infinite loop when rebinding __str__ as # __repr__. class Foo(object): pass Foo.__repr__ = Foo.__str__ foo = Foo() self.assertRaises(RuntimeError, str, foo) self.assertRaises(RuntimeError, repr, foo) def test_mixing_slot_wrappers(self): class X(dict): __setattr__ = dict.__setitem__ x = X() x.y = 42 self.assertEqual(x["y"], 42) def test_cycle_through_dict(self): # See bug #1469629 class X(dict): def __init__(self): dict.__init__(self) self.__dict__ = self x = X() x.attr = 42 wr = weakref.ref(x) del x test_support.gc_collect() self.assertIsNone(wr()) for o in gc.get_objects(): self.assertIsNot(type(o), X) class DictProxyTests(unittest.TestCase): def setUp(self): class C(object): def meth(self): pass self.C = C def test_repr(self): self.assertIn('dict_proxy({', repr(vars(self.C))) self.assertIn("'meth':", repr(vars(self.C))) def test_iter_keys(self): # Testing dict-proxy iterkeys... keys = [ key for key in self.C.__dict__.iterkeys() ] keys.sort() self.assertEqual(keys, ['__dict__', '__doc__', '__module__', '__weakref__', 'meth']) def test_iter_values(self): # Testing dict-proxy itervalues... values = [ values for values in self.C.__dict__.itervalues() ] self.assertEqual(len(values), 5) def test_iter_items(self): # Testing dict-proxy iteritems... keys = [ key for (key, value) in self.C.__dict__.iteritems() ] keys.sort() self.assertEqual(keys, ['__dict__', '__doc__', '__module__', '__weakref__', 'meth']) def test_dict_type_with_metaclass(self): # Testing type of __dict__ when __metaclass__ set... class B(object): pass class M(type): pass class C: # In 2.3a1, C.__dict__ was a real dict rather than a dict proxy __metaclass__ = M self.assertEqual(type(C.__dict__), type(B.__dict__)) class PTypesLongInitTest(unittest.TestCase): # This is in its own TestCase so that it can be run before any other tests. def test_pytype_long_ready(self): # Testing SF bug 551412 ... # This dumps core when SF bug 551412 isn't fixed -- # but only when test_descr.py is run separately. # (That can't be helped -- as soon as PyType_Ready() # is called for PyLong_Type, the bug is gone.) class UserLong(object): def __pow__(self, *args): pass try: pow(0L, UserLong(), 0L) except: pass # Another segfault only when run early # (before PyType_Ready(tuple) is called) type.mro(tuple) def test_main(): deprecations = [(r'complex divmod\(\), // and % are deprecated$', DeprecationWarning)] if sys.py3kwarning: deprecations += [ ("classic (int|long) division", DeprecationWarning), ("coerce.. not supported", DeprecationWarning), (".+__(get|set|del)slice__ has been removed", DeprecationWarning)] with test_support.check_warnings(*deprecations): # Run all local test cases, with PTypesLongInitTest first. test_support.run_unittest(PTypesLongInitTest, OperatorsTest, ClassPropertiesAndMethods, DictProxyTests) if __name__ == "__main__": test_main()