// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // System calls and other sys.stuff for 386, Darwin // See http://fxr.watson.org/fxr/source/bsd/kern/syscalls.c?v=xnu-1228 // or /usr/include/sys/syscall.h (on a Mac) for system call numbers. #include "go_asm.h" #include "go_tls.h" #include "textflag.h" // Exit the entire program (like C exit) TEXT runtime·exit(SB),NOSPLIT,$0 MOVL $1, AX INT $0x80 MOVL $0xf1, 0xf1 // crash RET // Exit this OS thread (like pthread_exit, which eventually // calls __bsdthread_terminate). TEXT exit1<>(SB),NOSPLIT,$16-0 // __bsdthread_terminate takes 4 word-size arguments. // Set them all to 0. (None are an exit status.) MOVL $0, 0(SP) MOVL $0, 4(SP) MOVL $0, 8(SP) MOVL $0, 12(SP) MOVL $361, AX INT $0x80 JAE 2(PC) MOVL $0xf1, 0xf1 // crash RET GLOBL exitStack<>(SB),RODATA,$(4*4) DATA exitStack<>+0x00(SB)/4, $0 DATA exitStack<>+0x04(SB)/4, $0 DATA exitStack<>+0x08(SB)/4, $0 DATA exitStack<>+0x0c(SB)/4, $0 // func exitThread(wait *uint32) TEXT runtime·exitThread(SB),NOSPLIT,$0-4 MOVL wait+0(FP), AX // We're done using the stack. MOVL $0, (AX) // __bsdthread_terminate takes 4 arguments, which it expects // on the stack. They should all be 0, so switch over to a // fake stack of 0s. It won't write to the stack. MOVL $exitStack<>(SB), SP MOVL $361, AX // __bsdthread_terminate INT $0x80 MOVL $0xf1, 0xf1 // crash JMP 0(PC) TEXT runtime·open(SB),NOSPLIT,$0 MOVL $5, AX INT $0x80 JAE 2(PC) MOVL $-1, AX MOVL AX, ret+12(FP) RET TEXT runtime·closefd(SB),NOSPLIT,$0 MOVL $6, AX INT $0x80 JAE 2(PC) MOVL $-1, AX MOVL AX, ret+4(FP) RET TEXT runtime·read(SB),NOSPLIT,$0 MOVL $3, AX INT $0x80 JAE 2(PC) MOVL $-1, AX MOVL AX, ret+12(FP) RET TEXT runtime·write(SB),NOSPLIT,$0 MOVL $4, AX INT $0x80 JAE 2(PC) MOVL $-1, AX MOVL AX, ret+12(FP) RET TEXT runtime·raise(SB),NOSPLIT,$0 // Ideally we'd send the signal to the current thread, // not the whole process, but that's too hard on OS X. JMP runtime·raiseproc(SB) TEXT runtime·raiseproc(SB),NOSPLIT,$16 MOVL $20, AX // getpid INT $0x80 MOVL AX, 4(SP) // pid MOVL sig+0(FP), AX MOVL AX, 8(SP) // signal MOVL $1, 12(SP) // posix MOVL $37, AX // kill INT $0x80 RET TEXT runtime·mmap(SB),NOSPLIT,$0 MOVL $197, AX INT $0x80 JAE ok MOVL $0, p+24(FP) MOVL AX, err+28(FP) RET ok: MOVL AX, p+24(FP) MOVL $0, err+28(FP) RET TEXT runtime·madvise(SB),NOSPLIT,$0 MOVL $75, AX INT $0x80 // ignore failure - maybe pages are locked RET TEXT runtime·munmap(SB),NOSPLIT,$0 MOVL $73, AX INT $0x80 JAE 2(PC) MOVL $0xf1, 0xf1 // crash RET TEXT runtime·setitimer(SB),NOSPLIT,$0 MOVL $83, AX INT $0x80 RET // OS X comm page time offsets // http://www.opensource.apple.com/source/xnu/xnu-1699.26.8/osfmk/i386/cpu_capabilities.h #define cpu_capabilities 0x20 #define nt_tsc_base 0x50 #define nt_scale 0x58 #define nt_shift 0x5c #define nt_ns_base 0x60 #define nt_generation 0x68 #define gtod_generation 0x6c #define gtod_ns_base 0x70 #define gtod_sec_base 0x78 // called from assembly // 64-bit unix nanoseconds returned in DX:AX. // I'd much rather write this in C but we need // assembly for the 96-bit multiply and RDTSC. // // Note that we could arrange to return monotonic time here // as well, but we don't bother, for two reasons: // 1. macOS only supports 64-bit systems, so no one should // be using the 32-bit code in production. // This code is only maintained to make it easier for developers // using Macs to test the 32-bit compiler. // 2. On some (probably now unsupported) CPUs, // the code falls back to the system call always, // so it can't even use the comm page at all. TEXT runtime·now(SB),NOSPLIT,$40 MOVL $0xffff0000, BP /* comm page base */ // Test for slow CPU. If so, the math is completely // different, and unimplemented here, so use the // system call. MOVL cpu_capabilities(BP), AX TESTL $0x4000, AX JNZ systime // Loop trying to take a consistent snapshot // of the time parameters. timeloop: MOVL gtod_generation(BP), BX TESTL BX, BX JZ systime MOVL nt_generation(BP), CX TESTL CX, CX JZ timeloop RDTSC MOVL nt_tsc_base(BP), SI MOVL (nt_tsc_base+4)(BP), DI MOVL SI, 0(SP) MOVL DI, 4(SP) MOVL nt_scale(BP), SI MOVL SI, 8(SP) MOVL nt_ns_base(BP), SI MOVL (nt_ns_base+4)(BP), DI MOVL SI, 12(SP) MOVL DI, 16(SP) CMPL nt_generation(BP), CX JNE timeloop MOVL gtod_ns_base(BP), SI MOVL (gtod_ns_base+4)(BP), DI MOVL SI, 20(SP) MOVL DI, 24(SP) MOVL gtod_sec_base(BP), SI MOVL (gtod_sec_base+4)(BP), DI MOVL SI, 28(SP) MOVL DI, 32(SP) CMPL gtod_generation(BP), BX JNE timeloop // Gathered all the data we need. Compute time. // ((tsc - nt_tsc_base) * nt_scale) >> 32 + nt_ns_base - gtod_ns_base + gtod_sec_base*1e9 // The multiply and shift extracts the top 64 bits of the 96-bit product. SUBL 0(SP), AX // DX:AX = (tsc - nt_tsc_base) SBBL 4(SP), DX // We have x = tsc - nt_tsc_base - DX:AX to be // multiplied by y = nt_scale = 8(SP), keeping the top 64 bits of the 96-bit product. // x*y = (x&0xffffffff)*y + (x&0xffffffff00000000)*y // (x*y)>>32 = ((x&0xffffffff)*y)>>32 + (x>>32)*y MOVL DX, CX // SI = (x&0xffffffff)*y >> 32 MOVL $0, DX MULL 8(SP) MOVL DX, SI MOVL CX, AX // DX:AX = (x>>32)*y MOVL $0, DX MULL 8(SP) ADDL SI, AX // DX:AX += (x&0xffffffff)*y >> 32 ADCL $0, DX // DX:AX is now ((tsc - nt_tsc_base) * nt_scale) >> 32. ADDL 12(SP), AX // DX:AX += nt_ns_base ADCL 16(SP), DX SUBL 20(SP), AX // DX:AX -= gtod_ns_base SBBL 24(SP), DX MOVL AX, SI // DI:SI = DX:AX MOVL DX, DI MOVL 28(SP), AX // DX:AX = gtod_sec_base*1e9 MOVL 32(SP), DX MOVL $1000000000, CX MULL CX ADDL SI, AX // DX:AX += DI:SI ADCL DI, DX RET systime: // Fall back to system call (usually first call in this thread) LEAL 16(SP), AX // must be non-nil, unused MOVL AX, 4(SP) MOVL $0, 8(SP) // time zone pointer MOVL $0, 12(SP) // required as of Sierra; Issue 16570 MOVL $116, AX // SYS_GETTIMEOFDAY INT $0x80 CMPL AX, $0 JNE inreg MOVL 16(SP), AX MOVL 20(SP), DX inreg: // sec is in AX, usec in DX // convert to DX:AX nsec MOVL DX, BX MOVL $1000000000, CX MULL CX IMULL $1000, BX ADDL BX, AX ADCL $0, DX RET // func now() (sec int64, nsec int32, mono uint64) TEXT time·now(SB),NOSPLIT,$0-20 CALL runtime·now(SB) MOVL AX, BX MOVL DX, BP SUBL runtime·startNano(SB), BX SBBL runtime·startNano+4(SB), BP MOVL BX, mono+12(FP) MOVL BP, mono+16(FP) MOVL $1000000000, CX DIVL CX MOVL AX, sec+0(FP) MOVL $0, sec+4(FP) MOVL DX, nsec+8(FP) RET // func nanotime() int64 TEXT runtime·nanotime(SB),NOSPLIT,$0 CALL runtime·now(SB) SUBL runtime·startNano(SB), AX SBBL runtime·startNano+4(SB), DX MOVL AX, ret_lo+0(FP) MOVL DX, ret_hi+4(FP) RET TEXT runtime·sigprocmask(SB),NOSPLIT,$0 MOVL $329, AX // pthread_sigmask (on OS X, sigprocmask==entire process) INT $0x80 JAE 2(PC) MOVL $0xf1, 0xf1 // crash RET TEXT runtime·sigaction(SB),NOSPLIT,$0 MOVL $46, AX INT $0x80 JAE 2(PC) MOVL $0xf1, 0xf1 // crash RET TEXT runtime·sigfwd(SB),NOSPLIT,$0-16 MOVL fn+0(FP), AX MOVL sig+4(FP), BX MOVL info+8(FP), CX MOVL ctx+12(FP), DX MOVL SP, SI SUBL $32, SP ANDL $~15, SP // align stack: handler might be a C function MOVL BX, 0(SP) MOVL CX, 4(SP) MOVL DX, 8(SP) MOVL SI, 12(SP) // save SI: handler might be a Go function CALL AX MOVL 12(SP), AX MOVL AX, SP RET // Sigtramp's job is to call the actual signal handler. // It is called with the following arguments on the stack: // 0(SP) "return address" - ignored // 4(SP) actual handler // 8(SP) siginfo style // 12(SP) signal number // 16(SP) siginfo // 20(SP) context TEXT runtime·sigtramp(SB),NOSPLIT,$20 MOVL sig+8(FP), BX MOVL BX, 0(SP) MOVL info+12(FP), BX MOVL BX, 4(SP) MOVL ctx+16(FP), BX MOVL BX, 8(SP) CALL runtime·sigtrampgo(SB) // call sigreturn MOVL ctx+16(FP), CX MOVL infostyle+4(FP), BX MOVL $0, 0(SP) // "caller PC" - ignored MOVL CX, 4(SP) MOVL BX, 8(SP) MOVL $184, AX // sigreturn(ucontext, infostyle) INT $0x80 MOVL $0xf1, 0xf1 // crash RET TEXT runtime·sigaltstack(SB),NOSPLIT,$0 MOVL $53, AX INT $0x80 JAE 2(PC) MOVL $0xf1, 0xf1 // crash RET TEXT runtime·usleep(SB),NOSPLIT,$32 MOVL $0, DX MOVL usec+0(FP), AX MOVL $1000000, CX DIVL CX MOVL AX, 24(SP) // sec MOVL DX, 28(SP) // usec // select(0, 0, 0, 0, &tv) MOVL $0, 0(SP) // "return PC" - ignored MOVL $0, 4(SP) MOVL $0, 8(SP) MOVL $0, 12(SP) MOVL $0, 16(SP) LEAL 24(SP), AX MOVL AX, 20(SP) MOVL $93, AX INT $0x80 RET // func bsdthread_create(stk, arg unsafe.Pointer, fn uintptr) int32 // System call args are: func arg stack pthread flags. TEXT runtime·bsdthread_create(SB),NOSPLIT,$32 MOVL $360, AX // 0(SP) is where the caller PC would be; kernel skips it MOVL fn+8(FP), BX MOVL BX, 4(SP) // func MOVL arg+4(FP), BX MOVL BX, 8(SP) // arg MOVL stk+0(FP), BX MOVL BX, 12(SP) // stack MOVL $0, 16(SP) // pthread MOVL $0x1000000, 20(SP) // flags = PTHREAD_START_CUSTOM INT $0x80 JAE 4(PC) NEGL AX MOVL AX, ret+12(FP) RET MOVL $0, AX MOVL AX, ret+12(FP) RET // The thread that bsdthread_create creates starts executing here, // because we registered this function using bsdthread_register // at startup. // AX = "pthread" (= 0x0) // BX = mach thread port // CX = "func" (= fn) // DX = "arg" (= m) // DI = stack top // SI = flags (= 0x1000000) // SP = stack - C_32_STK_ALIGN TEXT runtime·bsdthread_start(SB),NOSPLIT,$0 // set up ldt 7+id to point at m->tls. LEAL m_tls(DX), BP MOVL m_id(DX), DI ADDL $7, DI // m0 is LDT#7. count up. // setldt(tls#, &tls, sizeof tls) PUSHAL // save registers PUSHL $32 // sizeof tls PUSHL BP // &tls PUSHL DI // tls # CALL runtime·setldt(SB) POPL AX POPL AX POPL AX POPAL // Now segment is established. Initialize m, g. get_tls(BP) MOVL m_g0(DX), AX MOVL AX, g(BP) MOVL DX, g_m(AX) MOVL BX, m_procid(DX) // m->procid = thread port (for debuggers) CALL runtime·stackcheck(SB) // smashes AX CALL CX // fn() CALL exit1<>(SB) RET // func bsdthread_register() int32 // registers callbacks for threadstart (see bsdthread_create above // and wqthread and pthsize (not used). returns 0 on success. TEXT runtime·bsdthread_register(SB),NOSPLIT,$40 MOVL $366, AX // 0(SP) is where kernel expects caller PC; ignored MOVL $runtime·bsdthread_start(SB), 4(SP) // threadstart MOVL $0, 8(SP) // wqthread, not used by us MOVL $0, 12(SP) // pthsize, not used by us MOVL $0, 16(SP) // dummy_value [sic] MOVL $0, 20(SP) // targetconc_ptr MOVL $0, 24(SP) // dispatchqueue_offset INT $0x80 JAE 4(PC) NEGL AX MOVL AX, ret+0(FP) RET MOVL $0, AX MOVL AX, ret+0(FP) RET // Invoke Mach system call. // Assumes system call number in AX, // caller PC on stack, caller's caller PC next, // and then the system call arguments. // // Can be used for BSD too, but we don't, // because if you use this interface the BSD // system call numbers need an extra field // in the high 16 bits that seems to be the // argument count in bytes but is not always. // INT $0x80 works fine for those. TEXT runtime·sysenter(SB),NOSPLIT,$0 POPL DX MOVL SP, CX BYTE $0x0F; BYTE $0x34; // SYSENTER // returns to DX with SP set to CX TEXT runtime·mach_msg_trap(SB),NOSPLIT,$0 MOVL $-31, AX CALL runtime·sysenter(SB) MOVL AX, ret+28(FP) RET TEXT runtime·mach_reply_port(SB),NOSPLIT,$0 MOVL $-26, AX CALL runtime·sysenter(SB) MOVL AX, ret+0(FP) RET TEXT runtime·mach_task_self(SB),NOSPLIT,$0 MOVL $-28, AX CALL runtime·sysenter(SB) MOVL AX, ret+0(FP) RET // Mach provides trap versions of the semaphore ops, // instead of requiring the use of RPC. // func mach_semaphore_wait(sema uint32) int32 TEXT runtime·mach_semaphore_wait(SB),NOSPLIT,$0 MOVL $-36, AX CALL runtime·sysenter(SB) MOVL AX, ret+4(FP) RET // func mach_semaphore_timedwait(sema, sec, nsec uint32) int32 TEXT runtime·mach_semaphore_timedwait(SB),NOSPLIT,$0 MOVL $-38, AX CALL runtime·sysenter(SB) MOVL AX, ret+12(FP) RET // func mach_semaphore_signal(sema uint32) int32 TEXT runtime·mach_semaphore_signal(SB),NOSPLIT,$0 MOVL $-33, AX CALL runtime·sysenter(SB) MOVL AX, ret+4(FP) RET // func mach_semaphore_signal_all(sema uint32) int32 TEXT runtime·mach_semaphore_signal_all(SB),NOSPLIT,$0 MOVL $-34, AX CALL runtime·sysenter(SB) MOVL AX, ret+4(FP) RET // func setldt(entry int, address int, limit int) // entry and limit are ignored. TEXT runtime·setldt(SB),NOSPLIT,$32 MOVL address+4(FP), BX // aka base /* * When linking against the system libraries, * we use its pthread_create and let it set up %gs * for us. When we do that, the private storage * we get is not at 0(GS) but at 0x468(GS). * 8l rewrites 0(TLS) into 0x468(GS) for us. * To accommodate that rewrite, we translate the * address and limit here so that 0x468(GS) maps to 0(address). * * See cgo/gcc_darwin_386.c:/468 for the derivation * of the constant. */ SUBL $0x468, BX /* * Must set up as USER_CTHREAD segment because * Darwin forces that value into %gs for signal handlers, * and if we don't set one up, we'll get a recursive * fault trying to get into the signal handler. * Since we have to set one up anyway, it might as * well be the value we want. So don't bother with * i386_set_ldt. */ MOVL BX, 4(SP) MOVL $3, AX // thread_fast_set_cthread_self - machdep call #3 INT $0x82 // sic: 0x82, not 0x80, for machdep call XORL AX, AX MOVW GS, AX RET TEXT runtime·sysctl(SB),NOSPLIT,$0 MOVL $202, AX INT $0x80 JAE 4(PC) NEGL AX MOVL AX, ret+24(FP) RET MOVL $0, AX MOVL AX, ret+24(FP) RET // func kqueue() int32 TEXT runtime·kqueue(SB),NOSPLIT,$0 MOVL $362, AX INT $0x80 JAE 2(PC) NEGL AX MOVL AX, ret+0(FP) RET // func kevent(kq int32, ch *keventt, nch int32, ev *keventt, nev int32, ts *timespec) int32 TEXT runtime·kevent(SB),NOSPLIT,$0 MOVL $363, AX INT $0x80 JAE 2(PC) NEGL AX MOVL AX, ret+24(FP) RET // func closeonexec(fd int32) TEXT runtime·closeonexec(SB),NOSPLIT,$32 MOVL $92, AX // fcntl // 0(SP) is where the caller PC would be; kernel skips it MOVL fd+0(FP), BX MOVL BX, 4(SP) // fd MOVL $2, 8(SP) // F_SETFD MOVL $1, 12(SP) // FD_CLOEXEC INT $0x80 JAE 2(PC) NEGL AX RET