// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build darwin dragonfly freebsd linux netbsd openbsd solaris package runtime import ( "runtime/internal/atomic" "unsafe" ) // sigTabT is the type of an entry in the global sigtable array. // sigtable is inherently system dependent, and appears in OS-specific files, // but sigTabT is the same for all Unixy systems. // The sigtable array is indexed by a system signal number to get the flags // and printable name of each signal. type sigTabT struct { flags int32 name string } //go:linkname os_sigpipe os.sigpipe func os_sigpipe() { systemstack(sigpipe) } func signame(sig uint32) string { if sig >= uint32(len(sigtable)) { return "" } return sigtable[sig].name } const ( _SIG_DFL uintptr = 0 _SIG_IGN uintptr = 1 ) // Stores the signal handlers registered before Go installed its own. // These signal handlers will be invoked in cases where Go doesn't want to // handle a particular signal (e.g., signal occurred on a non-Go thread). // See sigfwdgo for more information on when the signals are forwarded. // // This is read by the signal handler; accesses should use // atomic.Loaduintptr and atomic.Storeuintptr. var fwdSig [_NSIG]uintptr // handlingSig is indexed by signal number and is non-zero if we are // currently handling the signal. Or, to put it another way, whether // the signal handler is currently set to the Go signal handler or not. // This is uint32 rather than bool so that we can use atomic instructions. var handlingSig [_NSIG]uint32 // channels for synchronizing signal mask updates with the signal mask // thread var ( disableSigChan chan uint32 enableSigChan chan uint32 maskUpdatedChan chan struct{} ) func init() { // _NSIG is the number of signals on this operating system. // sigtable should describe what to do for all the possible signals. if len(sigtable) != _NSIG { print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n") throw("bad sigtable len") } } var signalsOK bool // Initialize signals. // Called by libpreinit so runtime may not be initialized. //go:nosplit //go:nowritebarrierrec func initsig(preinit bool) { if !preinit { // It's now OK for signal handlers to run. signalsOK = true } // For c-archive/c-shared this is called by libpreinit with // preinit == true. if (isarchive || islibrary) && !preinit { return } for i := uint32(0); i < _NSIG; i++ { t := &sigtable[i] if t.flags == 0 || t.flags&_SigDefault != 0 { continue } // We don't need to use atomic operations here because // there shouldn't be any other goroutines running yet. fwdSig[i] = getsig(i) if !sigInstallGoHandler(i) { // Even if we are not installing a signal handler, // set SA_ONSTACK if necessary. if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN { setsigstack(i) } continue } handlingSig[i] = 1 setsig(i, funcPC(sighandler)) } } //go:nosplit //go:nowritebarrierrec func sigInstallGoHandler(sig uint32) bool { // For some signals, we respect an inherited SIG_IGN handler // rather than insist on installing our own default handler. // Even these signals can be fetched using the os/signal package. switch sig { case _SIGHUP, _SIGINT: if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN { return false } } t := &sigtable[sig] if t.flags&_SigSetStack != 0 { return false } // When built using c-archive or c-shared, only install signal // handlers for synchronous signals and SIGPIPE. if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE { return false } return true } // sigenable enables the Go signal handler to catch the signal sig. // It is only called while holding the os/signal.handlers lock, // via os/signal.enableSignal and signal_enable. func sigenable(sig uint32) { if sig >= uint32(len(sigtable)) { return } // SIGPROF is handled specially for profiling. if sig == _SIGPROF { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { ensureSigM() enableSigChan <- sig <-maskUpdatedChan if atomic.Cas(&handlingSig[sig], 0, 1) { atomic.Storeuintptr(&fwdSig[sig], getsig(sig)) setsig(sig, funcPC(sighandler)) } } } // sigdisable disables the Go signal handler for the signal sig. // It is only called while holding the os/signal.handlers lock, // via os/signal.disableSignal and signal_disable. func sigdisable(sig uint32) { if sig >= uint32(len(sigtable)) { return } // SIGPROF is handled specially for profiling. if sig == _SIGPROF { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { ensureSigM() disableSigChan <- sig <-maskUpdatedChan // If initsig does not install a signal handler for a // signal, then to go back to the state before Notify // we should remove the one we installed. if !sigInstallGoHandler(sig) { atomic.Store(&handlingSig[sig], 0) setsig(sig, atomic.Loaduintptr(&fwdSig[sig])) } } } // sigignore ignores the signal sig. // It is only called while holding the os/signal.handlers lock, // via os/signal.ignoreSignal and signal_ignore. func sigignore(sig uint32) { if sig >= uint32(len(sigtable)) { return } // SIGPROF is handled specially for profiling. if sig == _SIGPROF { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { atomic.Store(&handlingSig[sig], 0) setsig(sig, _SIG_IGN) } } // clearSignalHandlers clears all signal handlers that are not ignored // back to the default. This is called by the child after a fork, so that // we can enable the signal mask for the exec without worrying about // running a signal handler in the child. //go:nosplit //go:nowritebarrierrec func clearSignalHandlers() { for i := uint32(0); i < _NSIG; i++ { if atomic.Load(&handlingSig[i]) != 0 { setsig(i, _SIG_DFL) } } } // setProcessCPUProfiler is called when the profiling timer changes. // It is called with prof.lock held. hz is the new timer, and is 0 if // profiling is being disabled. Enable or disable the signal as // required for -buildmode=c-archive. func setProcessCPUProfiler(hz int32) { if hz != 0 { // Enable the Go signal handler if not enabled. if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) { atomic.Storeuintptr(&fwdSig[_SIGPROF], getsig(_SIGPROF)) setsig(_SIGPROF, funcPC(sighandler)) } } else { // If the Go signal handler should be disabled by default, // disable it if it is enabled. if !sigInstallGoHandler(_SIGPROF) { if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) { setsig(_SIGPROF, atomic.Loaduintptr(&fwdSig[_SIGPROF])) } } } } // setThreadCPUProfiler makes any thread-specific changes required to // implement profiling at a rate of hz. func setThreadCPUProfiler(hz int32) { var it itimerval if hz == 0 { setitimer(_ITIMER_PROF, &it, nil) } else { it.it_interval.tv_sec = 0 it.it_interval.set_usec(1000000 / hz) it.it_value = it.it_interval setitimer(_ITIMER_PROF, &it, nil) } _g_ := getg() _g_.m.profilehz = hz } func sigpipe() { if sigsend(_SIGPIPE) { return } dieFromSignal(_SIGPIPE) } // sigtrampgo is called from the signal handler function, sigtramp, // written in assembly code. // This is called by the signal handler, and the world may be stopped. // // It must be nosplit because getg() is still the G that was running // (if any) when the signal was delivered, but it's (usually) called // on the gsignal stack. Until this switches the G to gsignal, the // stack bounds check won't work. // //go:nosplit //go:nowritebarrierrec func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) { if sigfwdgo(sig, info, ctx) { return } g := getg() if g == nil { c := &sigctxt{info, ctx} if sig == _SIGPROF { sigprofNonGoPC(c.sigpc()) return } badsignal(uintptr(sig), c) return } // If some non-Go code called sigaltstack, adjust. setStack := false var gsignalStack gsignalStack sp := uintptr(unsafe.Pointer(&sig)) if sp < g.m.gsignal.stack.lo || sp >= g.m.gsignal.stack.hi { if sp >= g.m.g0.stack.lo && sp < g.m.g0.stack.hi { // The signal was delivered on the g0 stack. // This can happen when linked with C code // using the thread sanitizer, which collects // signals then delivers them itself by calling // the signal handler directly when C code, // including C code called via cgo, calls a // TSAN-intercepted function such as malloc. st := stackt{ss_size: g.m.g0.stack.hi - g.m.g0.stack.lo} setSignalstackSP(&st, g.m.g0.stack.lo) setGsignalStack(&st, &gsignalStack) g.m.gsignal.stktopsp = getcallersp(unsafe.Pointer(&sig)) setStack = true } else { var st stackt sigaltstack(nil, &st) if st.ss_flags&_SS_DISABLE != 0 { setg(nil) needm(0) noSignalStack(sig) dropm() } stsp := uintptr(unsafe.Pointer(st.ss_sp)) if sp < stsp || sp >= stsp+st.ss_size { setg(nil) needm(0) sigNotOnStack(sig) dropm() } setGsignalStack(&st, &gsignalStack) g.m.gsignal.stktopsp = getcallersp(unsafe.Pointer(&sig)) setStack = true } } setg(g.m.gsignal) if g.stackguard0 == stackFork { signalDuringFork(sig) } c := &sigctxt{info, ctx} c.fixsigcode(sig) sighandler(sig, info, ctx, g) setg(g) if setStack { restoreGsignalStack(&gsignalStack) } } // sigpanic turns a synchronous signal into a run-time panic. // If the signal handler sees a synchronous panic, it arranges the // stack to look like the function where the signal occurred called // sigpanic, sets the signal's PC value to sigpanic, and returns from // the signal handler. The effect is that the program will act as // though the function that got the signal simply called sigpanic // instead. // // This must NOT be nosplit because the linker doesn't know where // sigpanic calls can be injected. // // The signal handler must not inject a call to sigpanic if // getg().throwsplit, since sigpanic may need to grow the stack. func sigpanic() { g := getg() if !canpanic(g) { throw("unexpected signal during runtime execution") } switch g.sig { case _SIGBUS: if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 { panicmem() } // Support runtime/debug.SetPanicOnFault. if g.paniconfault { panicmem() } print("unexpected fault address ", hex(g.sigcode1), "\n") throw("fault") case _SIGSEGV: if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 { panicmem() } // Support runtime/debug.SetPanicOnFault. if g.paniconfault { panicmem() } print("unexpected fault address ", hex(g.sigcode1), "\n") throw("fault") case _SIGFPE: switch g.sigcode0 { case _FPE_INTDIV: panicdivide() case _FPE_INTOVF: panicoverflow() } panicfloat() } if g.sig >= uint32(len(sigtable)) { // can't happen: we looked up g.sig in sigtable to decide to call sigpanic throw("unexpected signal value") } panic(errorString(sigtable[g.sig].name)) } // dieFromSignal kills the program with a signal. // This provides the expected exit status for the shell. // This is only called with fatal signals expected to kill the process. //go:nosplit //go:nowritebarrierrec func dieFromSignal(sig uint32) { unblocksig(sig) // Mark the signal as unhandled to ensure it is forwarded. atomic.Store(&handlingSig[sig], 0) raise(sig) // That should have killed us. On some systems, though, raise // sends the signal to the whole process rather than to just // the current thread, which means that the signal may not yet // have been delivered. Give other threads a chance to run and // pick up the signal. osyield() osyield() osyield() // If that didn't work, try _SIG_DFL. setsig(sig, _SIG_DFL) raise(sig) osyield() osyield() osyield() // On Darwin we may still fail to die, because raise sends the // signal to the whole process rather than just the current thread, // and osyield just sleeps briefly rather than letting all other // threads run. See issue 20315. Sleep longer. if GOOS == "darwin" { usleep(100) } // If we are still somehow running, just exit with the wrong status. exit(2) } // raisebadsignal is called when a signal is received on a non-Go // thread, and the Go program does not want to handle it (that is, the // program has not called os/signal.Notify for the signal). func raisebadsignal(sig uint32, c *sigctxt) { if sig == _SIGPROF { // Ignore profiling signals that arrive on non-Go threads. return } var handler uintptr if sig >= _NSIG { handler = _SIG_DFL } else { handler = atomic.Loaduintptr(&fwdSig[sig]) } // Reset the signal handler and raise the signal. // We are currently running inside a signal handler, so the // signal is blocked. We need to unblock it before raising the // signal, or the signal we raise will be ignored until we return // from the signal handler. We know that the signal was unblocked // before entering the handler, or else we would not have received // it. That means that we don't have to worry about blocking it // again. unblocksig(sig) setsig(sig, handler) // If we're linked into a non-Go program we want to try to // avoid modifying the original context in which the signal // was raised. If the handler is the default, we know it // is non-recoverable, so we don't have to worry about // re-installing sighandler. At this point we can just // return and the signal will be re-raised and caught by // the default handler with the correct context. if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER { return } raise(sig) // Give the signal a chance to be delivered. // In almost all real cases the program is about to crash, // so sleeping here is not a waste of time. usleep(1000) // If the signal didn't cause the program to exit, restore the // Go signal handler and carry on. // // We may receive another instance of the signal before we // restore the Go handler, but that is not so bad: we know // that the Go program has been ignoring the signal. setsig(sig, funcPC(sighandler)) } func crash() { if GOOS == "darwin" { // OS X core dumps are linear dumps of the mapped memory, // from the first virtual byte to the last, with zeros in the gaps. // Because of the way we arrange the address space on 64-bit systems, // this means the OS X core file will be >128 GB and even on a zippy // workstation can take OS X well over an hour to write (uninterruptible). // Save users from making that mistake. if GOARCH == "amd64" { return } } dieFromSignal(_SIGABRT) } // ensureSigM starts one global, sleeping thread to make sure at least one thread // is available to catch signals enabled for os/signal. func ensureSigM() { if maskUpdatedChan != nil { return } maskUpdatedChan = make(chan struct{}) disableSigChan = make(chan uint32) enableSigChan = make(chan uint32) go func() { // Signal masks are per-thread, so make sure this goroutine stays on one // thread. LockOSThread() defer UnlockOSThread() // The sigBlocked mask contains the signals not active for os/signal, // initially all signals except the essential. When signal.Notify()/Stop is called, // sigenable/sigdisable in turn notify this thread to update its signal // mask accordingly. sigBlocked := sigset_all for i := range sigtable { if !blockableSig(uint32(i)) { sigdelset(&sigBlocked, i) } } sigprocmask(_SIG_SETMASK, &sigBlocked, nil) for { select { case sig := <-enableSigChan: if sig > 0 { sigdelset(&sigBlocked, int(sig)) } case sig := <-disableSigChan: if sig > 0 && blockableSig(sig) { sigaddset(&sigBlocked, int(sig)) } } sigprocmask(_SIG_SETMASK, &sigBlocked, nil) maskUpdatedChan <- struct{}{} } }() } // This is called when we receive a signal when there is no signal stack. // This can only happen if non-Go code calls sigaltstack to disable the // signal stack. func noSignalStack(sig uint32) { println("signal", sig, "received on thread with no signal stack") throw("non-Go code disabled sigaltstack") } // This is called if we receive a signal when there is a signal stack // but we are not on it. This can only happen if non-Go code called // sigaction without setting the SS_ONSTACK flag. func sigNotOnStack(sig uint32) { println("signal", sig, "received but handler not on signal stack") throw("non-Go code set up signal handler without SA_ONSTACK flag") } // signalDuringFork is called if we receive a signal while doing a fork. // We do not want signals at that time, as a signal sent to the process // group may be delivered to the child process, causing confusion. // This should never be called, because we block signals across the fork; // this function is just a safety check. See issue 18600 for background. func signalDuringFork(sig uint32) { println("signal", sig, "received during fork") throw("signal received during fork") } // This runs on a foreign stack, without an m or a g. No stack split. //go:nosplit //go:norace //go:nowritebarrierrec func badsignal(sig uintptr, c *sigctxt) { needm(0) if !sigsend(uint32(sig)) { // A foreign thread received the signal sig, and the // Go code does not want to handle it. raisebadsignal(uint32(sig), c) } dropm() } //go:noescape func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer) // Determines if the signal should be handled by Go and if not, forwards the // signal to the handler that was installed before Go's. Returns whether the // signal was forwarded. // This is called by the signal handler, and the world may be stopped. //go:nosplit //go:nowritebarrierrec func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool { if sig >= uint32(len(sigtable)) { return false } fwdFn := atomic.Loaduintptr(&fwdSig[sig]) flags := sigtable[sig].flags // If we aren't handling the signal, forward it. if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK { // If the signal is ignored, doing nothing is the same as forwarding. if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) { return true } // We are not handling the signal and there is no other handler to forward to. // Crash with the default behavior. if fwdFn == _SIG_DFL { setsig(sig, _SIG_DFL) dieFromSignal(sig) return false } sigfwd(fwdFn, sig, info, ctx) return true } // If there is no handler to forward to, no need to forward. if fwdFn == _SIG_DFL { return false } c := &sigctxt{info, ctx} // Only forward synchronous signals and SIGPIPE. // Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code // is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket // or pipe. if (c.sigcode() == _SI_USER || flags&_SigPanic == 0) && sig != _SIGPIPE { return false } // Determine if the signal occurred inside Go code. We test that: // (1) we were in a goroutine (i.e., m.curg != nil), and // (2) we weren't in CGO. g := getg() if g != nil && g.m != nil && g.m.curg != nil && !g.m.incgo { return false } // Signal not handled by Go, forward it. if fwdFn != _SIG_IGN { sigfwd(fwdFn, sig, info, ctx) } return true } // msigsave saves the current thread's signal mask into mp.sigmask. // This is used to preserve the non-Go signal mask when a non-Go // thread calls a Go function. // This is nosplit and nowritebarrierrec because it is called by needm // which may be called on a non-Go thread with no g available. //go:nosplit //go:nowritebarrierrec func msigsave(mp *m) { sigprocmask(_SIG_SETMASK, nil, &mp.sigmask) } // msigrestore sets the current thread's signal mask to sigmask. // This is used to restore the non-Go signal mask when a non-Go thread // calls a Go function. // This is nosplit and nowritebarrierrec because it is called by dropm // after g has been cleared. //go:nosplit //go:nowritebarrierrec func msigrestore(sigmask sigset) { sigprocmask(_SIG_SETMASK, &sigmask, nil) } // sigblock blocks all signals in the current thread's signal mask. // This is used to block signals while setting up and tearing down g // when a non-Go thread calls a Go function. // The OS-specific code is expected to define sigset_all. // This is nosplit and nowritebarrierrec because it is called by needm // which may be called on a non-Go thread with no g available. //go:nosplit //go:nowritebarrierrec func sigblock() { sigprocmask(_SIG_SETMASK, &sigset_all, nil) } // unblocksig removes sig from the current thread's signal mask. // This is nosplit and nowritebarrierrec because it is called from // dieFromSignal, which can be called by sigfwdgo while running in the // signal handler, on the signal stack, with no g available. //go:nosplit //go:nowritebarrierrec func unblocksig(sig uint32) { var set sigset sigaddset(&set, int(sig)) sigprocmask(_SIG_UNBLOCK, &set, nil) } // minitSignals is called when initializing a new m to set the // thread's alternate signal stack and signal mask. func minitSignals() { minitSignalStack() minitSignalMask() } // minitSignalStack is called when initializing a new m to set the // alternate signal stack. If the alternate signal stack is not set // for the thread (the normal case) then set the alternate signal // stack to the gsignal stack. If the alternate signal stack is set // for the thread (the case when a non-Go thread sets the alternate // signal stack and then calls a Go function) then set the gsignal // stack to the alternate signal stack. Record which choice was made // in newSigstack, so that it can be undone in unminit. func minitSignalStack() { _g_ := getg() var st stackt sigaltstack(nil, &st) if st.ss_flags&_SS_DISABLE != 0 { signalstack(&_g_.m.gsignal.stack) _g_.m.newSigstack = true } else { setGsignalStack(&st, &_g_.m.goSigStack) _g_.m.newSigstack = false } } // minitSignalMask is called when initializing a new m to set the // thread's signal mask. When this is called all signals have been // blocked for the thread. This starts with m.sigmask, which was set // either from initSigmask for a newly created thread or by calling // msigsave if this is a non-Go thread calling a Go function. It // removes all essential signals from the mask, thus causing those // signals to not be blocked. Then it sets the thread's signal mask. // After this is called the thread can receive signals. func minitSignalMask() { nmask := getg().m.sigmask for i := range sigtable { if !blockableSig(uint32(i)) { sigdelset(&nmask, i) } } sigprocmask(_SIG_SETMASK, &nmask, nil) } // unminitSignals is called from dropm, via unminit, to undo the // effect of calling minit on a non-Go thread. //go:nosplit func unminitSignals() { if getg().m.newSigstack { st := stackt{ss_flags: _SS_DISABLE} sigaltstack(&st, nil) } else { // We got the signal stack from someone else. Restore // the Go-allocated stack in case this M gets reused // for another thread (e.g., it's an extram). Also, on // Android, libc allocates a signal stack for all // threads, so it's important to restore the Go stack // even on Go-created threads so we can free it. restoreGsignalStack(&getg().m.goSigStack) } } // blockableSig returns whether sig may be blocked by the signal mask. // We never want to block the signals marked _SigUnblock; // these are the synchronous signals that turn into a Go panic. // In a Go program--not a c-archive/c-shared--we never want to block // the signals marked _SigKill or _SigThrow, as otherwise it's possible // for all running threads to block them and delay their delivery until // we start a new thread. When linked into a C program we let the C code // decide on the disposition of those signals. func blockableSig(sig uint32) bool { flags := sigtable[sig].flags if flags&_SigUnblock != 0 { return false } if isarchive || islibrary { return true } return flags&(_SigKill|_SigThrow) == 0 } // gsignalStack saves the fields of the gsignal stack changed by // setGsignalStack. type gsignalStack struct { stack stack stackguard0 uintptr stackguard1 uintptr stktopsp uintptr } // setGsignalStack sets the gsignal stack of the current m to an // alternate signal stack returned from the sigaltstack system call. // It saves the old values in *old for use by restoreGsignalStack. // This is used when handling a signal if non-Go code has set the // alternate signal stack. //go:nosplit //go:nowritebarrierrec func setGsignalStack(st *stackt, old *gsignalStack) { g := getg() if old != nil { old.stack = g.m.gsignal.stack old.stackguard0 = g.m.gsignal.stackguard0 old.stackguard1 = g.m.gsignal.stackguard1 old.stktopsp = g.m.gsignal.stktopsp } stsp := uintptr(unsafe.Pointer(st.ss_sp)) g.m.gsignal.stack.lo = stsp g.m.gsignal.stack.hi = stsp + st.ss_size g.m.gsignal.stackguard0 = stsp + _StackGuard g.m.gsignal.stackguard1 = stsp + _StackGuard } // restoreGsignalStack restores the gsignal stack to the value it had // before entering the signal handler. //go:nosplit //go:nowritebarrierrec func restoreGsignalStack(st *gsignalStack) { gp := getg().m.gsignal gp.stack = st.stack gp.stackguard0 = st.stackguard0 gp.stackguard1 = st.stackguard1 gp.stktopsp = st.stktopsp } // signalstack sets the current thread's alternate signal stack to s. //go:nosplit func signalstack(s *stack) { st := stackt{ss_size: s.hi - s.lo} setSignalstackSP(&st, s.lo) sigaltstack(&st, nil) } // setsigsegv is used on darwin/arm{,64} to fake a segmentation fault. //go:nosplit func setsigsegv(pc uintptr) { g := getg() g.sig = _SIGSEGV g.sigpc = pc g.sigcode0 = _SEGV_MAPERR g.sigcode1 = 0 // TODO: emulate si_addr }