// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build darwin dragonfly freebsd linux nacl netbsd openbsd solaris package runtime import ( "unsafe" ) // crashing is the number of m's we have waited for when implementing // GOTRACEBACK=crash when a signal is received. var crashing int32 // sighandler is invoked when a signal occurs. The global g will be // set to a gsignal goroutine and we will be running on the alternate // signal stack. The parameter g will be the value of the global g // when the signal occurred. The sig, info, and ctxt parameters are // from the system signal handler: they are the parameters passed when // the SA is passed to the sigaction system call. // // The garbage collector may have stopped the world, so write barriers // are not allowed. // //go:nowritebarrierrec func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) { _g_ := getg() c := &sigctxt{info, ctxt} if sig == _SIGPROF { sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, _g_.m) return } flags := int32(_SigThrow) if sig < uint32(len(sigtable)) { flags = sigtable[sig].flags } if flags&_SigPanic != 0 && gp.throwsplit { // We can't safely sigpanic because it may grow the // stack. Abort in the signal handler instead. flags = (flags &^ _SigPanic) | _SigThrow } if c.sigcode() != _SI_USER && flags&_SigPanic != 0 { // The signal is going to cause a panic. // Arrange the stack so that it looks like the point // where the signal occurred made a call to the // function sigpanic. Then set the PC to sigpanic. // Have to pass arguments out of band since // augmenting the stack frame would break // the unwinding code. gp.sig = sig gp.sigcode0 = uintptr(c.sigcode()) gp.sigcode1 = uintptr(c.fault()) gp.sigpc = c.sigpc() c.preparePanic(sig, gp) return } if c.sigcode() == _SI_USER || flags&_SigNotify != 0 { if sigsend(sig) { return } } if c.sigcode() == _SI_USER && signal_ignored(sig) { return } if flags&_SigKill != 0 { dieFromSignal(sig) } if flags&_SigThrow == 0 { return } _g_.m.throwing = 1 _g_.m.caughtsig.set(gp) if crashing == 0 { startpanic() } if sig < uint32(len(sigtable)) { print(sigtable[sig].name, "\n") } else { print("Signal ", sig, "\n") } print("PC=", hex(c.sigpc()), " m=", _g_.m.id, " sigcode=", c.sigcode(), "\n") if _g_.m.lockedg != 0 && _g_.m.ncgo > 0 && gp == _g_.m.g0 { print("signal arrived during cgo execution\n") gp = _g_.m.lockedg.ptr() } print("\n") level, _, docrash := gotraceback() if level > 0 { goroutineheader(gp) tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp) if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning { // tracebackothers on original m skipped this one; trace it now. goroutineheader(_g_.m.curg) traceback(^uintptr(0), ^uintptr(0), 0, _g_.m.curg) } else if crashing == 0 { tracebackothers(gp) print("\n") } dumpregs(c) } if docrash { crashing++ if crashing < mcount()-int32(extraMCount) { // There are other m's that need to dump their stacks. // Relay SIGQUIT to the next m by sending it to the current process. // All m's that have already received SIGQUIT have signal masks blocking // receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet. // When the last m receives the SIGQUIT, it will fall through to the call to // crash below. Just in case the relaying gets botched, each m involved in // the relay sleeps for 5 seconds and then does the crash/exit itself. // In expected operation, the last m has received the SIGQUIT and run // crash/exit and the process is gone, all long before any of the // 5-second sleeps have finished. print("\n-----\n\n") raiseproc(_SIGQUIT) usleep(5 * 1000 * 1000) } crash() } exit(2) }