// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) var buildVersion = sys.TheVersion // Goroutine scheduler // The scheduler's job is to distribute ready-to-run goroutines over worker threads. // // The main concepts are: // G - goroutine. // M - worker thread, or machine. // P - processor, a resource that is required to execute Go code. // M must have an associated P to execute Go code, however it can be // blocked or in a syscall w/o an associated P. // // Design doc at https://golang.org/s/go11sched. // Worker thread parking/unparking. // We need to balance between keeping enough running worker threads to utilize // available hardware parallelism and parking excessive running worker threads // to conserve CPU resources and power. This is not simple for two reasons: // (1) scheduler state is intentionally distributed (in particular, per-P work // queues), so it is not possible to compute global predicates on fast paths; // (2) for optimal thread management we would need to know the future (don't park // a worker thread when a new goroutine will be readied in near future). // // Three rejected approaches that would work badly: // 1. Centralize all scheduler state (would inhibit scalability). // 2. Direct goroutine handoff. That is, when we ready a new goroutine and there // is a spare P, unpark a thread and handoff it the thread and the goroutine. // This would lead to thread state thrashing, as the thread that readied the // goroutine can be out of work the very next moment, we will need to park it. // Also, it would destroy locality of computation as we want to preserve // dependent goroutines on the same thread; and introduce additional latency. // 3. Unpark an additional thread whenever we ready a goroutine and there is an // idle P, but don't do handoff. This would lead to excessive thread parking/ // unparking as the additional threads will instantly park without discovering // any work to do. // // The current approach: // We unpark an additional thread when we ready a goroutine if (1) there is an // idle P and there are no "spinning" worker threads. A worker thread is considered // spinning if it is out of local work and did not find work in global run queue/ // netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning. // Threads unparked this way are also considered spinning; we don't do goroutine // handoff so such threads are out of work initially. Spinning threads do some // spinning looking for work in per-P run queues before parking. If a spinning // thread finds work it takes itself out of the spinning state and proceeds to // execution. If it does not find work it takes itself out of the spinning state // and then parks. // If there is at least one spinning thread (sched.nmspinning>1), we don't unpark // new threads when readying goroutines. To compensate for that, if the last spinning // thread finds work and stops spinning, it must unpark a new spinning thread. // This approach smooths out unjustified spikes of thread unparking, // but at the same time guarantees eventual maximal CPU parallelism utilization. // // The main implementation complication is that we need to be very careful during // spinning->non-spinning thread transition. This transition can race with submission // of a new goroutine, and either one part or another needs to unpark another worker // thread. If they both fail to do that, we can end up with semi-persistent CPU // underutilization. The general pattern for goroutine readying is: submit a goroutine // to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning. // The general pattern for spinning->non-spinning transition is: decrement nmspinning, // #StoreLoad-style memory barrier, check all per-P work queues for new work. // Note that all this complexity does not apply to global run queue as we are not // sloppy about thread unparking when submitting to global queue. Also see comments // for nmspinning manipulation. var ( m0 m g0 g raceprocctx0 uintptr ) //go:linkname runtime_init runtime.init func runtime_init() //go:linkname main_init main.init func main_init() // main_init_done is a signal used by cgocallbackg that initialization // has been completed. It is made before _cgo_notify_runtime_init_done, // so all cgo calls can rely on it existing. When main_init is complete, // it is closed, meaning cgocallbackg can reliably receive from it. var main_init_done chan bool //go:linkname main_main main.main func main_main() // mainStarted indicates that the main M has started. var mainStarted bool // runtimeInitTime is the nanotime() at which the runtime started. var runtimeInitTime int64 // Value to use for signal mask for newly created M's. var initSigmask sigset // The main goroutine. func main() { g := getg() // Racectx of m0->g0 is used only as the parent of the main goroutine. // It must not be used for anything else. g.m.g0.racectx = 0 // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit. // Using decimal instead of binary GB and MB because // they look nicer in the stack overflow failure message. if sys.PtrSize == 8 { maxstacksize = 1000000000 } else { maxstacksize = 250000000 } // Allow newproc to start new Ms. mainStarted = true systemstack(func() { newm(sysmon, nil) }) // Lock the main goroutine onto this, the main OS thread, // during initialization. Most programs won't care, but a few // do require certain calls to be made by the main thread. // Those can arrange for main.main to run in the main thread // by calling runtime.LockOSThread during initialization // to preserve the lock. lockOSThread() if g.m != &m0 { throw("runtime.main not on m0") } runtime_init() // must be before defer if nanotime() == 0 { throw("nanotime returning zero") } // Defer unlock so that runtime.Goexit during init does the unlock too. needUnlock := true defer func() { if needUnlock { unlockOSThread() } }() // Record when the world started. Must be after runtime_init // because nanotime on some platforms depends on startNano. runtimeInitTime = nanotime() gcenable() main_init_done = make(chan bool) if iscgo { if _cgo_thread_start == nil { throw("_cgo_thread_start missing") } if GOOS != "windows" { if _cgo_setenv == nil { throw("_cgo_setenv missing") } if _cgo_unsetenv == nil { throw("_cgo_unsetenv missing") } } if _cgo_notify_runtime_init_done == nil { throw("_cgo_notify_runtime_init_done missing") } // Start the template thread in case we enter Go from // a C-created thread and need to create a new thread. startTemplateThread() cgocall(_cgo_notify_runtime_init_done, nil) } fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime fn() close(main_init_done) needUnlock = false unlockOSThread() if isarchive || islibrary { // A program compiled with -buildmode=c-archive or c-shared // has a main, but it is not executed. return } fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime fn() if raceenabled { racefini() } // Make racy client program work: if panicking on // another goroutine at the same time as main returns, // let the other goroutine finish printing the panic trace. // Once it does, it will exit. See issues 3934 and 20018. if atomic.Load(&runningPanicDefers) != 0 { // Running deferred functions should not take long. for c := 0; c < 1000; c++ { if atomic.Load(&runningPanicDefers) == 0 { break } Gosched() } } if atomic.Load(&panicking) != 0 { gopark(nil, nil, "panicwait", traceEvGoStop, 1) } exit(0) for { var x *int32 *x = 0 } } // os_beforeExit is called from os.Exit(0). //go:linkname os_beforeExit os.runtime_beforeExit func os_beforeExit() { if raceenabled { racefini() } } // start forcegc helper goroutine func init() { go forcegchelper() } func forcegchelper() { forcegc.g = getg() for { lock(&forcegc.lock) if forcegc.idle != 0 { throw("forcegc: phase error") } atomic.Store(&forcegc.idle, 1) goparkunlock(&forcegc.lock, "force gc (idle)", traceEvGoBlock, 1) // this goroutine is explicitly resumed by sysmon if debug.gctrace > 0 { println("GC forced") } // Time-triggered, fully concurrent. gcStart(gcBackgroundMode, gcTrigger{kind: gcTriggerTime, now: nanotime()}) } } //go:nosplit // Gosched yields the processor, allowing other goroutines to run. It does not // suspend the current goroutine, so execution resumes automatically. func Gosched() { mcall(gosched_m) } // goschedguarded yields the processor like gosched, but also checks // for forbidden states and opts out of the yield in those cases. //go:nosplit func goschedguarded() { mcall(goschedguarded_m) } // Puts the current goroutine into a waiting state and calls unlockf. // If unlockf returns false, the goroutine is resumed. // unlockf must not access this G's stack, as it may be moved between // the call to gopark and the call to unlockf. func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason string, traceEv byte, traceskip int) { mp := acquirem() gp := mp.curg status := readgstatus(gp) if status != _Grunning && status != _Gscanrunning { throw("gopark: bad g status") } mp.waitlock = lock mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf)) gp.waitreason = reason mp.waittraceev = traceEv mp.waittraceskip = traceskip releasem(mp) // can't do anything that might move the G between Ms here. mcall(park_m) } // Puts the current goroutine into a waiting state and unlocks the lock. // The goroutine can be made runnable again by calling goready(gp). func goparkunlock(lock *mutex, reason string, traceEv byte, traceskip int) { gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip) } func goready(gp *g, traceskip int) { systemstack(func() { ready(gp, traceskip, true) }) } //go:nosplit func acquireSudog() *sudog { // Delicate dance: the semaphore implementation calls // acquireSudog, acquireSudog calls new(sudog), // new calls malloc, malloc can call the garbage collector, // and the garbage collector calls the semaphore implementation // in stopTheWorld. // Break the cycle by doing acquirem/releasem around new(sudog). // The acquirem/releasem increments m.locks during new(sudog), // which keeps the garbage collector from being invoked. mp := acquirem() pp := mp.p.ptr() if len(pp.sudogcache) == 0 { lock(&sched.sudoglock) // First, try to grab a batch from central cache. for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil { s := sched.sudogcache sched.sudogcache = s.next s.next = nil pp.sudogcache = append(pp.sudogcache, s) } unlock(&sched.sudoglock) // If the central cache is empty, allocate a new one. if len(pp.sudogcache) == 0 { pp.sudogcache = append(pp.sudogcache, new(sudog)) } } n := len(pp.sudogcache) s := pp.sudogcache[n-1] pp.sudogcache[n-1] = nil pp.sudogcache = pp.sudogcache[:n-1] if s.elem != nil { throw("acquireSudog: found s.elem != nil in cache") } releasem(mp) return s } //go:nosplit func releaseSudog(s *sudog) { if s.elem != nil { throw("runtime: sudog with non-nil elem") } if s.isSelect { throw("runtime: sudog with non-false isSelect") } if s.next != nil { throw("runtime: sudog with non-nil next") } if s.prev != nil { throw("runtime: sudog with non-nil prev") } if s.waitlink != nil { throw("runtime: sudog with non-nil waitlink") } if s.c != nil { throw("runtime: sudog with non-nil c") } gp := getg() if gp.param != nil { throw("runtime: releaseSudog with non-nil gp.param") } mp := acquirem() // avoid rescheduling to another P pp := mp.p.ptr() if len(pp.sudogcache) == cap(pp.sudogcache) { // Transfer half of local cache to the central cache. var first, last *sudog for len(pp.sudogcache) > cap(pp.sudogcache)/2 { n := len(pp.sudogcache) p := pp.sudogcache[n-1] pp.sudogcache[n-1] = nil pp.sudogcache = pp.sudogcache[:n-1] if first == nil { first = p } else { last.next = p } last = p } lock(&sched.sudoglock) last.next = sched.sudogcache sched.sudogcache = first unlock(&sched.sudoglock) } pp.sudogcache = append(pp.sudogcache, s) releasem(mp) } // funcPC returns the entry PC of the function f. // It assumes that f is a func value. Otherwise the behavior is undefined. //go:nosplit func funcPC(f interface{}) uintptr { return **(**uintptr)(add(unsafe.Pointer(&f), sys.PtrSize)) } // called from assembly func badmcall(fn func(*g)) { throw("runtime: mcall called on m->g0 stack") } func badmcall2(fn func(*g)) { throw("runtime: mcall function returned") } func badreflectcall() { panic(plainError("arg size to reflect.call more than 1GB")) } var badmorestackg0Msg = "fatal: morestack on g0\n" //go:nosplit //go:nowritebarrierrec func badmorestackg0() { sp := stringStructOf(&badmorestackg0Msg) write(2, sp.str, int32(sp.len)) } var badmorestackgsignalMsg = "fatal: morestack on gsignal\n" //go:nosplit //go:nowritebarrierrec func badmorestackgsignal() { sp := stringStructOf(&badmorestackgsignalMsg) write(2, sp.str, int32(sp.len)) } //go:nosplit func badctxt() { throw("ctxt != 0") } func lockedOSThread() bool { gp := getg() return gp.lockedm != 0 && gp.m.lockedg != 0 } var ( allgs []*g allglock mutex ) func allgadd(gp *g) { if readgstatus(gp) == _Gidle { throw("allgadd: bad status Gidle") } lock(&allglock) allgs = append(allgs, gp) allglen = uintptr(len(allgs)) unlock(&allglock) } const ( // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once. // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number. _GoidCacheBatch = 16 ) // The bootstrap sequence is: // // call osinit // call schedinit // make & queue new G // call runtime·mstart // // The new G calls runtime·main. func schedinit() { // raceinit must be the first call to race detector. // In particular, it must be done before mallocinit below calls racemapshadow. _g_ := getg() if raceenabled { _g_.racectx, raceprocctx0 = raceinit() } sched.maxmcount = 10000 tracebackinit() moduledataverify() stackinit() mallocinit() mcommoninit(_g_.m) alginit() // maps must not be used before this call modulesinit() // provides activeModules typelinksinit() // uses maps, activeModules itabsinit() // uses activeModules msigsave(_g_.m) initSigmask = _g_.m.sigmask goargs() goenvs() parsedebugvars() gcinit() sched.lastpoll = uint64(nanotime()) procs := ncpu if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 { procs = n } if procresize(procs) != nil { throw("unknown runnable goroutine during bootstrap") } // For cgocheck > 1, we turn on the write barrier at all times // and check all pointer writes. We can't do this until after // procresize because the write barrier needs a P. if debug.cgocheck > 1 { writeBarrier.cgo = true writeBarrier.enabled = true for _, p := range allp { p.wbBuf.reset() } } if buildVersion == "" { // Condition should never trigger. This code just serves // to ensure runtime·buildVersion is kept in the resulting binary. buildVersion = "unknown" } } func dumpgstatus(gp *g) { _g_ := getg() print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n") } func checkmcount() { // sched lock is held if mcount() > sched.maxmcount { print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n") throw("thread exhaustion") } } func mcommoninit(mp *m) { _g_ := getg() // g0 stack won't make sense for user (and is not necessary unwindable). if _g_ != _g_.m.g0 { callers(1, mp.createstack[:]) } lock(&sched.lock) if sched.mnext+1 < sched.mnext { throw("runtime: thread ID overflow") } mp.id = sched.mnext sched.mnext++ checkmcount() mp.fastrand[0] = 1597334677 * uint32(mp.id) mp.fastrand[1] = uint32(cputicks()) if mp.fastrand[0]|mp.fastrand[1] == 0 { mp.fastrand[1] = 1 } mpreinit(mp) if mp.gsignal != nil { mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard } // Add to allm so garbage collector doesn't free g->m // when it is just in a register or thread-local storage. mp.alllink = allm // NumCgoCall() iterates over allm w/o schedlock, // so we need to publish it safely. atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp)) unlock(&sched.lock) // Allocate memory to hold a cgo traceback if the cgo call crashes. if iscgo || GOOS == "solaris" || GOOS == "windows" { mp.cgoCallers = new(cgoCallers) } } // Mark gp ready to run. func ready(gp *g, traceskip int, next bool) { if trace.enabled { traceGoUnpark(gp, traceskip) } status := readgstatus(gp) // Mark runnable. _g_ := getg() _g_.m.locks++ // disable preemption because it can be holding p in a local var if status&^_Gscan != _Gwaiting { dumpgstatus(gp) throw("bad g->status in ready") } // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq casgstatus(gp, _Gwaiting, _Grunnable) runqput(_g_.m.p.ptr(), gp, next) if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 { wakep() } _g_.m.locks-- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in Case we've cleared it in newstack _g_.stackguard0 = stackPreempt } } func gcprocs() int32 { // Figure out how many CPUs to use during GC. // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. lock(&sched.lock) n := gomaxprocs if n > ncpu { n = ncpu } if n > _MaxGcproc { n = _MaxGcproc } if n > sched.nmidle+1 { // one M is currently running n = sched.nmidle + 1 } unlock(&sched.lock) return n } func needaddgcproc() bool { lock(&sched.lock) n := gomaxprocs if n > ncpu { n = ncpu } if n > _MaxGcproc { n = _MaxGcproc } n -= sched.nmidle + 1 // one M is currently running unlock(&sched.lock) return n > 0 } func helpgc(nproc int32) { _g_ := getg() lock(&sched.lock) pos := 0 for n := int32(1); n < nproc; n++ { // one M is currently running if allp[pos].mcache == _g_.m.mcache { pos++ } mp := mget() if mp == nil { throw("gcprocs inconsistency") } mp.helpgc = n mp.p.set(allp[pos]) mp.mcache = allp[pos].mcache pos++ notewakeup(&mp.park) } unlock(&sched.lock) } // freezeStopWait is a large value that freezetheworld sets // sched.stopwait to in order to request that all Gs permanently stop. const freezeStopWait = 0x7fffffff // freezing is set to non-zero if the runtime is trying to freeze the // world. var freezing uint32 // Similar to stopTheWorld but best-effort and can be called several times. // There is no reverse operation, used during crashing. // This function must not lock any mutexes. func freezetheworld() { atomic.Store(&freezing, 1) // stopwait and preemption requests can be lost // due to races with concurrently executing threads, // so try several times for i := 0; i < 5; i++ { // this should tell the scheduler to not start any new goroutines sched.stopwait = freezeStopWait atomic.Store(&sched.gcwaiting, 1) // this should stop running goroutines if !preemptall() { break // no running goroutines } usleep(1000) } // to be sure usleep(1000) preemptall() usleep(1000) } func isscanstatus(status uint32) bool { if status == _Gscan { throw("isscanstatus: Bad status Gscan") } return status&_Gscan == _Gscan } // All reads and writes of g's status go through readgstatus, casgstatus // castogscanstatus, casfrom_Gscanstatus. //go:nosplit func readgstatus(gp *g) uint32 { return atomic.Load(&gp.atomicstatus) } // Ownership of gcscanvalid: // // If gp is running (meaning status == _Grunning or _Grunning|_Gscan), // then gp owns gp.gcscanvalid, and other goroutines must not modify it. // // Otherwise, a second goroutine can lock the scan state by setting _Gscan // in the status bit and then modify gcscanvalid, and then unlock the scan state. // // Note that the first condition implies an exception to the second: // if a second goroutine changes gp's status to _Grunning|_Gscan, // that second goroutine still does not have the right to modify gcscanvalid. // The Gscanstatuses are acting like locks and this releases them. // If it proves to be a performance hit we should be able to make these // simple atomic stores but for now we are going to throw if // we see an inconsistent state. func casfrom_Gscanstatus(gp *g, oldval, newval uint32) { success := false // Check that transition is valid. switch oldval { default: print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") dumpgstatus(gp) throw("casfrom_Gscanstatus:top gp->status is not in scan state") case _Gscanrunnable, _Gscanwaiting, _Gscanrunning, _Gscansyscall: if newval == oldval&^_Gscan { success = atomic.Cas(&gp.atomicstatus, oldval, newval) } } if !success { print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") dumpgstatus(gp) throw("casfrom_Gscanstatus: gp->status is not in scan state") } } // This will return false if the gp is not in the expected status and the cas fails. // This acts like a lock acquire while the casfromgstatus acts like a lock release. func castogscanstatus(gp *g, oldval, newval uint32) bool { switch oldval { case _Grunnable, _Grunning, _Gwaiting, _Gsyscall: if newval == oldval|_Gscan { return atomic.Cas(&gp.atomicstatus, oldval, newval) } } print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n") throw("castogscanstatus") panic("not reached") } // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus // and casfrom_Gscanstatus instead. // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that // put it in the Gscan state is finished. //go:nosplit func casgstatus(gp *g, oldval, newval uint32) { if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval { systemstack(func() { print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n") throw("casgstatus: bad incoming values") }) } if oldval == _Grunning && gp.gcscanvalid { // If oldvall == _Grunning, then the actual status must be // _Grunning or _Grunning|_Gscan; either way, // we own gp.gcscanvalid, so it's safe to read. // gp.gcscanvalid must not be true when we are running. systemstack(func() { print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n") throw("casgstatus") }) } // See http://golang.org/cl/21503 for justification of the yield delay. const yieldDelay = 5 * 1000 var nextYield int64 // loop if gp->atomicstatus is in a scan state giving // GC time to finish and change the state to oldval. for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ { if oldval == _Gwaiting && gp.atomicstatus == _Grunnable { systemstack(func() { throw("casgstatus: waiting for Gwaiting but is Grunnable") }) } // Help GC if needed. // if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) { // gp.preemptscan = false // systemstack(func() { // gcphasework(gp) // }) // } // But meanwhile just yield. if i == 0 { nextYield = nanotime() + yieldDelay } if nanotime() < nextYield { for x := 0; x < 10 && gp.atomicstatus != oldval; x++ { procyield(1) } } else { osyield() nextYield = nanotime() + yieldDelay/2 } } if newval == _Grunning { gp.gcscanvalid = false } } // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable. // Returns old status. Cannot call casgstatus directly, because we are racing with an // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus, // it might have become Grunnable by the time we get to the cas. If we called casgstatus, // it would loop waiting for the status to go back to Gwaiting, which it never will. //go:nosplit func casgcopystack(gp *g) uint32 { for { oldstatus := readgstatus(gp) &^ _Gscan if oldstatus != _Gwaiting && oldstatus != _Grunnable { throw("copystack: bad status, not Gwaiting or Grunnable") } if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) { return oldstatus } } } // scang blocks until gp's stack has been scanned. // It might be scanned by scang or it might be scanned by the goroutine itself. // Either way, the stack scan has completed when scang returns. func scang(gp *g, gcw *gcWork) { // Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone. // Nothing is racing with us now, but gcscandone might be set to true left over // from an earlier round of stack scanning (we scan twice per GC). // We use gcscandone to record whether the scan has been done during this round. gp.gcscandone = false // See http://golang.org/cl/21503 for justification of the yield delay. const yieldDelay = 10 * 1000 var nextYield int64 // Endeavor to get gcscandone set to true, // either by doing the stack scan ourselves or by coercing gp to scan itself. // gp.gcscandone can transition from false to true when we're not looking // (if we asked for preemption), so any time we lock the status using // castogscanstatus we have to double-check that the scan is still not done. loop: for i := 0; !gp.gcscandone; i++ { switch s := readgstatus(gp); s { default: dumpgstatus(gp) throw("stopg: invalid status") case _Gdead: // No stack. gp.gcscandone = true break loop case _Gcopystack: // Stack being switched. Go around again. case _Grunnable, _Gsyscall, _Gwaiting: // Claim goroutine by setting scan bit. // Racing with execution or readying of gp. // The scan bit keeps them from running // the goroutine until we're done. if castogscanstatus(gp, s, s|_Gscan) { if !gp.gcscandone { scanstack(gp, gcw) gp.gcscandone = true } restartg(gp) break loop } case _Gscanwaiting: // newstack is doing a scan for us right now. Wait. case _Grunning: // Goroutine running. Try to preempt execution so it can scan itself. // The preemption handler (in newstack) does the actual scan. // Optimization: if there is already a pending preemption request // (from the previous loop iteration), don't bother with the atomics. if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt { break } // Ask for preemption and self scan. if castogscanstatus(gp, _Grunning, _Gscanrunning) { if !gp.gcscandone { gp.preemptscan = true gp.preempt = true gp.stackguard0 = stackPreempt } casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning) } } if i == 0 { nextYield = nanotime() + yieldDelay } if nanotime() < nextYield { procyield(10) } else { osyield() nextYield = nanotime() + yieldDelay/2 } } gp.preemptscan = false // cancel scan request if no longer needed } // The GC requests that this routine be moved from a scanmumble state to a mumble state. func restartg(gp *g) { s := readgstatus(gp) switch s { default: dumpgstatus(gp) throw("restartg: unexpected status") case _Gdead: // ok case _Gscanrunnable, _Gscanwaiting, _Gscansyscall: casfrom_Gscanstatus(gp, s, s&^_Gscan) } } // stopTheWorld stops all P's from executing goroutines, interrupting // all goroutines at GC safe points and records reason as the reason // for the stop. On return, only the current goroutine's P is running. // stopTheWorld must not be called from a system stack and the caller // must not hold worldsema. The caller must call startTheWorld when // other P's should resume execution. // // stopTheWorld is safe for multiple goroutines to call at the // same time. Each will execute its own stop, and the stops will // be serialized. // // This is also used by routines that do stack dumps. If the system is // in panic or being exited, this may not reliably stop all // goroutines. func stopTheWorld(reason string) { semacquire(&worldsema) getg().m.preemptoff = reason systemstack(stopTheWorldWithSema) } // startTheWorld undoes the effects of stopTheWorld. func startTheWorld() { systemstack(func() { startTheWorldWithSema(false) }) // worldsema must be held over startTheWorldWithSema to ensure // gomaxprocs cannot change while worldsema is held. semrelease(&worldsema) getg().m.preemptoff = "" } // Holding worldsema grants an M the right to try to stop the world // and prevents gomaxprocs from changing concurrently. var worldsema uint32 = 1 // stopTheWorldWithSema is the core implementation of stopTheWorld. // The caller is responsible for acquiring worldsema and disabling // preemption first and then should stopTheWorldWithSema on the system // stack: // // semacquire(&worldsema, 0) // m.preemptoff = "reason" // systemstack(stopTheWorldWithSema) // // When finished, the caller must either call startTheWorld or undo // these three operations separately: // // m.preemptoff = "" // systemstack(startTheWorldWithSema) // semrelease(&worldsema) // // It is allowed to acquire worldsema once and then execute multiple // startTheWorldWithSema/stopTheWorldWithSema pairs. // Other P's are able to execute between successive calls to // startTheWorldWithSema and stopTheWorldWithSema. // Holding worldsema causes any other goroutines invoking // stopTheWorld to block. func stopTheWorldWithSema() { _g_ := getg() // If we hold a lock, then we won't be able to stop another M // that is blocked trying to acquire the lock. if _g_.m.locks > 0 { throw("stopTheWorld: holding locks") } lock(&sched.lock) sched.stopwait = gomaxprocs atomic.Store(&sched.gcwaiting, 1) preemptall() // stop current P _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic. sched.stopwait-- // try to retake all P's in Psyscall status for _, p := range allp { s := p.status if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) { if trace.enabled { traceGoSysBlock(p) traceProcStop(p) } p.syscalltick++ sched.stopwait-- } } // stop idle P's for { p := pidleget() if p == nil { break } p.status = _Pgcstop sched.stopwait-- } wait := sched.stopwait > 0 unlock(&sched.lock) // wait for remaining P's to stop voluntarily if wait { for { // wait for 100us, then try to re-preempt in case of any races if notetsleep(&sched.stopnote, 100*1000) { noteclear(&sched.stopnote) break } preemptall() } } // sanity checks bad := "" if sched.stopwait != 0 { bad = "stopTheWorld: not stopped (stopwait != 0)" } else { for _, p := range allp { if p.status != _Pgcstop { bad = "stopTheWorld: not stopped (status != _Pgcstop)" } } } if atomic.Load(&freezing) != 0 { // Some other thread is panicking. This can cause the // sanity checks above to fail if the panic happens in // the signal handler on a stopped thread. Either way, // we should halt this thread. lock(&deadlock) lock(&deadlock) } if bad != "" { throw(bad) } } func mhelpgc() { _g_ := getg() _g_.m.helpgc = -1 } func startTheWorldWithSema(emitTraceEvent bool) int64 { _g_ := getg() _g_.m.locks++ // disable preemption because it can be holding p in a local var if netpollinited() { gp := netpoll(false) // non-blocking injectglist(gp) } add := needaddgcproc() lock(&sched.lock) procs := gomaxprocs if newprocs != 0 { procs = newprocs newprocs = 0 } p1 := procresize(procs) sched.gcwaiting = 0 if sched.sysmonwait != 0 { sched.sysmonwait = 0 notewakeup(&sched.sysmonnote) } unlock(&sched.lock) for p1 != nil { p := p1 p1 = p1.link.ptr() if p.m != 0 { mp := p.m.ptr() p.m = 0 if mp.nextp != 0 { throw("startTheWorld: inconsistent mp->nextp") } mp.nextp.set(p) notewakeup(&mp.park) } else { // Start M to run P. Do not start another M below. newm(nil, p) add = false } } // Capture start-the-world time before doing clean-up tasks. startTime := nanotime() if emitTraceEvent { traceGCSTWDone() } // Wakeup an additional proc in case we have excessive runnable goroutines // in local queues or in the global queue. If we don't, the proc will park itself. // If we have lots of excessive work, resetspinning will unpark additional procs as necessary. if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 { wakep() } if add { // If GC could have used another helper proc, start one now, // in the hope that it will be available next time. // It would have been even better to start it before the collection, // but doing so requires allocating memory, so it's tricky to // coordinate. This lazy approach works out in practice: // we don't mind if the first couple gc rounds don't have quite // the maximum number of procs. newm(mhelpgc, nil) } _g_.m.locks-- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } return startTime } // Called to start an M. // // This must not split the stack because we may not even have stack // bounds set up yet. // // May run during STW (because it doesn't have a P yet), so write // barriers are not allowed. // //go:nosplit //go:nowritebarrierrec func mstart() { _g_ := getg() osStack := _g_.stack.lo == 0 if osStack { // Initialize stack bounds from system stack. // Cgo may have left stack size in stack.hi. size := _g_.stack.hi if size == 0 { size = 8192 * sys.StackGuardMultiplier } _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size))) _g_.stack.lo = _g_.stack.hi - size + 1024 } // Initialize stack guards so that we can start calling // both Go and C functions with stack growth prologues. _g_.stackguard0 = _g_.stack.lo + _StackGuard _g_.stackguard1 = _g_.stackguard0 mstart1(0) // Exit this thread. if GOOS == "windows" || GOOS == "solaris" || GOOS == "plan9" { // Window, Solaris and Plan 9 always system-allocate // the stack, but put it in _g_.stack before mstart, // so the logic above hasn't set osStack yet. osStack = true } mexit(osStack) } func mstart1(dummy int32) { _g_ := getg() if _g_ != _g_.m.g0 { throw("bad runtime·mstart") } // Record the caller for use as the top of stack in mcall and // for terminating the thread. // We're never coming back to mstart1 after we call schedule, // so other calls can reuse the current frame. save(getcallerpc(), getcallersp(unsafe.Pointer(&dummy))) asminit() minit() // Install signal handlers; after minit so that minit can // prepare the thread to be able to handle the signals. if _g_.m == &m0 { mstartm0() } if fn := _g_.m.mstartfn; fn != nil { fn() } if _g_.m.helpgc != 0 { _g_.m.helpgc = 0 stopm() } else if _g_.m != &m0 { acquirep(_g_.m.nextp.ptr()) _g_.m.nextp = 0 } schedule() } // mstartm0 implements part of mstart1 that only runs on the m0. // // Write barriers are allowed here because we know the GC can't be // running yet, so they'll be no-ops. // //go:yeswritebarrierrec func mstartm0() { // Create an extra M for callbacks on threads not created by Go. if iscgo && !cgoHasExtraM { cgoHasExtraM = true newextram() } initsig(false) } // mexit tears down and exits the current thread. // // Don't call this directly to exit the thread, since it must run at // the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to // unwind the stack to the point that exits the thread. // // It is entered with m.p != nil, so write barriers are allowed. It // will release the P before exiting. // //go:yeswritebarrierrec func mexit(osStack bool) { g := getg() m := g.m if m == &m0 { // This is the main thread. Just wedge it. // // On Linux, exiting the main thread puts the process // into a non-waitable zombie state. On Plan 9, // exiting the main thread unblocks wait even though // other threads are still running. On Solaris we can // neither exitThread nor return from mstart. Other // bad things probably happen on other platforms. // // We could try to clean up this M more before wedging // it, but that complicates signal handling. handoffp(releasep()) lock(&sched.lock) sched.nmfreed++ checkdead() unlock(&sched.lock) notesleep(&m.park) throw("locked m0 woke up") } sigblock() unminit() // Free the gsignal stack. if m.gsignal != nil { stackfree(m.gsignal.stack) } // Remove m from allm. lock(&sched.lock) for pprev := &allm; *pprev != nil; pprev = &(*pprev).alllink { if *pprev == m { *pprev = m.alllink goto found } } throw("m not found in allm") found: if !osStack { // Delay reaping m until it's done with the stack. // // If this is using an OS stack, the OS will free it // so there's no need for reaping. atomic.Store(&m.freeWait, 1) // Put m on the free list, though it will not be reaped until // freeWait is 0. Note that the free list must not be linked // through alllink because some functions walk allm without // locking, so may be using alllink. m.freelink = sched.freem sched.freem = m } unlock(&sched.lock) // Release the P. handoffp(releasep()) // After this point we must not have write barriers. // Invoke the deadlock detector. This must happen after // handoffp because it may have started a new M to take our // P's work. lock(&sched.lock) sched.nmfreed++ checkdead() unlock(&sched.lock) if osStack { // Return from mstart and let the system thread // library free the g0 stack and terminate the thread. return } // mstart is the thread's entry point, so there's nothing to // return to. Exit the thread directly. exitThread will clear // m.freeWait when it's done with the stack and the m can be // reaped. exitThread(&m.freeWait) } // forEachP calls fn(p) for every P p when p reaches a GC safe point. // If a P is currently executing code, this will bring the P to a GC // safe point and execute fn on that P. If the P is not executing code // (it is idle or in a syscall), this will call fn(p) directly while // preventing the P from exiting its state. This does not ensure that // fn will run on every CPU executing Go code, but it acts as a global // memory barrier. GC uses this as a "ragged barrier." // // The caller must hold worldsema. // //go:systemstack func forEachP(fn func(*p)) { mp := acquirem() _p_ := getg().m.p.ptr() lock(&sched.lock) if sched.safePointWait != 0 { throw("forEachP: sched.safePointWait != 0") } sched.safePointWait = gomaxprocs - 1 sched.safePointFn = fn // Ask all Ps to run the safe point function. for _, p := range allp { if p != _p_ { atomic.Store(&p.runSafePointFn, 1) } } preemptall() // Any P entering _Pidle or _Psyscall from now on will observe // p.runSafePointFn == 1 and will call runSafePointFn when // changing its status to _Pidle/_Psyscall. // Run safe point function for all idle Ps. sched.pidle will // not change because we hold sched.lock. for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() { if atomic.Cas(&p.runSafePointFn, 1, 0) { fn(p) sched.safePointWait-- } } wait := sched.safePointWait > 0 unlock(&sched.lock) // Run fn for the current P. fn(_p_) // Force Ps currently in _Psyscall into _Pidle and hand them // off to induce safe point function execution. for _, p := range allp { s := p.status if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) { if trace.enabled { traceGoSysBlock(p) traceProcStop(p) } p.syscalltick++ handoffp(p) } } // Wait for remaining Ps to run fn. if wait { for { // Wait for 100us, then try to re-preempt in // case of any races. // // Requires system stack. if notetsleep(&sched.safePointNote, 100*1000) { noteclear(&sched.safePointNote) break } preemptall() } } if sched.safePointWait != 0 { throw("forEachP: not done") } for _, p := range allp { if p.runSafePointFn != 0 { throw("forEachP: P did not run fn") } } lock(&sched.lock) sched.safePointFn = nil unlock(&sched.lock) releasem(mp) } // runSafePointFn runs the safe point function, if any, for this P. // This should be called like // // if getg().m.p.runSafePointFn != 0 { // runSafePointFn() // } // // runSafePointFn must be checked on any transition in to _Pidle or // _Psyscall to avoid a race where forEachP sees that the P is running // just before the P goes into _Pidle/_Psyscall and neither forEachP // nor the P run the safe-point function. func runSafePointFn() { p := getg().m.p.ptr() // Resolve the race between forEachP running the safe-point // function on this P's behalf and this P running the // safe-point function directly. if !atomic.Cas(&p.runSafePointFn, 1, 0) { return } sched.safePointFn(p) lock(&sched.lock) sched.safePointWait-- if sched.safePointWait == 0 { notewakeup(&sched.safePointNote) } unlock(&sched.lock) } // When running with cgo, we call _cgo_thread_start // to start threads for us so that we can play nicely with // foreign code. var cgoThreadStart unsafe.Pointer type cgothreadstart struct { g guintptr tls *uint64 fn unsafe.Pointer } // Allocate a new m unassociated with any thread. // Can use p for allocation context if needed. // fn is recorded as the new m's m.mstartfn. // // This function is allowed to have write barriers even if the caller // isn't because it borrows _p_. // //go:yeswritebarrierrec func allocm(_p_ *p, fn func()) *m { _g_ := getg() _g_.m.locks++ // disable GC because it can be called from sysmon if _g_.m.p == 0 { acquirep(_p_) // temporarily borrow p for mallocs in this function } // Release the free M list. We need to do this somewhere and // this may free up a stack we can use. if sched.freem != nil { lock(&sched.lock) var newList *m for freem := sched.freem; freem != nil; { if freem.freeWait != 0 { next := freem.freelink freem.freelink = newList newList = freem freem = next continue } stackfree(freem.g0.stack) freem = freem.freelink } sched.freem = newList unlock(&sched.lock) } mp := new(m) mp.mstartfn = fn mcommoninit(mp) // In case of cgo or Solaris, pthread_create will make us a stack. // Windows and Plan 9 will layout sched stack on OS stack. if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" { mp.g0 = malg(-1) } else { mp.g0 = malg(8192 * sys.StackGuardMultiplier) } mp.g0.m = mp if _p_ == _g_.m.p.ptr() { releasep() } _g_.m.locks-- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } return mp } // needm is called when a cgo callback happens on a // thread without an m (a thread not created by Go). // In this case, needm is expected to find an m to use // and return with m, g initialized correctly. // Since m and g are not set now (likely nil, but see below) // needm is limited in what routines it can call. In particular // it can only call nosplit functions (textflag 7) and cannot // do any scheduling that requires an m. // // In order to avoid needing heavy lifting here, we adopt // the following strategy: there is a stack of available m's // that can be stolen. Using compare-and-swap // to pop from the stack has ABA races, so we simulate // a lock by doing an exchange (via casp) to steal the stack // head and replace the top pointer with MLOCKED (1). // This serves as a simple spin lock that we can use even // without an m. The thread that locks the stack in this way // unlocks the stack by storing a valid stack head pointer. // // In order to make sure that there is always an m structure // available to be stolen, we maintain the invariant that there // is always one more than needed. At the beginning of the // program (if cgo is in use) the list is seeded with a single m. // If needm finds that it has taken the last m off the list, its job // is - once it has installed its own m so that it can do things like // allocate memory - to create a spare m and put it on the list. // // Each of these extra m's also has a g0 and a curg that are // pressed into service as the scheduling stack and current // goroutine for the duration of the cgo callback. // // When the callback is done with the m, it calls dropm to // put the m back on the list. //go:nosplit func needm(x byte) { if iscgo && !cgoHasExtraM { // Can happen if C/C++ code calls Go from a global ctor. // Can not throw, because scheduler is not initialized yet. write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback))) exit(1) } // Lock extra list, take head, unlock popped list. // nilokay=false is safe here because of the invariant above, // that the extra list always contains or will soon contain // at least one m. mp := lockextra(false) // Set needextram when we've just emptied the list, // so that the eventual call into cgocallbackg will // allocate a new m for the extra list. We delay the // allocation until then so that it can be done // after exitsyscall makes sure it is okay to be // running at all (that is, there's no garbage collection // running right now). mp.needextram = mp.schedlink == 0 extraMCount-- unlockextra(mp.schedlink.ptr()) // Save and block signals before installing g. // Once g is installed, any incoming signals will try to execute, // but we won't have the sigaltstack settings and other data // set up appropriately until the end of minit, which will // unblock the signals. This is the same dance as when // starting a new m to run Go code via newosproc. msigsave(mp) sigblock() // Install g (= m->g0) and set the stack bounds // to match the current stack. We don't actually know // how big the stack is, like we don't know how big any // scheduling stack is, but we assume there's at least 32 kB, // which is more than enough for us. setg(mp.g0) _g_ := getg() _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024 _g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024 _g_.stackguard0 = _g_.stack.lo + _StackGuard // Initialize this thread to use the m. asminit() minit() // mp.curg is now a real goroutine. casgstatus(mp.curg, _Gdead, _Gsyscall) atomic.Xadd(&sched.ngsys, -1) } var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n") // newextram allocates m's and puts them on the extra list. // It is called with a working local m, so that it can do things // like call schedlock and allocate. func newextram() { c := atomic.Xchg(&extraMWaiters, 0) if c > 0 { for i := uint32(0); i < c; i++ { oneNewExtraM() } } else { // Make sure there is at least one extra M. mp := lockextra(true) unlockextra(mp) if mp == nil { oneNewExtraM() } } } // oneNewExtraM allocates an m and puts it on the extra list. func oneNewExtraM() { // Create extra goroutine locked to extra m. // The goroutine is the context in which the cgo callback will run. // The sched.pc will never be returned to, but setting it to // goexit makes clear to the traceback routines where // the goroutine stack ends. mp := allocm(nil, nil) gp := malg(4096) gp.sched.pc = funcPC(goexit) + sys.PCQuantum gp.sched.sp = gp.stack.hi gp.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame gp.sched.lr = 0 gp.sched.g = guintptr(unsafe.Pointer(gp)) gp.syscallpc = gp.sched.pc gp.syscallsp = gp.sched.sp gp.stktopsp = gp.sched.sp gp.gcscanvalid = true gp.gcscandone = true // malg returns status as _Gidle. Change to _Gdead before // adding to allg where GC can see it. We use _Gdead to hide // this from tracebacks and stack scans since it isn't a // "real" goroutine until needm grabs it. casgstatus(gp, _Gidle, _Gdead) gp.m = mp mp.curg = gp mp.lockedInt++ mp.lockedg.set(gp) gp.lockedm.set(mp) gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1)) if raceenabled { gp.racectx = racegostart(funcPC(newextram) + sys.PCQuantum) } // put on allg for garbage collector allgadd(gp) // gp is now on the allg list, but we don't want it to be // counted by gcount. It would be more "proper" to increment // sched.ngfree, but that requires locking. Incrementing ngsys // has the same effect. atomic.Xadd(&sched.ngsys, +1) // Add m to the extra list. mnext := lockextra(true) mp.schedlink.set(mnext) extraMCount++ unlockextra(mp) } // dropm is called when a cgo callback has called needm but is now // done with the callback and returning back into the non-Go thread. // It puts the current m back onto the extra list. // // The main expense here is the call to signalstack to release the // m's signal stack, and then the call to needm on the next callback // from this thread. It is tempting to try to save the m for next time, // which would eliminate both these costs, but there might not be // a next time: the current thread (which Go does not control) might exit. // If we saved the m for that thread, there would be an m leak each time // such a thread exited. Instead, we acquire and release an m on each // call. These should typically not be scheduling operations, just a few // atomics, so the cost should be small. // // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread // variable using pthread_key_create. Unlike the pthread keys we already use // on OS X, this dummy key would never be read by Go code. It would exist // only so that we could register at thread-exit-time destructor. // That destructor would put the m back onto the extra list. // This is purely a performance optimization. The current version, // in which dropm happens on each cgo call, is still correct too. // We may have to keep the current version on systems with cgo // but without pthreads, like Windows. func dropm() { // Clear m and g, and return m to the extra list. // After the call to setg we can only call nosplit functions // with no pointer manipulation. mp := getg().m // Return mp.curg to dead state. casgstatus(mp.curg, _Gsyscall, _Gdead) atomic.Xadd(&sched.ngsys, +1) // Block signals before unminit. // Unminit unregisters the signal handling stack (but needs g on some systems). // Setg(nil) clears g, which is the signal handler's cue not to run Go handlers. // It's important not to try to handle a signal between those two steps. sigmask := mp.sigmask sigblock() unminit() mnext := lockextra(true) extraMCount++ mp.schedlink.set(mnext) setg(nil) // Commit the release of mp. unlockextra(mp) msigrestore(sigmask) } // A helper function for EnsureDropM. func getm() uintptr { return uintptr(unsafe.Pointer(getg().m)) } var extram uintptr var extraMCount uint32 // Protected by lockextra var extraMWaiters uint32 // lockextra locks the extra list and returns the list head. // The caller must unlock the list by storing a new list head // to extram. If nilokay is true, then lockextra will // return a nil list head if that's what it finds. If nilokay is false, // lockextra will keep waiting until the list head is no longer nil. //go:nosplit func lockextra(nilokay bool) *m { const locked = 1 incr := false for { old := atomic.Loaduintptr(&extram) if old == locked { yield := osyield yield() continue } if old == 0 && !nilokay { if !incr { // Add 1 to the number of threads // waiting for an M. // This is cleared by newextram. atomic.Xadd(&extraMWaiters, 1) incr = true } usleep(1) continue } if atomic.Casuintptr(&extram, old, locked) { return (*m)(unsafe.Pointer(old)) } yield := osyield yield() continue } } //go:nosplit func unlockextra(mp *m) { atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp))) } // execLock serializes exec and clone to avoid bugs or unspecified behaviour // around exec'ing while creating/destroying threads. See issue #19546. var execLock rwmutex // newmHandoff contains a list of m structures that need new OS threads. // This is used by newm in situations where newm itself can't safely // start an OS thread. var newmHandoff struct { lock mutex // newm points to a list of M structures that need new OS // threads. The list is linked through m.schedlink. newm muintptr // waiting indicates that wake needs to be notified when an m // is put on the list. waiting bool wake note // haveTemplateThread indicates that the templateThread has // been started. This is not protected by lock. Use cas to set // to 1. haveTemplateThread uint32 } // Create a new m. It will start off with a call to fn, or else the scheduler. // fn needs to be static and not a heap allocated closure. // May run with m.p==nil, so write barriers are not allowed. //go:nowritebarrierrec func newm(fn func(), _p_ *p) { mp := allocm(_p_, fn) mp.nextp.set(_p_) mp.sigmask = initSigmask if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" { // We're on a locked M or a thread that may have been // started by C. The kernel state of this thread may // be strange (the user may have locked it for that // purpose). We don't want to clone that into another // thread. Instead, ask a known-good thread to create // the thread for us. // // This is disabled on Plan 9. See golang.org/issue/22227. // // TODO: This may be unnecessary on Windows, which // doesn't model thread creation off fork. lock(&newmHandoff.lock) if newmHandoff.haveTemplateThread == 0 { throw("on a locked thread with no template thread") } mp.schedlink = newmHandoff.newm newmHandoff.newm.set(mp) if newmHandoff.waiting { newmHandoff.waiting = false notewakeup(&newmHandoff.wake) } unlock(&newmHandoff.lock) return } newm1(mp) } func newm1(mp *m) { if iscgo { var ts cgothreadstart if _cgo_thread_start == nil { throw("_cgo_thread_start missing") } ts.g.set(mp.g0) ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0])) ts.fn = unsafe.Pointer(funcPC(mstart)) if msanenabled { msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts)) } execLock.rlock() // Prevent process clone. asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts)) execLock.runlock() return } execLock.rlock() // Prevent process clone. newosproc(mp, unsafe.Pointer(mp.g0.stack.hi)) execLock.runlock() } // startTemplateThread starts the template thread if it is not already // running. // // The calling thread must itself be in a known-good state. func startTemplateThread() { if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) { return } newm(templateThread, nil) } // tmeplateThread is a thread in a known-good state that exists solely // to start new threads in known-good states when the calling thread // may not be a a good state. // // Many programs never need this, so templateThread is started lazily // when we first enter a state that might lead to running on a thread // in an unknown state. // // templateThread runs on an M without a P, so it must not have write // barriers. // //go:nowritebarrierrec func templateThread() { lock(&sched.lock) sched.nmsys++ checkdead() unlock(&sched.lock) for { lock(&newmHandoff.lock) for newmHandoff.newm != 0 { newm := newmHandoff.newm.ptr() newmHandoff.newm = 0 unlock(&newmHandoff.lock) for newm != nil { next := newm.schedlink.ptr() newm.schedlink = 0 newm1(newm) newm = next } lock(&newmHandoff.lock) } newmHandoff.waiting = true noteclear(&newmHandoff.wake) unlock(&newmHandoff.lock) notesleep(&newmHandoff.wake) } } // Stops execution of the current m until new work is available. // Returns with acquired P. func stopm() { _g_ := getg() if _g_.m.locks != 0 { throw("stopm holding locks") } if _g_.m.p != 0 { throw("stopm holding p") } if _g_.m.spinning { throw("stopm spinning") } retry: lock(&sched.lock) mput(_g_.m) unlock(&sched.lock) notesleep(&_g_.m.park) noteclear(&_g_.m.park) if _g_.m.helpgc != 0 { // helpgc() set _g_.m.p and _g_.m.mcache, so we have a P. gchelper() // Undo the effects of helpgc(). _g_.m.helpgc = 0 _g_.m.mcache = nil _g_.m.p = 0 goto retry } acquirep(_g_.m.nextp.ptr()) _g_.m.nextp = 0 } func mspinning() { // startm's caller incremented nmspinning. Set the new M's spinning. getg().m.spinning = true } // Schedules some M to run the p (creates an M if necessary). // If p==nil, tries to get an idle P, if no idle P's does nothing. // May run with m.p==nil, so write barriers are not allowed. // If spinning is set, the caller has incremented nmspinning and startm will // either decrement nmspinning or set m.spinning in the newly started M. //go:nowritebarrierrec func startm(_p_ *p, spinning bool) { lock(&sched.lock) if _p_ == nil { _p_ = pidleget() if _p_ == nil { unlock(&sched.lock) if spinning { // The caller incremented nmspinning, but there are no idle Ps, // so it's okay to just undo the increment and give up. if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { throw("startm: negative nmspinning") } } return } } mp := mget() unlock(&sched.lock) if mp == nil { var fn func() if spinning { // The caller incremented nmspinning, so set m.spinning in the new M. fn = mspinning } newm(fn, _p_) return } if mp.spinning { throw("startm: m is spinning") } if mp.nextp != 0 { throw("startm: m has p") } if spinning && !runqempty(_p_) { throw("startm: p has runnable gs") } // The caller incremented nmspinning, so set m.spinning in the new M. mp.spinning = spinning mp.nextp.set(_p_) notewakeup(&mp.park) } // Hands off P from syscall or locked M. // Always runs without a P, so write barriers are not allowed. //go:nowritebarrierrec func handoffp(_p_ *p) { // handoffp must start an M in any situation where // findrunnable would return a G to run on _p_. // if it has local work, start it straight away if !runqempty(_p_) || sched.runqsize != 0 { startm(_p_, false) return } // if it has GC work, start it straight away if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) { startm(_p_, false) return } // no local work, check that there are no spinning/idle M's, // otherwise our help is not required if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic startm(_p_, true) return } lock(&sched.lock) if sched.gcwaiting != 0 { _p_.status = _Pgcstop sched.stopwait-- if sched.stopwait == 0 { notewakeup(&sched.stopnote) } unlock(&sched.lock) return } if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) { sched.safePointFn(_p_) sched.safePointWait-- if sched.safePointWait == 0 { notewakeup(&sched.safePointNote) } } if sched.runqsize != 0 { unlock(&sched.lock) startm(_p_, false) return } // If this is the last running P and nobody is polling network, // need to wakeup another M to poll network. if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 { unlock(&sched.lock) startm(_p_, false) return } pidleput(_p_) unlock(&sched.lock) } // Tries to add one more P to execute G's. // Called when a G is made runnable (newproc, ready). func wakep() { // be conservative about spinning threads if !atomic.Cas(&sched.nmspinning, 0, 1) { return } startm(nil, true) } // Stops execution of the current m that is locked to a g until the g is runnable again. // Returns with acquired P. func stoplockedm() { _g_ := getg() if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m { throw("stoplockedm: inconsistent locking") } if _g_.m.p != 0 { // Schedule another M to run this p. _p_ := releasep() handoffp(_p_) } incidlelocked(1) // Wait until another thread schedules lockedg again. notesleep(&_g_.m.park) noteclear(&_g_.m.park) status := readgstatus(_g_.m.lockedg.ptr()) if status&^_Gscan != _Grunnable { print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n") dumpgstatus(_g_) throw("stoplockedm: not runnable") } acquirep(_g_.m.nextp.ptr()) _g_.m.nextp = 0 } // Schedules the locked m to run the locked gp. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func startlockedm(gp *g) { _g_ := getg() mp := gp.lockedm.ptr() if mp == _g_.m { throw("startlockedm: locked to me") } if mp.nextp != 0 { throw("startlockedm: m has p") } // directly handoff current P to the locked m incidlelocked(-1) _p_ := releasep() mp.nextp.set(_p_) notewakeup(&mp.park) stopm() } // Stops the current m for stopTheWorld. // Returns when the world is restarted. func gcstopm() { _g_ := getg() if sched.gcwaiting == 0 { throw("gcstopm: not waiting for gc") } if _g_.m.spinning { _g_.m.spinning = false // OK to just drop nmspinning here, // startTheWorld will unpark threads as necessary. if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { throw("gcstopm: negative nmspinning") } } _p_ := releasep() lock(&sched.lock) _p_.status = _Pgcstop sched.stopwait-- if sched.stopwait == 0 { notewakeup(&sched.stopnote) } unlock(&sched.lock) stopm() } // Schedules gp to run on the current M. // If inheritTime is true, gp inherits the remaining time in the // current time slice. Otherwise, it starts a new time slice. // Never returns. // // Write barriers are allowed because this is called immediately after // acquiring a P in several places. // //go:yeswritebarrierrec func execute(gp *g, inheritTime bool) { _g_ := getg() casgstatus(gp, _Grunnable, _Grunning) gp.waitsince = 0 gp.preempt = false gp.stackguard0 = gp.stack.lo + _StackGuard if !inheritTime { _g_.m.p.ptr().schedtick++ } _g_.m.curg = gp gp.m = _g_.m // Check whether the profiler needs to be turned on or off. hz := sched.profilehz if _g_.m.profilehz != hz { setThreadCPUProfiler(hz) } if trace.enabled { // GoSysExit has to happen when we have a P, but before GoStart. // So we emit it here. if gp.syscallsp != 0 && gp.sysblocktraced { traceGoSysExit(gp.sysexitticks) } traceGoStart() } gogo(&gp.sched) } // Finds a runnable goroutine to execute. // Tries to steal from other P's, get g from global queue, poll network. func findrunnable() (gp *g, inheritTime bool) { _g_ := getg() // The conditions here and in handoffp must agree: if // findrunnable would return a G to run, handoffp must start // an M. top: _p_ := _g_.m.p.ptr() if sched.gcwaiting != 0 { gcstopm() goto top } if _p_.runSafePointFn != 0 { runSafePointFn() } if fingwait && fingwake { if gp := wakefing(); gp != nil { ready(gp, 0, true) } } if *cgo_yield != nil { asmcgocall(*cgo_yield, nil) } // local runq if gp, inheritTime := runqget(_p_); gp != nil { return gp, inheritTime } // global runq if sched.runqsize != 0 { lock(&sched.lock) gp := globrunqget(_p_, 0) unlock(&sched.lock) if gp != nil { return gp, false } } // Poll network. // This netpoll is only an optimization before we resort to stealing. // We can safely skip it if there are no waiters or a thread is blocked // in netpoll already. If there is any kind of logical race with that // blocked thread (e.g. it has already returned from netpoll, but does // not set lastpoll yet), this thread will do blocking netpoll below // anyway. if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 { if gp := netpoll(false); gp != nil { // non-blocking // netpoll returns list of goroutines linked by schedlink. injectglist(gp.schedlink.ptr()) casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } } // Steal work from other P's. procs := uint32(gomaxprocs) if atomic.Load(&sched.npidle) == procs-1 { // Either GOMAXPROCS=1 or everybody, except for us, is idle already. // New work can appear from returning syscall/cgocall, network or timers. // Neither of that submits to local run queues, so no point in stealing. goto stop } // If number of spinning M's >= number of busy P's, block. // This is necessary to prevent excessive CPU consumption // when GOMAXPROCS>>1 but the program parallelism is low. if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) { goto stop } if !_g_.m.spinning { _g_.m.spinning = true atomic.Xadd(&sched.nmspinning, 1) } for i := 0; i < 4; i++ { for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() { if sched.gcwaiting != 0 { goto top } stealRunNextG := i > 2 // first look for ready queues with more than 1 g if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil { return gp, false } } } stop: // We have nothing to do. If we're in the GC mark phase, can // safely scan and blacken objects, and have work to do, run // idle-time marking rather than give up the P. if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) { _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode gp := _p_.gcBgMarkWorker.ptr() casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } // Before we drop our P, make a snapshot of the allp slice, // which can change underfoot once we no longer block // safe-points. We don't need to snapshot the contents because // everything up to cap(allp) is immutable. allpSnapshot := allp // return P and block lock(&sched.lock) if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 { unlock(&sched.lock) goto top } if sched.runqsize != 0 { gp := globrunqget(_p_, 0) unlock(&sched.lock) return gp, false } if releasep() != _p_ { throw("findrunnable: wrong p") } pidleput(_p_) unlock(&sched.lock) // Delicate dance: thread transitions from spinning to non-spinning state, // potentially concurrently with submission of new goroutines. We must // drop nmspinning first and then check all per-P queues again (with // #StoreLoad memory barrier in between). If we do it the other way around, // another thread can submit a goroutine after we've checked all run queues // but before we drop nmspinning; as the result nobody will unpark a thread // to run the goroutine. // If we discover new work below, we need to restore m.spinning as a signal // for resetspinning to unpark a new worker thread (because there can be more // than one starving goroutine). However, if after discovering new work // we also observe no idle Ps, it is OK to just park the current thread: // the system is fully loaded so no spinning threads are required. // Also see "Worker thread parking/unparking" comment at the top of the file. wasSpinning := _g_.m.spinning if _g_.m.spinning { _g_.m.spinning = false if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { throw("findrunnable: negative nmspinning") } } // check all runqueues once again for _, _p_ := range allpSnapshot { if !runqempty(_p_) { lock(&sched.lock) _p_ = pidleget() unlock(&sched.lock) if _p_ != nil { acquirep(_p_) if wasSpinning { _g_.m.spinning = true atomic.Xadd(&sched.nmspinning, 1) } goto top } break } } // Check for idle-priority GC work again. if gcBlackenEnabled != 0 && gcMarkWorkAvailable(nil) { lock(&sched.lock) _p_ = pidleget() if _p_ != nil && _p_.gcBgMarkWorker == 0 { pidleput(_p_) _p_ = nil } unlock(&sched.lock) if _p_ != nil { acquirep(_p_) if wasSpinning { _g_.m.spinning = true atomic.Xadd(&sched.nmspinning, 1) } // Go back to idle GC check. goto stop } } // poll network if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Xchg64(&sched.lastpoll, 0) != 0 { if _g_.m.p != 0 { throw("findrunnable: netpoll with p") } if _g_.m.spinning { throw("findrunnable: netpoll with spinning") } gp := netpoll(true) // block until new work is available atomic.Store64(&sched.lastpoll, uint64(nanotime())) if gp != nil { lock(&sched.lock) _p_ = pidleget() unlock(&sched.lock) if _p_ != nil { acquirep(_p_) injectglist(gp.schedlink.ptr()) casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } injectglist(gp) } } stopm() goto top } // pollWork returns true if there is non-background work this P could // be doing. This is a fairly lightweight check to be used for // background work loops, like idle GC. It checks a subset of the // conditions checked by the actual scheduler. func pollWork() bool { if sched.runqsize != 0 { return true } p := getg().m.p.ptr() if !runqempty(p) { return true } if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 { if gp := netpoll(false); gp != nil { injectglist(gp) return true } } return false } func resetspinning() { _g_ := getg() if !_g_.m.spinning { throw("resetspinning: not a spinning m") } _g_.m.spinning = false nmspinning := atomic.Xadd(&sched.nmspinning, -1) if int32(nmspinning) < 0 { throw("findrunnable: negative nmspinning") } // M wakeup policy is deliberately somewhat conservative, so check if we // need to wakeup another P here. See "Worker thread parking/unparking" // comment at the top of the file for details. if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 { wakep() } } // Injects the list of runnable G's into the scheduler. // Can run concurrently with GC. func injectglist(glist *g) { if glist == nil { return } if trace.enabled { for gp := glist; gp != nil; gp = gp.schedlink.ptr() { traceGoUnpark(gp, 0) } } lock(&sched.lock) var n int for n = 0; glist != nil; n++ { gp := glist glist = gp.schedlink.ptr() casgstatus(gp, _Gwaiting, _Grunnable) globrunqput(gp) } unlock(&sched.lock) for ; n != 0 && sched.npidle != 0; n-- { startm(nil, false) } } // One round of scheduler: find a runnable goroutine and execute it. // Never returns. func schedule() { _g_ := getg() if _g_.m.locks != 0 { throw("schedule: holding locks") } if _g_.m.lockedg != 0 { stoplockedm() execute(_g_.m.lockedg.ptr(), false) // Never returns. } // We should not schedule away from a g that is executing a cgo call, // since the cgo call is using the m's g0 stack. if _g_.m.incgo { throw("schedule: in cgo") } top: if sched.gcwaiting != 0 { gcstopm() goto top } if _g_.m.p.ptr().runSafePointFn != 0 { runSafePointFn() } var gp *g var inheritTime bool if trace.enabled || trace.shutdown { gp = traceReader() if gp != nil { casgstatus(gp, _Gwaiting, _Grunnable) traceGoUnpark(gp, 0) } } if gp == nil && gcBlackenEnabled != 0 { gp = gcController.findRunnableGCWorker(_g_.m.p.ptr()) } if gp == nil { // Check the global runnable queue once in a while to ensure fairness. // Otherwise two goroutines can completely occupy the local runqueue // by constantly respawning each other. if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 { lock(&sched.lock) gp = globrunqget(_g_.m.p.ptr(), 1) unlock(&sched.lock) } } if gp == nil { gp, inheritTime = runqget(_g_.m.p.ptr()) if gp != nil && _g_.m.spinning { throw("schedule: spinning with local work") } } if gp == nil { gp, inheritTime = findrunnable() // blocks until work is available } // This thread is going to run a goroutine and is not spinning anymore, // so if it was marked as spinning we need to reset it now and potentially // start a new spinning M. if _g_.m.spinning { resetspinning() } if gp.lockedm != 0 { // Hands off own p to the locked m, // then blocks waiting for a new p. startlockedm(gp) goto top } execute(gp, inheritTime) } // dropg removes the association between m and the current goroutine m->curg (gp for short). // Typically a caller sets gp's status away from Grunning and then // immediately calls dropg to finish the job. The caller is also responsible // for arranging that gp will be restarted using ready at an // appropriate time. After calling dropg and arranging for gp to be // readied later, the caller can do other work but eventually should // call schedule to restart the scheduling of goroutines on this m. func dropg() { _g_ := getg() setMNoWB(&_g_.m.curg.m, nil) setGNoWB(&_g_.m.curg, nil) } func parkunlock_c(gp *g, lock unsafe.Pointer) bool { unlock((*mutex)(lock)) return true } // park continuation on g0. func park_m(gp *g) { _g_ := getg() if trace.enabled { traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip) } casgstatus(gp, _Grunning, _Gwaiting) dropg() if _g_.m.waitunlockf != nil { fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf)) ok := fn(gp, _g_.m.waitlock) _g_.m.waitunlockf = nil _g_.m.waitlock = nil if !ok { if trace.enabled { traceGoUnpark(gp, 2) } casgstatus(gp, _Gwaiting, _Grunnable) execute(gp, true) // Schedule it back, never returns. } } schedule() } func goschedImpl(gp *g) { status := readgstatus(gp) if status&^_Gscan != _Grunning { dumpgstatus(gp) throw("bad g status") } casgstatus(gp, _Grunning, _Grunnable) dropg() lock(&sched.lock) globrunqput(gp) unlock(&sched.lock) schedule() } // Gosched continuation on g0. func gosched_m(gp *g) { if trace.enabled { traceGoSched() } goschedImpl(gp) } // goschedguarded is a forbidden-states-avoided version of gosched_m func goschedguarded_m(gp *g) { if gp.m.locks != 0 || gp.m.mallocing != 0 || gp.m.preemptoff != "" || gp.m.p.ptr().status != _Prunning { gogo(&gp.sched) // never return } if trace.enabled { traceGoSched() } goschedImpl(gp) } func gopreempt_m(gp *g) { if trace.enabled { traceGoPreempt() } goschedImpl(gp) } // Finishes execution of the current goroutine. func goexit1() { if raceenabled { racegoend() } if trace.enabled { traceGoEnd() } mcall(goexit0) } // goexit continuation on g0. func goexit0(gp *g) { _g_ := getg() casgstatus(gp, _Grunning, _Gdead) if isSystemGoroutine(gp) { atomic.Xadd(&sched.ngsys, -1) } gp.m = nil locked := gp.lockedm != 0 gp.lockedm = 0 _g_.m.lockedg = 0 gp.paniconfault = false gp._defer = nil // should be true already but just in case. gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data. gp.writebuf = nil gp.waitreason = "" gp.param = nil gp.labels = nil gp.timer = nil if gcBlackenEnabled != 0 && gp.gcAssistBytes > 0 { // Flush assist credit to the global pool. This gives // better information to pacing if the application is // rapidly creating an exiting goroutines. scanCredit := int64(gcController.assistWorkPerByte * float64(gp.gcAssistBytes)) atomic.Xaddint64(&gcController.bgScanCredit, scanCredit) gp.gcAssistBytes = 0 } // Note that gp's stack scan is now "valid" because it has no // stack. gp.gcscanvalid = true dropg() if _g_.m.lockedInt != 0 { print("invalid m->lockedInt = ", _g_.m.lockedInt, "\n") throw("internal lockOSThread error") } _g_.m.lockedExt = 0 gfput(_g_.m.p.ptr(), gp) if locked { // The goroutine may have locked this thread because // it put it in an unusual kernel state. Kill it // rather than returning it to the thread pool. // Return to mstart, which will release the P and exit // the thread. if GOOS != "plan9" { // See golang.org/issue/22227. gogo(&_g_.m.g0.sched) } } schedule() } // save updates getg().sched to refer to pc and sp so that a following // gogo will restore pc and sp. // // save must not have write barriers because invoking a write barrier // can clobber getg().sched. // //go:nosplit //go:nowritebarrierrec func save(pc, sp uintptr) { _g_ := getg() _g_.sched.pc = pc _g_.sched.sp = sp _g_.sched.lr = 0 _g_.sched.ret = 0 _g_.sched.g = guintptr(unsafe.Pointer(_g_)) // We need to ensure ctxt is zero, but can't have a write // barrier here. However, it should always already be zero. // Assert that. if _g_.sched.ctxt != nil { badctxt() } } // The goroutine g is about to enter a system call. // Record that it's not using the cpu anymore. // This is called only from the go syscall library and cgocall, // not from the low-level system calls used by the runtime. // // Entersyscall cannot split the stack: the gosave must // make g->sched refer to the caller's stack segment, because // entersyscall is going to return immediately after. // // Nothing entersyscall calls can split the stack either. // We cannot safely move the stack during an active call to syscall, // because we do not know which of the uintptr arguments are // really pointers (back into the stack). // In practice, this means that we make the fast path run through // entersyscall doing no-split things, and the slow path has to use systemstack // to run bigger things on the system stack. // // reentersyscall is the entry point used by cgo callbacks, where explicitly // saved SP and PC are restored. This is needed when exitsyscall will be called // from a function further up in the call stack than the parent, as g->syscallsp // must always point to a valid stack frame. entersyscall below is the normal // entry point for syscalls, which obtains the SP and PC from the caller. // // Syscall tracing: // At the start of a syscall we emit traceGoSysCall to capture the stack trace. // If the syscall does not block, that is it, we do not emit any other events. // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock; // when syscall returns we emit traceGoSysExit and when the goroutine starts running // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart. // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock, // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick), // whoever emits traceGoSysBlock increments p.syscalltick afterwards; // and we wait for the increment before emitting traceGoSysExit. // Note that the increment is done even if tracing is not enabled, // because tracing can be enabled in the middle of syscall. We don't want the wait to hang. // //go:nosplit func reentersyscall(pc, sp uintptr) { _g_ := getg() // Disable preemption because during this function g is in Gsyscall status, // but can have inconsistent g->sched, do not let GC observe it. _g_.m.locks++ // Entersyscall must not call any function that might split/grow the stack. // (See details in comment above.) // Catch calls that might, by replacing the stack guard with something that // will trip any stack check and leaving a flag to tell newstack to die. _g_.stackguard0 = stackPreempt _g_.throwsplit = true // Leave SP around for GC and traceback. save(pc, sp) _g_.syscallsp = sp _g_.syscallpc = pc casgstatus(_g_, _Grunning, _Gsyscall) if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { systemstack(func() { print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") throw("entersyscall") }) } if trace.enabled { systemstack(traceGoSysCall) // systemstack itself clobbers g.sched.{pc,sp} and we might // need them later when the G is genuinely blocked in a // syscall save(pc, sp) } if atomic.Load(&sched.sysmonwait) != 0 { systemstack(entersyscall_sysmon) save(pc, sp) } if _g_.m.p.ptr().runSafePointFn != 0 { // runSafePointFn may stack split if run on this stack systemstack(runSafePointFn) save(pc, sp) } _g_.m.syscalltick = _g_.m.p.ptr().syscalltick _g_.sysblocktraced = true _g_.m.mcache = nil _g_.m.p.ptr().m = 0 atomic.Store(&_g_.m.p.ptr().status, _Psyscall) if sched.gcwaiting != 0 { systemstack(entersyscall_gcwait) save(pc, sp) } // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched). // We set _StackGuard to StackPreempt so that first split stack check calls morestack. // Morestack detects this case and throws. _g_.stackguard0 = stackPreempt _g_.m.locks-- } // Standard syscall entry used by the go syscall library and normal cgo calls. //go:nosplit func entersyscall(dummy int32) { reentersyscall(getcallerpc(), getcallersp(unsafe.Pointer(&dummy))) } func entersyscall_sysmon() { lock(&sched.lock) if atomic.Load(&sched.sysmonwait) != 0 { atomic.Store(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) } func entersyscall_gcwait() { _g_ := getg() _p_ := _g_.m.p.ptr() lock(&sched.lock) if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) { if trace.enabled { traceGoSysBlock(_p_) traceProcStop(_p_) } _p_.syscalltick++ if sched.stopwait--; sched.stopwait == 0 { notewakeup(&sched.stopnote) } } unlock(&sched.lock) } // The same as entersyscall(), but with a hint that the syscall is blocking. //go:nosplit func entersyscallblock(dummy int32) { _g_ := getg() _g_.m.locks++ // see comment in entersyscall _g_.throwsplit = true _g_.stackguard0 = stackPreempt // see comment in entersyscall _g_.m.syscalltick = _g_.m.p.ptr().syscalltick _g_.sysblocktraced = true _g_.m.p.ptr().syscalltick++ // Leave SP around for GC and traceback. pc := getcallerpc() sp := getcallersp(unsafe.Pointer(&dummy)) save(pc, sp) _g_.syscallsp = _g_.sched.sp _g_.syscallpc = _g_.sched.pc if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { sp1 := sp sp2 := _g_.sched.sp sp3 := _g_.syscallsp systemstack(func() { print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") throw("entersyscallblock") }) } casgstatus(_g_, _Grunning, _Gsyscall) if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { systemstack(func() { print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") throw("entersyscallblock") }) } systemstack(entersyscallblock_handoff) // Resave for traceback during blocked call. save(getcallerpc(), getcallersp(unsafe.Pointer(&dummy))) _g_.m.locks-- } func entersyscallblock_handoff() { if trace.enabled { traceGoSysCall() traceGoSysBlock(getg().m.p.ptr()) } handoffp(releasep()) } // The goroutine g exited its system call. // Arrange for it to run on a cpu again. // This is called only from the go syscall library, not // from the low-level system calls used by the runtime. // // Write barriers are not allowed because our P may have been stolen. // //go:nosplit //go:nowritebarrierrec func exitsyscall(dummy int32) { _g_ := getg() _g_.m.locks++ // see comment in entersyscall if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp { // throw calls print which may try to grow the stack, // but throwsplit == true so the stack can not be grown; // use systemstack to avoid that possible problem. systemstack(func() { throw("exitsyscall: syscall frame is no longer valid") }) } _g_.waitsince = 0 oldp := _g_.m.p.ptr() if exitsyscallfast() { if _g_.m.mcache == nil { systemstack(func() { throw("lost mcache") }) } if trace.enabled { if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { systemstack(traceGoStart) } } // There's a cpu for us, so we can run. _g_.m.p.ptr().syscalltick++ // We need to cas the status and scan before resuming... casgstatus(_g_, _Gsyscall, _Grunning) // Garbage collector isn't running (since we are), // so okay to clear syscallsp. _g_.syscallsp = 0 _g_.m.locks-- if _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } else { // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock _g_.stackguard0 = _g_.stack.lo + _StackGuard } _g_.throwsplit = false return } _g_.sysexitticks = 0 if trace.enabled { // Wait till traceGoSysBlock event is emitted. // This ensures consistency of the trace (the goroutine is started after it is blocked). for oldp != nil && oldp.syscalltick == _g_.m.syscalltick { osyield() } // We can't trace syscall exit right now because we don't have a P. // Tracing code can invoke write barriers that cannot run without a P. // So instead we remember the syscall exit time and emit the event // in execute when we have a P. _g_.sysexitticks = cputicks() } _g_.m.locks-- // Call the scheduler. mcall(exitsyscall0) if _g_.m.mcache == nil { systemstack(func() { throw("lost mcache") }) } // Scheduler returned, so we're allowed to run now. // Delete the syscallsp information that we left for // the garbage collector during the system call. // Must wait until now because until gosched returns // we don't know for sure that the garbage collector // is not running. _g_.syscallsp = 0 _g_.m.p.ptr().syscalltick++ _g_.throwsplit = false } //go:nosplit func exitsyscallfast() bool { _g_ := getg() // Freezetheworld sets stopwait but does not retake P's. if sched.stopwait == freezeStopWait { _g_.m.mcache = nil _g_.m.p = 0 return false } // Try to re-acquire the last P. if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && atomic.Cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) { // There's a cpu for us, so we can run. exitsyscallfast_reacquired() return true } // Try to get any other idle P. oldp := _g_.m.p.ptr() _g_.m.mcache = nil _g_.m.p = 0 if sched.pidle != 0 { var ok bool systemstack(func() { ok = exitsyscallfast_pidle() if ok && trace.enabled { if oldp != nil { // Wait till traceGoSysBlock event is emitted. // This ensures consistency of the trace (the goroutine is started after it is blocked). for oldp.syscalltick == _g_.m.syscalltick { osyield() } } traceGoSysExit(0) } }) if ok { return true } } return false } // exitsyscallfast_reacquired is the exitsyscall path on which this G // has successfully reacquired the P it was running on before the // syscall. // // This function is allowed to have write barriers because exitsyscall // has acquired a P at this point. // //go:yeswritebarrierrec //go:nosplit func exitsyscallfast_reacquired() { _g_ := getg() _g_.m.mcache = _g_.m.p.ptr().mcache _g_.m.p.ptr().m.set(_g_.m) if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { if trace.enabled { // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed). // traceGoSysBlock for this syscall was already emitted, // but here we effectively retake the p from the new syscall running on the same p. systemstack(func() { // Denote blocking of the new syscall. traceGoSysBlock(_g_.m.p.ptr()) // Denote completion of the current syscall. traceGoSysExit(0) }) } _g_.m.p.ptr().syscalltick++ } } func exitsyscallfast_pidle() bool { lock(&sched.lock) _p_ := pidleget() if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 { atomic.Store(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) if _p_ != nil { acquirep(_p_) return true } return false } // exitsyscall slow path on g0. // Failed to acquire P, enqueue gp as runnable. // //go:nowritebarrierrec func exitsyscall0(gp *g) { _g_ := getg() casgstatus(gp, _Gsyscall, _Grunnable) dropg() lock(&sched.lock) _p_ := pidleget() if _p_ == nil { globrunqput(gp) } else if atomic.Load(&sched.sysmonwait) != 0 { atomic.Store(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) if _p_ != nil { acquirep(_p_) execute(gp, false) // Never returns. } if _g_.m.lockedg != 0 { // Wait until another thread schedules gp and so m again. stoplockedm() execute(gp, false) // Never returns. } stopm() schedule() // Never returns. } func beforefork() { gp := getg().m.curg // Block signals during a fork, so that the child does not run // a signal handler before exec if a signal is sent to the process // group. See issue #18600. gp.m.locks++ msigsave(gp.m) sigblock() // This function is called before fork in syscall package. // Code between fork and exec must not allocate memory nor even try to grow stack. // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack. // runtime_AfterFork will undo this in parent process, but not in child. gp.stackguard0 = stackFork } // Called from syscall package before fork. //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork //go:nosplit func syscall_runtime_BeforeFork() { systemstack(beforefork) } func afterfork() { gp := getg().m.curg // See the comments in beforefork. gp.stackguard0 = gp.stack.lo + _StackGuard msigrestore(gp.m.sigmask) gp.m.locks-- } // Called from syscall package after fork in parent. //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork //go:nosplit func syscall_runtime_AfterFork() { systemstack(afterfork) } // inForkedChild is true while manipulating signals in the child process. // This is used to avoid calling libc functions in case we are using vfork. var inForkedChild bool // Called from syscall package after fork in child. // It resets non-sigignored signals to the default handler, and // restores the signal mask in preparation for the exec. // // Because this might be called during a vfork, and therefore may be // temporarily sharing address space with the parent process, this must // not change any global variables or calling into C code that may do so. // //go:linkname syscall_runtime_AfterForkInChild syscall.runtime_AfterForkInChild //go:nosplit //go:nowritebarrierrec func syscall_runtime_AfterForkInChild() { // It's OK to change the global variable inForkedChild here // because we are going to change it back. There is no race here, // because if we are sharing address space with the parent process, // then the parent process can not be running concurrently. inForkedChild = true clearSignalHandlers() // When we are the child we are the only thread running, // so we know that nothing else has changed gp.m.sigmask. msigrestore(getg().m.sigmask) inForkedChild = false } // Called from syscall package before Exec. //go:linkname syscall_runtime_BeforeExec syscall.runtime_BeforeExec func syscall_runtime_BeforeExec() { // Prevent thread creation during exec. execLock.lock() } // Called from syscall package after Exec. //go:linkname syscall_runtime_AfterExec syscall.runtime_AfterExec func syscall_runtime_AfterExec() { execLock.unlock() } // Allocate a new g, with a stack big enough for stacksize bytes. func malg(stacksize int32) *g { newg := new(g) if stacksize >= 0 { stacksize = round2(_StackSystem + stacksize) systemstack(func() { newg.stack = stackalloc(uint32(stacksize)) }) newg.stackguard0 = newg.stack.lo + _StackGuard newg.stackguard1 = ^uintptr(0) } return newg } // Create a new g running fn with siz bytes of arguments. // Put it on the queue of g's waiting to run. // The compiler turns a go statement into a call to this. // Cannot split the stack because it assumes that the arguments // are available sequentially after &fn; they would not be // copied if a stack split occurred. //go:nosplit func newproc(siz int32, fn *funcval) { argp := add(unsafe.Pointer(&fn), sys.PtrSize) pc := getcallerpc() systemstack(func() { newproc1(fn, (*uint8)(argp), siz, pc) }) } // Create a new g running fn with narg bytes of arguments starting // at argp. callerpc is the address of the go statement that created // this. The new g is put on the queue of g's waiting to run. func newproc1(fn *funcval, argp *uint8, narg int32, callerpc uintptr) { _g_ := getg() if fn == nil { _g_.m.throwing = -1 // do not dump full stacks throw("go of nil func value") } _g_.m.locks++ // disable preemption because it can be holding p in a local var siz := narg siz = (siz + 7) &^ 7 // We could allocate a larger initial stack if necessary. // Not worth it: this is almost always an error. // 4*sizeof(uintreg): extra space added below // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall). if siz >= _StackMin-4*sys.RegSize-sys.RegSize { throw("newproc: function arguments too large for new goroutine") } _p_ := _g_.m.p.ptr() newg := gfget(_p_) if newg == nil { newg = malg(_StackMin) casgstatus(newg, _Gidle, _Gdead) allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack. } if newg.stack.hi == 0 { throw("newproc1: newg missing stack") } if readgstatus(newg) != _Gdead { throw("newproc1: new g is not Gdead") } totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign sp := newg.stack.hi - totalSize spArg := sp if usesLR { // caller's LR *(*uintptr)(unsafe.Pointer(sp)) = 0 prepGoExitFrame(sp) spArg += sys.MinFrameSize } if narg > 0 { memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg)) // This is a stack-to-stack copy. If write barriers // are enabled and the source stack is grey (the // destination is always black), then perform a // barrier copy. We do this *after* the memmove // because the destination stack may have garbage on // it. if writeBarrier.needed && !_g_.m.curg.gcscandone { f := findfunc(fn.fn) stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps)) // We're in the prologue, so it's always stack map index 0. bv := stackmapdata(stkmap, 0) bulkBarrierBitmap(spArg, spArg, uintptr(narg), 0, bv.bytedata) } } memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched)) newg.sched.sp = sp newg.stktopsp = sp newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function newg.sched.g = guintptr(unsafe.Pointer(newg)) gostartcallfn(&newg.sched, fn) newg.gopc = callerpc newg.startpc = fn.fn if _g_.m.curg != nil { newg.labels = _g_.m.curg.labels } if isSystemGoroutine(newg) { atomic.Xadd(&sched.ngsys, +1) } newg.gcscanvalid = false casgstatus(newg, _Gdead, _Grunnable) if _p_.goidcache == _p_.goidcacheend { // Sched.goidgen is the last allocated id, // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch]. // At startup sched.goidgen=0, so main goroutine receives goid=1. _p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch) _p_.goidcache -= _GoidCacheBatch - 1 _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch } newg.goid = int64(_p_.goidcache) _p_.goidcache++ if raceenabled { newg.racectx = racegostart(callerpc) } if trace.enabled { traceGoCreate(newg, newg.startpc) } runqput(_p_, newg, true) if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted { wakep() } _g_.m.locks-- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } } // Put on gfree list. // If local list is too long, transfer a batch to the global list. func gfput(_p_ *p, gp *g) { if readgstatus(gp) != _Gdead { throw("gfput: bad status (not Gdead)") } stksize := gp.stack.hi - gp.stack.lo if stksize != _FixedStack { // non-standard stack size - free it. stackfree(gp.stack) gp.stack.lo = 0 gp.stack.hi = 0 gp.stackguard0 = 0 } gp.schedlink.set(_p_.gfree) _p_.gfree = gp _p_.gfreecnt++ if _p_.gfreecnt >= 64 { lock(&sched.gflock) for _p_.gfreecnt >= 32 { _p_.gfreecnt-- gp = _p_.gfree _p_.gfree = gp.schedlink.ptr() if gp.stack.lo == 0 { gp.schedlink.set(sched.gfreeNoStack) sched.gfreeNoStack = gp } else { gp.schedlink.set(sched.gfreeStack) sched.gfreeStack = gp } sched.ngfree++ } unlock(&sched.gflock) } } // Get from gfree list. // If local list is empty, grab a batch from global list. func gfget(_p_ *p) *g { retry: gp := _p_.gfree if gp == nil && (sched.gfreeStack != nil || sched.gfreeNoStack != nil) { lock(&sched.gflock) for _p_.gfreecnt < 32 { if sched.gfreeStack != nil { // Prefer Gs with stacks. gp = sched.gfreeStack sched.gfreeStack = gp.schedlink.ptr() } else if sched.gfreeNoStack != nil { gp = sched.gfreeNoStack sched.gfreeNoStack = gp.schedlink.ptr() } else { break } _p_.gfreecnt++ sched.ngfree-- gp.schedlink.set(_p_.gfree) _p_.gfree = gp } unlock(&sched.gflock) goto retry } if gp != nil { _p_.gfree = gp.schedlink.ptr() _p_.gfreecnt-- if gp.stack.lo == 0 { // Stack was deallocated in gfput. Allocate a new one. systemstack(func() { gp.stack = stackalloc(_FixedStack) }) gp.stackguard0 = gp.stack.lo + _StackGuard } else { if raceenabled { racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo) } if msanenabled { msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo) } } } return gp } // Purge all cached G's from gfree list to the global list. func gfpurge(_p_ *p) { lock(&sched.gflock) for _p_.gfreecnt != 0 { _p_.gfreecnt-- gp := _p_.gfree _p_.gfree = gp.schedlink.ptr() if gp.stack.lo == 0 { gp.schedlink.set(sched.gfreeNoStack) sched.gfreeNoStack = gp } else { gp.schedlink.set(sched.gfreeStack) sched.gfreeStack = gp } sched.ngfree++ } unlock(&sched.gflock) } // Breakpoint executes a breakpoint trap. func Breakpoint() { breakpoint() } // dolockOSThread is called by LockOSThread and lockOSThread below // after they modify m.locked. Do not allow preemption during this call, // or else the m might be different in this function than in the caller. //go:nosplit func dolockOSThread() { _g_ := getg() _g_.m.lockedg.set(_g_) _g_.lockedm.set(_g_.m) } //go:nosplit // LockOSThread wires the calling goroutine to its current operating system thread. // The calling goroutine will always execute in that thread, // and no other goroutine will execute in it, // until the calling goroutine has made as many calls to // UnlockOSThread as to LockOSThread. // If the calling goroutine exits without unlocking the thread, // the thread will be terminated. // // A goroutine should call LockOSThread before calling OS services or // non-Go library functions that depend on per-thread state. func LockOSThread() { if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" { // If we need to start a new thread from the locked // thread, we need the template thread. Start it now // while we're in a known-good state. startTemplateThread() } _g_ := getg() _g_.m.lockedExt++ if _g_.m.lockedExt == 0 { _g_.m.lockedExt-- panic("LockOSThread nesting overflow") } dolockOSThread() } //go:nosplit func lockOSThread() { getg().m.lockedInt++ dolockOSThread() } // dounlockOSThread is called by UnlockOSThread and unlockOSThread below // after they update m->locked. Do not allow preemption during this call, // or else the m might be in different in this function than in the caller. //go:nosplit func dounlockOSThread() { _g_ := getg() if _g_.m.lockedInt != 0 || _g_.m.lockedExt != 0 { return } _g_.m.lockedg = 0 _g_.lockedm = 0 } //go:nosplit // UnlockOSThread undoes an earlier call to LockOSThread. // If this drops the number of active LockOSThread calls on the // calling goroutine to zero, it unwires the calling goroutine from // its fixed operating system thread. // If there are no active LockOSThread calls, this is a no-op. // // Before calling UnlockOSThread, the caller must ensure that the OS // thread is suitable for running other goroutines. If the caller made // any permanent changes to the state of the thread that would affect // other goroutines, it should not call this function and thus leave // the goroutine locked to the OS thread until the goroutine (and // hence the thread) exits. func UnlockOSThread() { _g_ := getg() if _g_.m.lockedExt == 0 { return } _g_.m.lockedExt-- dounlockOSThread() } //go:nosplit func unlockOSThread() { _g_ := getg() if _g_.m.lockedInt == 0 { systemstack(badunlockosthread) } _g_.m.lockedInt-- dounlockOSThread() } func badunlockosthread() { throw("runtime: internal error: misuse of lockOSThread/unlockOSThread") } func gcount() int32 { n := int32(allglen) - sched.ngfree - int32(atomic.Load(&sched.ngsys)) for _, _p_ := range allp { n -= _p_.gfreecnt } // All these variables can be changed concurrently, so the result can be inconsistent. // But at least the current goroutine is running. if n < 1 { n = 1 } return n } func mcount() int32 { return int32(sched.mnext - sched.nmfreed) } var prof struct { signalLock uint32 hz int32 } func _System() { _System() } func _ExternalCode() { _ExternalCode() } func _LostExternalCode() { _LostExternalCode() } func _GC() { _GC() } func _LostSIGPROFDuringAtomic64() { _LostSIGPROFDuringAtomic64() } // Counts SIGPROFs received while in atomic64 critical section, on mips{,le} var lostAtomic64Count uint64 // Called if we receive a SIGPROF signal. // Called by the signal handler, may run during STW. //go:nowritebarrierrec func sigprof(pc, sp, lr uintptr, gp *g, mp *m) { if prof.hz == 0 { return } // On mips{,le}, 64bit atomics are emulated with spinlocks, in // runtime/internal/atomic. If SIGPROF arrives while the program is inside // the critical section, it creates a deadlock (when writing the sample). // As a workaround, create a counter of SIGPROFs while in critical section // to store the count, and pass it to sigprof.add() later when SIGPROF is // received from somewhere else (with _LostSIGPROFDuringAtomic64 as pc). if GOARCH == "mips" || GOARCH == "mipsle" { if f := findfunc(pc); f.valid() { if hasprefix(funcname(f), "runtime/internal/atomic") { lostAtomic64Count++ return } } } // Profiling runs concurrently with GC, so it must not allocate. // Set a trap in case the code does allocate. // Note that on windows, one thread takes profiles of all the // other threads, so mp is usually not getg().m. // In fact mp may not even be stopped. // See golang.org/issue/17165. getg().m.mallocing++ // Define that a "user g" is a user-created goroutine, and a "system g" // is one that is m->g0 or m->gsignal. // // We might be interrupted for profiling halfway through a // goroutine switch. The switch involves updating three (or four) values: // g, PC, SP, and (on arm) LR. The PC must be the last to be updated, // because once it gets updated the new g is running. // // When switching from a user g to a system g, LR is not considered live, // so the update only affects g, SP, and PC. Since PC must be last, there // the possible partial transitions in ordinary execution are (1) g alone is updated, // (2) both g and SP are updated, and (3) SP alone is updated. // If SP or g alone is updated, we can detect the partial transition by checking // whether the SP is within g's stack bounds. (We could also require that SP // be changed only after g, but the stack bounds check is needed by other // cases, so there is no need to impose an additional requirement.) // // There is one exceptional transition to a system g, not in ordinary execution. // When a signal arrives, the operating system starts the signal handler running // with an updated PC and SP. The g is updated last, at the beginning of the // handler. There are two reasons this is okay. First, until g is updated the // g and SP do not match, so the stack bounds check detects the partial transition. // Second, signal handlers currently run with signals disabled, so a profiling // signal cannot arrive during the handler. // // When switching from a system g to a user g, there are three possibilities. // // First, it may be that the g switch has no PC update, because the SP // either corresponds to a user g throughout (as in asmcgocall) // or because it has been arranged to look like a user g frame // (as in cgocallback_gofunc). In this case, since the entire // transition is a g+SP update, a partial transition updating just one of // those will be detected by the stack bounds check. // // Second, when returning from a signal handler, the PC and SP updates // are performed by the operating system in an atomic update, so the g // update must be done before them. The stack bounds check detects // the partial transition here, and (again) signal handlers run with signals // disabled, so a profiling signal cannot arrive then anyway. // // Third, the common case: it may be that the switch updates g, SP, and PC // separately. If the PC is within any of the functions that does this, // we don't ask for a traceback. C.F. the function setsSP for more about this. // // There is another apparently viable approach, recorded here in case // the "PC within setsSP function" check turns out not to be usable. // It would be possible to delay the update of either g or SP until immediately // before the PC update instruction. Then, because of the stack bounds check, // the only problematic interrupt point is just before that PC update instruction, // and the sigprof handler can detect that instruction and simulate stepping past // it in order to reach a consistent state. On ARM, the update of g must be made // in two places (in R10 and also in a TLS slot), so the delayed update would // need to be the SP update. The sigprof handler must read the instruction at // the current PC and if it was the known instruction (for example, JMP BX or // MOV R2, PC), use that other register in place of the PC value. // The biggest drawback to this solution is that it requires that we can tell // whether it's safe to read from the memory pointed at by PC. // In a correct program, we can test PC == nil and otherwise read, // but if a profiling signal happens at the instant that a program executes // a bad jump (before the program manages to handle the resulting fault) // the profiling handler could fault trying to read nonexistent memory. // // To recap, there are no constraints on the assembly being used for the // transition. We simply require that g and SP match and that the PC is not // in gogo. traceback := true if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) { traceback = false } var stk [maxCPUProfStack]uintptr n := 0 if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 { cgoOff := 0 // Check cgoCallersUse to make sure that we are not // interrupting other code that is fiddling with // cgoCallers. We are running in a signal handler // with all signals blocked, so we don't have to worry // about any other code interrupting us. if atomic.Load(&mp.cgoCallersUse) == 0 && mp.cgoCallers != nil && mp.cgoCallers[0] != 0 { for cgoOff < len(mp.cgoCallers) && mp.cgoCallers[cgoOff] != 0 { cgoOff++ } copy(stk[:], mp.cgoCallers[:cgoOff]) mp.cgoCallers[0] = 0 } // Collect Go stack that leads to the cgo call. n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[cgoOff], len(stk)-cgoOff, nil, nil, 0) } else if traceback { n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack) } if n <= 0 { // Normal traceback is impossible or has failed. // See if it falls into several common cases. n = 0 if GOOS == "windows" && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 { // Libcall, i.e. runtime syscall on windows. // Collect Go stack that leads to the call. n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0) } if n == 0 { // If all of the above has failed, account it against abstract "System" or "GC". n = 2 // "ExternalCode" is better than "etext". if pc > firstmoduledata.etext { pc = funcPC(_ExternalCode) + sys.PCQuantum } stk[0] = pc if mp.preemptoff != "" || mp.helpgc != 0 { stk[1] = funcPC(_GC) + sys.PCQuantum } else { stk[1] = funcPC(_System) + sys.PCQuantum } } } if prof.hz != 0 { if (GOARCH == "mips" || GOARCH == "mipsle") && lostAtomic64Count > 0 { cpuprof.addLostAtomic64(lostAtomic64Count) lostAtomic64Count = 0 } cpuprof.add(gp, stk[:n]) } getg().m.mallocing-- } // If the signal handler receives a SIGPROF signal on a non-Go thread, // it tries to collect a traceback into sigprofCallers. // sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback. var sigprofCallers cgoCallers var sigprofCallersUse uint32 // sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread, // and the signal handler collected a stack trace in sigprofCallers. // When this is called, sigprofCallersUse will be non-zero. // g is nil, and what we can do is very limited. //go:nosplit //go:nowritebarrierrec func sigprofNonGo() { if prof.hz != 0 { n := 0 for n < len(sigprofCallers) && sigprofCallers[n] != 0 { n++ } cpuprof.addNonGo(sigprofCallers[:n]) } atomic.Store(&sigprofCallersUse, 0) } // sigprofNonGoPC is called when a profiling signal arrived on a // non-Go thread and we have a single PC value, not a stack trace. // g is nil, and what we can do is very limited. //go:nosplit //go:nowritebarrierrec func sigprofNonGoPC(pc uintptr) { if prof.hz != 0 { stk := []uintptr{ pc, funcPC(_ExternalCode) + sys.PCQuantum, } cpuprof.addNonGo(stk) } } // Reports whether a function will set the SP // to an absolute value. Important that // we don't traceback when these are at the bottom // of the stack since we can't be sure that we will // find the caller. // // If the function is not on the bottom of the stack // we assume that it will have set it up so that traceback will be consistent, // either by being a traceback terminating function // or putting one on the stack at the right offset. func setsSP(pc uintptr) bool { f := findfunc(pc) if !f.valid() { // couldn't find the function for this PC, // so assume the worst and stop traceback return true } switch f.entry { case gogoPC, systemstackPC, mcallPC, morestackPC: return true } return false } // setcpuprofilerate sets the CPU profiling rate to hz times per second. // If hz <= 0, setcpuprofilerate turns off CPU profiling. func setcpuprofilerate(hz int32) { // Force sane arguments. if hz < 0 { hz = 0 } // Disable preemption, otherwise we can be rescheduled to another thread // that has profiling enabled. _g_ := getg() _g_.m.locks++ // Stop profiler on this thread so that it is safe to lock prof. // if a profiling signal came in while we had prof locked, // it would deadlock. setThreadCPUProfiler(0) for !atomic.Cas(&prof.signalLock, 0, 1) { osyield() } if prof.hz != hz { setProcessCPUProfiler(hz) prof.hz = hz } atomic.Store(&prof.signalLock, 0) lock(&sched.lock) sched.profilehz = hz unlock(&sched.lock) if hz != 0 { setThreadCPUProfiler(hz) } _g_.m.locks-- } // Change number of processors. The world is stopped, sched is locked. // gcworkbufs are not being modified by either the GC or // the write barrier code. // Returns list of Ps with local work, they need to be scheduled by the caller. func procresize(nprocs int32) *p { old := gomaxprocs if old < 0 || nprocs <= 0 { throw("procresize: invalid arg") } if trace.enabled { traceGomaxprocs(nprocs) } // update statistics now := nanotime() if sched.procresizetime != 0 { sched.totaltime += int64(old) * (now - sched.procresizetime) } sched.procresizetime = now // Grow allp if necessary. if nprocs > int32(len(allp)) { // Synchronize with retake, which could be running // concurrently since it doesn't run on a P. lock(&allpLock) if nprocs <= int32(cap(allp)) { allp = allp[:nprocs] } else { nallp := make([]*p, nprocs) // Copy everything up to allp's cap so we // never lose old allocated Ps. copy(nallp, allp[:cap(allp)]) allp = nallp } unlock(&allpLock) } // initialize new P's for i := int32(0); i < nprocs; i++ { pp := allp[i] if pp == nil { pp = new(p) pp.id = i pp.status = _Pgcstop pp.sudogcache = pp.sudogbuf[:0] for i := range pp.deferpool { pp.deferpool[i] = pp.deferpoolbuf[i][:0] } pp.wbBuf.reset() atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp)) } if pp.mcache == nil { if old == 0 && i == 0 { if getg().m.mcache == nil { throw("missing mcache?") } pp.mcache = getg().m.mcache // bootstrap } else { pp.mcache = allocmcache() } } if raceenabled && pp.racectx == 0 { if old == 0 && i == 0 { pp.racectx = raceprocctx0 raceprocctx0 = 0 // bootstrap } else { pp.racectx = raceproccreate() } } } // free unused P's for i := nprocs; i < old; i++ { p := allp[i] if trace.enabled && p == getg().m.p.ptr() { // moving to p[0], pretend that we were descheduled // and then scheduled again to keep the trace sane. traceGoSched() traceProcStop(p) } // move all runnable goroutines to the global queue for p.runqhead != p.runqtail { // pop from tail of local queue p.runqtail-- gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr() // push onto head of global queue globrunqputhead(gp) } if p.runnext != 0 { globrunqputhead(p.runnext.ptr()) p.runnext = 0 } // if there's a background worker, make it runnable and put // it on the global queue so it can clean itself up if gp := p.gcBgMarkWorker.ptr(); gp != nil { casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } globrunqput(gp) // This assignment doesn't race because the // world is stopped. p.gcBgMarkWorker.set(nil) } // Flush p's write barrier buffer. if gcphase != _GCoff { wbBufFlush1(p) p.gcw.dispose() } for i := range p.sudogbuf { p.sudogbuf[i] = nil } p.sudogcache = p.sudogbuf[:0] for i := range p.deferpool { for j := range p.deferpoolbuf[i] { p.deferpoolbuf[i][j] = nil } p.deferpool[i] = p.deferpoolbuf[i][:0] } freemcache(p.mcache) p.mcache = nil gfpurge(p) traceProcFree(p) if raceenabled { raceprocdestroy(p.racectx) p.racectx = 0 } p.gcAssistTime = 0 p.status = _Pdead // can't free P itself because it can be referenced by an M in syscall } // Trim allp. if int32(len(allp)) != nprocs { lock(&allpLock) allp = allp[:nprocs] unlock(&allpLock) } _g_ := getg() if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs { // continue to use the current P _g_.m.p.ptr().status = _Prunning } else { // release the current P and acquire allp[0] if _g_.m.p != 0 { _g_.m.p.ptr().m = 0 } _g_.m.p = 0 _g_.m.mcache = nil p := allp[0] p.m = 0 p.status = _Pidle acquirep(p) if trace.enabled { traceGoStart() } } var runnablePs *p for i := nprocs - 1; i >= 0; i-- { p := allp[i] if _g_.m.p.ptr() == p { continue } p.status = _Pidle if runqempty(p) { pidleput(p) } else { p.m.set(mget()) p.link.set(runnablePs) runnablePs = p } } stealOrder.reset(uint32(nprocs)) var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32 atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs)) return runnablePs } // Associate p and the current m. // // This function is allowed to have write barriers even if the caller // isn't because it immediately acquires _p_. // //go:yeswritebarrierrec func acquirep(_p_ *p) { // Do the part that isn't allowed to have write barriers. acquirep1(_p_) // have p; write barriers now allowed _g_ := getg() _g_.m.mcache = _p_.mcache if trace.enabled { traceProcStart() } } // acquirep1 is the first step of acquirep, which actually acquires // _p_. This is broken out so we can disallow write barriers for this // part, since we don't yet have a P. // //go:nowritebarrierrec func acquirep1(_p_ *p) { _g_ := getg() if _g_.m.p != 0 || _g_.m.mcache != nil { throw("acquirep: already in go") } if _p_.m != 0 || _p_.status != _Pidle { id := int64(0) if _p_.m != 0 { id = _p_.m.ptr().id } print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n") throw("acquirep: invalid p state") } _g_.m.p.set(_p_) _p_.m.set(_g_.m) _p_.status = _Prunning } // Disassociate p and the current m. func releasep() *p { _g_ := getg() if _g_.m.p == 0 || _g_.m.mcache == nil { throw("releasep: invalid arg") } _p_ := _g_.m.p.ptr() if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning { print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n") throw("releasep: invalid p state") } if trace.enabled { traceProcStop(_g_.m.p.ptr()) } _g_.m.p = 0 _g_.m.mcache = nil _p_.m = 0 _p_.status = _Pidle return _p_ } func incidlelocked(v int32) { lock(&sched.lock) sched.nmidlelocked += v if v > 0 { checkdead() } unlock(&sched.lock) } // Check for deadlock situation. // The check is based on number of running M's, if 0 -> deadlock. // sched.lock must be held. func checkdead() { // For -buildmode=c-shared or -buildmode=c-archive it's OK if // there are no running goroutines. The calling program is // assumed to be running. if islibrary || isarchive { return } // If we are dying because of a signal caught on an already idle thread, // freezetheworld will cause all running threads to block. // And runtime will essentially enter into deadlock state, // except that there is a thread that will call exit soon. if panicking > 0 { return } run := mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys if run > 0 { return } if run < 0 { print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n") throw("checkdead: inconsistent counts") } grunning := 0 lock(&allglock) for i := 0; i < len(allgs); i++ { gp := allgs[i] if isSystemGoroutine(gp) { continue } s := readgstatus(gp) switch s &^ _Gscan { case _Gwaiting: grunning++ case _Grunnable, _Grunning, _Gsyscall: unlock(&allglock) print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n") throw("checkdead: runnable g") } } unlock(&allglock) if grunning == 0 { // possible if main goroutine calls runtime·Goexit() throw("no goroutines (main called runtime.Goexit) - deadlock!") } // Maybe jump time forward for playground. gp := timejump() if gp != nil { casgstatus(gp, _Gwaiting, _Grunnable) globrunqput(gp) _p_ := pidleget() if _p_ == nil { throw("checkdead: no p for timer") } mp := mget() if mp == nil { // There should always be a free M since // nothing is running. throw("checkdead: no m for timer") } mp.nextp.set(_p_) notewakeup(&mp.park) return } getg().m.throwing = -1 // do not dump full stacks throw("all goroutines are asleep - deadlock!") } // forcegcperiod is the maximum time in nanoseconds between garbage // collections. If we go this long without a garbage collection, one // is forced to run. // // This is a variable for testing purposes. It normally doesn't change. var forcegcperiod int64 = 2 * 60 * 1e9 // Always runs without a P, so write barriers are not allowed. // //go:nowritebarrierrec func sysmon() { lock(&sched.lock) sched.nmsys++ checkdead() unlock(&sched.lock) // If a heap span goes unused for 5 minutes after a garbage collection, // we hand it back to the operating system. scavengelimit := int64(5 * 60 * 1e9) if debug.scavenge > 0 { // Scavenge-a-lot for testing. forcegcperiod = 10 * 1e6 scavengelimit = 20 * 1e6 } lastscavenge := nanotime() nscavenge := 0 lasttrace := int64(0) idle := 0 // how many cycles in succession we had not wokeup somebody delay := uint32(0) for { if idle == 0 { // start with 20us sleep... delay = 20 } else if idle > 50 { // start doubling the sleep after 1ms... delay *= 2 } if delay > 10*1000 { // up to 10ms delay = 10 * 1000 } usleep(delay) if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) { lock(&sched.lock) if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) { atomic.Store(&sched.sysmonwait, 1) unlock(&sched.lock) // Make wake-up period small enough // for the sampling to be correct. maxsleep := forcegcperiod / 2 if scavengelimit < forcegcperiod { maxsleep = scavengelimit / 2 } shouldRelax := true if osRelaxMinNS > 0 { next := timeSleepUntil() now := nanotime() if next-now < osRelaxMinNS { shouldRelax = false } } if shouldRelax { osRelax(true) } notetsleep(&sched.sysmonnote, maxsleep) if shouldRelax { osRelax(false) } lock(&sched.lock) atomic.Store(&sched.sysmonwait, 0) noteclear(&sched.sysmonnote) idle = 0 delay = 20 } unlock(&sched.lock) } // trigger libc interceptors if needed if *cgo_yield != nil { asmcgocall(*cgo_yield, nil) } // poll network if not polled for more than 10ms lastpoll := int64(atomic.Load64(&sched.lastpoll)) now := nanotime() if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now { atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now)) gp := netpoll(false) // non-blocking - returns list of goroutines if gp != nil { // Need to decrement number of idle locked M's // (pretending that one more is running) before injectglist. // Otherwise it can lead to the following situation: // injectglist grabs all P's but before it starts M's to run the P's, // another M returns from syscall, finishes running its G, // observes that there is no work to do and no other running M's // and reports deadlock. incidlelocked(-1) injectglist(gp) incidlelocked(1) } } // retake P's blocked in syscalls // and preempt long running G's if retake(now) != 0 { idle = 0 } else { idle++ } // check if we need to force a GC if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 { lock(&forcegc.lock) forcegc.idle = 0 forcegc.g.schedlink = 0 injectglist(forcegc.g) unlock(&forcegc.lock) } // scavenge heap once in a while if lastscavenge+scavengelimit/2 < now { mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit)) lastscavenge = now nscavenge++ } if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now { lasttrace = now schedtrace(debug.scheddetail > 0) } } } type sysmontick struct { schedtick uint32 schedwhen int64 syscalltick uint32 syscallwhen int64 } // forcePreemptNS is the time slice given to a G before it is // preempted. const forcePreemptNS = 10 * 1000 * 1000 // 10ms func retake(now int64) uint32 { n := 0 // Prevent allp slice changes. This lock will be completely // uncontended unless we're already stopping the world. lock(&allpLock) // We can't use a range loop over allp because we may // temporarily drop the allpLock. Hence, we need to re-fetch // allp each time around the loop. for i := 0; i < len(allp); i++ { _p_ := allp[i] if _p_ == nil { // This can happen if procresize has grown // allp but not yet created new Ps. continue } pd := &_p_.sysmontick s := _p_.status if s == _Psyscall { // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us). t := int64(_p_.syscalltick) if int64(pd.syscalltick) != t { pd.syscalltick = uint32(t) pd.syscallwhen = now continue } // On the one hand we don't want to retake Ps if there is no other work to do, // but on the other hand we want to retake them eventually // because they can prevent the sysmon thread from deep sleep. if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now { continue } // Drop allpLock so we can take sched.lock. unlock(&allpLock) // Need to decrement number of idle locked M's // (pretending that one more is running) before the CAS. // Otherwise the M from which we retake can exit the syscall, // increment nmidle and report deadlock. incidlelocked(-1) if atomic.Cas(&_p_.status, s, _Pidle) { if trace.enabled { traceGoSysBlock(_p_) traceProcStop(_p_) } n++ _p_.syscalltick++ handoffp(_p_) } incidlelocked(1) lock(&allpLock) } else if s == _Prunning { // Preempt G if it's running for too long. t := int64(_p_.schedtick) if int64(pd.schedtick) != t { pd.schedtick = uint32(t) pd.schedwhen = now continue } if pd.schedwhen+forcePreemptNS > now { continue } preemptone(_p_) } } unlock(&allpLock) return uint32(n) } // Tell all goroutines that they have been preempted and they should stop. // This function is purely best-effort. It can fail to inform a goroutine if a // processor just started running it. // No locks need to be held. // Returns true if preemption request was issued to at least one goroutine. func preemptall() bool { res := false for _, _p_ := range allp { if _p_.status != _Prunning { continue } if preemptone(_p_) { res = true } } return res } // Tell the goroutine running on processor P to stop. // This function is purely best-effort. It can incorrectly fail to inform the // goroutine. It can send inform the wrong goroutine. Even if it informs the // correct goroutine, that goroutine might ignore the request if it is // simultaneously executing newstack. // No lock needs to be held. // Returns true if preemption request was issued. // The actual preemption will happen at some point in the future // and will be indicated by the gp->status no longer being // Grunning func preemptone(_p_ *p) bool { mp := _p_.m.ptr() if mp == nil || mp == getg().m { return false } gp := mp.curg if gp == nil || gp == mp.g0 { return false } gp.preempt = true // Every call in a go routine checks for stack overflow by // comparing the current stack pointer to gp->stackguard0. // Setting gp->stackguard0 to StackPreempt folds // preemption into the normal stack overflow check. gp.stackguard0 = stackPreempt return true } var starttime int64 func schedtrace(detailed bool) { now := nanotime() if starttime == 0 { starttime = now } lock(&sched.lock) print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize) if detailed { print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n") } // We must be careful while reading data from P's, M's and G's. // Even if we hold schedlock, most data can be changed concurrently. // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil. for i, _p_ := range allp { mp := _p_.m.ptr() h := atomic.Load(&_p_.runqhead) t := atomic.Load(&_p_.runqtail) if detailed { id := int64(-1) if mp != nil { id = mp.id } print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n") } else { // In non-detailed mode format lengths of per-P run queues as: // [len1 len2 len3 len4] print(" ") if i == 0 { print("[") } print(t - h) if i == len(allp)-1 { print("]\n") } } } if !detailed { unlock(&sched.lock) return } for mp := allm; mp != nil; mp = mp.alllink { _p_ := mp.p.ptr() gp := mp.curg lockedg := mp.lockedg.ptr() id1 := int32(-1) if _p_ != nil { id1 = _p_.id } id2 := int64(-1) if gp != nil { id2 = gp.goid } id3 := int64(-1) if lockedg != nil { id3 = lockedg.goid } print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n") } lock(&allglock) for gi := 0; gi < len(allgs); gi++ { gp := allgs[gi] mp := gp.m lockedm := gp.lockedm.ptr() id1 := int64(-1) if mp != nil { id1 = mp.id } id2 := int64(-1) if lockedm != nil { id2 = lockedm.id } print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n") } unlock(&allglock) unlock(&sched.lock) } // Put mp on midle list. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func mput(mp *m) { mp.schedlink = sched.midle sched.midle.set(mp) sched.nmidle++ checkdead() } // Try to get an m from midle list. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func mget() *m { mp := sched.midle.ptr() if mp != nil { sched.midle = mp.schedlink sched.nmidle-- } return mp } // Put gp on the global runnable queue. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func globrunqput(gp *g) { gp.schedlink = 0 if sched.runqtail != 0 { sched.runqtail.ptr().schedlink.set(gp) } else { sched.runqhead.set(gp) } sched.runqtail.set(gp) sched.runqsize++ } // Put gp at the head of the global runnable queue. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func globrunqputhead(gp *g) { gp.schedlink = sched.runqhead sched.runqhead.set(gp) if sched.runqtail == 0 { sched.runqtail.set(gp) } sched.runqsize++ } // Put a batch of runnable goroutines on the global runnable queue. // Sched must be locked. func globrunqputbatch(ghead *g, gtail *g, n int32) { gtail.schedlink = 0 if sched.runqtail != 0 { sched.runqtail.ptr().schedlink.set(ghead) } else { sched.runqhead.set(ghead) } sched.runqtail.set(gtail) sched.runqsize += n } // Try get a batch of G's from the global runnable queue. // Sched must be locked. func globrunqget(_p_ *p, max int32) *g { if sched.runqsize == 0 { return nil } n := sched.runqsize/gomaxprocs + 1 if n > sched.runqsize { n = sched.runqsize } if max > 0 && n > max { n = max } if n > int32(len(_p_.runq))/2 { n = int32(len(_p_.runq)) / 2 } sched.runqsize -= n if sched.runqsize == 0 { sched.runqtail = 0 } gp := sched.runqhead.ptr() sched.runqhead = gp.schedlink n-- for ; n > 0; n-- { gp1 := sched.runqhead.ptr() sched.runqhead = gp1.schedlink runqput(_p_, gp1, false) } return gp } // Put p to on _Pidle list. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func pidleput(_p_ *p) { if !runqempty(_p_) { throw("pidleput: P has non-empty run queue") } _p_.link = sched.pidle sched.pidle.set(_p_) atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic } // Try get a p from _Pidle list. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func pidleget() *p { _p_ := sched.pidle.ptr() if _p_ != nil { sched.pidle = _p_.link atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic } return _p_ } // runqempty returns true if _p_ has no Gs on its local run queue. // It never returns true spuriously. func runqempty(_p_ *p) bool { // Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail, // 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext. // Simply observing that runqhead == runqtail and then observing that runqnext == nil // does not mean the queue is empty. for { head := atomic.Load(&_p_.runqhead) tail := atomic.Load(&_p_.runqtail) runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext))) if tail == atomic.Load(&_p_.runqtail) { return head == tail && runnext == 0 } } } // To shake out latent assumptions about scheduling order, // we introduce some randomness into scheduling decisions // when running with the race detector. // The need for this was made obvious by changing the // (deterministic) scheduling order in Go 1.5 and breaking // many poorly-written tests. // With the randomness here, as long as the tests pass // consistently with -race, they shouldn't have latent scheduling // assumptions. const randomizeScheduler = raceenabled // runqput tries to put g on the local runnable queue. // If next if false, runqput adds g to the tail of the runnable queue. // If next is true, runqput puts g in the _p_.runnext slot. // If the run queue is full, runnext puts g on the global queue. // Executed only by the owner P. func runqput(_p_ *p, gp *g, next bool) { if randomizeScheduler && next && fastrand()%2 == 0 { next = false } if next { retryNext: oldnext := _p_.runnext if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) { goto retryNext } if oldnext == 0 { return } // Kick the old runnext out to the regular run queue. gp = oldnext.ptr() } retry: h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers t := _p_.runqtail if t-h < uint32(len(_p_.runq)) { _p_.runq[t%uint32(len(_p_.runq))].set(gp) atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption return } if runqputslow(_p_, gp, h, t) { return } // the queue is not full, now the put above must succeed goto retry } // Put g and a batch of work from local runnable queue on global queue. // Executed only by the owner P. func runqputslow(_p_ *p, gp *g, h, t uint32) bool { var batch [len(_p_.runq)/2 + 1]*g // First, grab a batch from local queue. n := t - h n = n / 2 if n != uint32(len(_p_.runq)/2) { throw("runqputslow: queue is not full") } for i := uint32(0); i < n; i++ { batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr() } if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume return false } batch[n] = gp if randomizeScheduler { for i := uint32(1); i <= n; i++ { j := fastrandn(i + 1) batch[i], batch[j] = batch[j], batch[i] } } // Link the goroutines. for i := uint32(0); i < n; i++ { batch[i].schedlink.set(batch[i+1]) } // Now put the batch on global queue. lock(&sched.lock) globrunqputbatch(batch[0], batch[n], int32(n+1)) unlock(&sched.lock) return true } // Get g from local runnable queue. // If inheritTime is true, gp should inherit the remaining time in the // current time slice. Otherwise, it should start a new time slice. // Executed only by the owner P. func runqget(_p_ *p) (gp *g, inheritTime bool) { // If there's a runnext, it's the next G to run. for { next := _p_.runnext if next == 0 { break } if _p_.runnext.cas(next, 0) { return next.ptr(), true } } for { h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers t := _p_.runqtail if t == h { return nil, false } gp := _p_.runq[h%uint32(len(_p_.runq))].ptr() if atomic.Cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume return gp, false } } } // Grabs a batch of goroutines from _p_'s runnable queue into batch. // Batch is a ring buffer starting at batchHead. // Returns number of grabbed goroutines. // Can be executed by any P. func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 { for { h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers t := atomic.Load(&_p_.runqtail) // load-acquire, synchronize with the producer n := t - h n = n - n/2 if n == 0 { if stealRunNextG { // Try to steal from _p_.runnext. if next := _p_.runnext; next != 0 { if _p_.status == _Prunning { // Sleep to ensure that _p_ isn't about to run the g // we are about to steal. // The important use case here is when the g running // on _p_ ready()s another g and then almost // immediately blocks. Instead of stealing runnext // in this window, back off to give _p_ a chance to // schedule runnext. This will avoid thrashing gs // between different Ps. // A sync chan send/recv takes ~50ns as of time of // writing, so 3us gives ~50x overshoot. if GOOS != "windows" { usleep(3) } else { // On windows system timer granularity is // 1-15ms, which is way too much for this // optimization. So just yield. osyield() } } if !_p_.runnext.cas(next, 0) { continue } batch[batchHead%uint32(len(batch))] = next return 1 } } return 0 } if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t continue } for i := uint32(0); i < n; i++ { g := _p_.runq[(h+i)%uint32(len(_p_.runq))] batch[(batchHead+i)%uint32(len(batch))] = g } if atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume return n } } } // Steal half of elements from local runnable queue of p2 // and put onto local runnable queue of p. // Returns one of the stolen elements (or nil if failed). func runqsteal(_p_, p2 *p, stealRunNextG bool) *g { t := _p_.runqtail n := runqgrab(p2, &_p_.runq, t, stealRunNextG) if n == 0 { return nil } n-- gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr() if n == 0 { return gp } h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers if t-h+n >= uint32(len(_p_.runq)) { throw("runqsteal: runq overflow") } atomic.Store(&_p_.runqtail, t+n) // store-release, makes the item available for consumption return gp } //go:linkname setMaxThreads runtime/debug.setMaxThreads func setMaxThreads(in int) (out int) { lock(&sched.lock) out = int(sched.maxmcount) if in > 0x7fffffff { // MaxInt32 sched.maxmcount = 0x7fffffff } else { sched.maxmcount = int32(in) } checkmcount() unlock(&sched.lock) return } func haveexperiment(name string) bool { if name == "framepointer" { return framepointer_enabled // set by linker } x := sys.Goexperiment for x != "" { xname := "" i := index(x, ",") if i < 0 { xname, x = x, "" } else { xname, x = x[:i], x[i+1:] } if xname == name { return true } if len(xname) > 2 && xname[:2] == "no" && xname[2:] == name { return false } } return false } //go:nosplit func procPin() int { _g_ := getg() mp := _g_.m mp.locks++ return int(mp.p.ptr().id) } //go:nosplit func procUnpin() { _g_ := getg() _g_.m.locks-- } //go:linkname sync_runtime_procPin sync.runtime_procPin //go:nosplit func sync_runtime_procPin() int { return procPin() } //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin //go:nosplit func sync_runtime_procUnpin() { procUnpin() } //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin //go:nosplit func sync_atomic_runtime_procPin() int { return procPin() } //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin //go:nosplit func sync_atomic_runtime_procUnpin() { procUnpin() } // Active spinning for sync.Mutex. //go:linkname sync_runtime_canSpin sync.runtime_canSpin //go:nosplit func sync_runtime_canSpin(i int) bool { // sync.Mutex is cooperative, so we are conservative with spinning. // Spin only few times and only if running on a multicore machine and // GOMAXPROCS>1 and there is at least one other running P and local runq is empty. // As opposed to runtime mutex we don't do passive spinning here, // because there can be work on global runq on on other Ps. if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 { return false } if p := getg().m.p.ptr(); !runqempty(p) { return false } return true } //go:linkname sync_runtime_doSpin sync.runtime_doSpin //go:nosplit func sync_runtime_doSpin() { procyield(active_spin_cnt) } var stealOrder randomOrder // randomOrder/randomEnum are helper types for randomized work stealing. // They allow to enumerate all Ps in different pseudo-random orders without repetitions. // The algorithm is based on the fact that if we have X such that X and GOMAXPROCS // are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration. type randomOrder struct { count uint32 coprimes []uint32 } type randomEnum struct { i uint32 count uint32 pos uint32 inc uint32 } func (ord *randomOrder) reset(count uint32) { ord.count = count ord.coprimes = ord.coprimes[:0] for i := uint32(1); i <= count; i++ { if gcd(i, count) == 1 { ord.coprimes = append(ord.coprimes, i) } } } func (ord *randomOrder) start(i uint32) randomEnum { return randomEnum{ count: ord.count, pos: i % ord.count, inc: ord.coprimes[i%uint32(len(ord.coprimes))], } } func (enum *randomEnum) done() bool { return enum.i == enum.count } func (enum *randomEnum) next() { enum.i++ enum.pos = (enum.pos + enum.inc) % enum.count } func (enum *randomEnum) position() uint32 { return enum.pos } func gcd(a, b uint32) uint32 { for b != 0 { a, b = b, a%b } return a }