// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime_test import ( "flag" "fmt" "reflect" . "runtime" "testing" "time" "unsafe" ) func TestMemStats(t *testing.T) { // Make sure there's at least one forced GC. GC() // Test that MemStats has sane values. st := new(MemStats) ReadMemStats(st) nz := func(x interface{}) error { if x != reflect.Zero(reflect.TypeOf(x)).Interface() { return nil } return fmt.Errorf("zero value") } le := func(thresh float64) func(interface{}) error { return func(x interface{}) error { if reflect.ValueOf(x).Convert(reflect.TypeOf(thresh)).Float() < thresh { return nil } return fmt.Errorf("insanely high value (overflow?); want <= %v", thresh) } } eq := func(x interface{}) func(interface{}) error { return func(y interface{}) error { if x == y { return nil } return fmt.Errorf("want %v", x) } } // Of the uint fields, HeapReleased, HeapIdle can be 0. // PauseTotalNs can be 0 if timer resolution is poor. fields := map[string][]func(interface{}) error{ "Alloc": {nz, le(1e10)}, "TotalAlloc": {nz, le(1e11)}, "Sys": {nz, le(1e10)}, "Lookups": {nz, le(1e10)}, "Mallocs": {nz, le(1e10)}, "Frees": {nz, le(1e10)}, "HeapAlloc": {nz, le(1e10)}, "HeapSys": {nz, le(1e10)}, "HeapIdle": {le(1e10)}, "HeapInuse": {nz, le(1e10)}, "HeapReleased": {le(1e10)}, "HeapObjects": {nz, le(1e10)}, "StackInuse": {nz, le(1e10)}, "StackSys": {nz, le(1e10)}, "MSpanInuse": {nz, le(1e10)}, "MSpanSys": {nz, le(1e10)}, "MCacheInuse": {nz, le(1e10)}, "MCacheSys": {nz, le(1e10)}, "BuckHashSys": {nz, le(1e10)}, "GCSys": {nz, le(1e10)}, "OtherSys": {nz, le(1e10)}, "NextGC": {nz, le(1e10)}, "LastGC": {nz}, "PauseTotalNs": {le(1e11)}, "PauseNs": nil, "PauseEnd": nil, "NumGC": {nz, le(1e9)}, "NumForcedGC": {nz, le(1e9)}, "GCCPUFraction": {le(0.99)}, "EnableGC": {eq(true)}, "DebugGC": {eq(false)}, "BySize": nil, } rst := reflect.ValueOf(st).Elem() for i := 0; i < rst.Type().NumField(); i++ { name, val := rst.Type().Field(i).Name, rst.Field(i).Interface() checks, ok := fields[name] if !ok { t.Errorf("unknown MemStats field %s", name) continue } for _, check := range checks { if err := check(val); err != nil { t.Errorf("%s = %v: %s", name, val, err) } } } if st.Sys != st.HeapSys+st.StackSys+st.MSpanSys+st.MCacheSys+ st.BuckHashSys+st.GCSys+st.OtherSys { t.Fatalf("Bad sys value: %+v", *st) } if st.HeapIdle+st.HeapInuse != st.HeapSys { t.Fatalf("HeapIdle(%d) + HeapInuse(%d) should be equal to HeapSys(%d), but isn't.", st.HeapIdle, st.HeapInuse, st.HeapSys) } if lpe := st.PauseEnd[int(st.NumGC+255)%len(st.PauseEnd)]; st.LastGC != lpe { t.Fatalf("LastGC(%d) != last PauseEnd(%d)", st.LastGC, lpe) } var pauseTotal uint64 for _, pause := range st.PauseNs { pauseTotal += pause } if int(st.NumGC) < len(st.PauseNs) { // We have all pauses, so this should be exact. if st.PauseTotalNs != pauseTotal { t.Fatalf("PauseTotalNs(%d) != sum PauseNs(%d)", st.PauseTotalNs, pauseTotal) } for i := int(st.NumGC); i < len(st.PauseNs); i++ { if st.PauseNs[i] != 0 { t.Fatalf("Non-zero PauseNs[%d]: %+v", i, st) } if st.PauseEnd[i] != 0 { t.Fatalf("Non-zero PauseEnd[%d]: %+v", i, st) } } } else { if st.PauseTotalNs < pauseTotal { t.Fatalf("PauseTotalNs(%d) < sum PauseNs(%d)", st.PauseTotalNs, pauseTotal) } } if st.NumForcedGC > st.NumGC { t.Fatalf("NumForcedGC(%d) > NumGC(%d)", st.NumForcedGC, st.NumGC) } } func TestStringConcatenationAllocs(t *testing.T) { n := testing.AllocsPerRun(1e3, func() { b := make([]byte, 10) for i := 0; i < 10; i++ { b[i] = byte(i) + '0' } s := "foo" + string(b) if want := "foo0123456789"; s != want { t.Fatalf("want %v, got %v", want, s) } }) // Only string concatenation allocates. if n != 1 { t.Fatalf("want 1 allocation, got %v", n) } } func TestTinyAlloc(t *testing.T) { const N = 16 var v [N]unsafe.Pointer for i := range v { v[i] = unsafe.Pointer(new(byte)) } chunks := make(map[uintptr]bool, N) for _, p := range v { chunks[uintptr(p)&^7] = true } if len(chunks) == N { t.Fatal("no bytes allocated within the same 8-byte chunk") } } var mallocSink uintptr func BenchmarkMalloc8(b *testing.B) { var x uintptr for i := 0; i < b.N; i++ { p := new(int64) x ^= uintptr(unsafe.Pointer(p)) } mallocSink = x } func BenchmarkMalloc16(b *testing.B) { var x uintptr for i := 0; i < b.N; i++ { p := new([2]int64) x ^= uintptr(unsafe.Pointer(p)) } mallocSink = x } func BenchmarkMallocTypeInfo8(b *testing.B) { var x uintptr for i := 0; i < b.N; i++ { p := new(struct { p [8 / unsafe.Sizeof(uintptr(0))]*int }) x ^= uintptr(unsafe.Pointer(p)) } mallocSink = x } func BenchmarkMallocTypeInfo16(b *testing.B) { var x uintptr for i := 0; i < b.N; i++ { p := new(struct { p [16 / unsafe.Sizeof(uintptr(0))]*int }) x ^= uintptr(unsafe.Pointer(p)) } mallocSink = x } type LargeStruct struct { x [16][]byte } func BenchmarkMallocLargeStruct(b *testing.B) { var x uintptr for i := 0; i < b.N; i++ { p := make([]LargeStruct, 2) x ^= uintptr(unsafe.Pointer(&p[0])) } mallocSink = x } var n = flag.Int("n", 1000, "number of goroutines") func BenchmarkGoroutineSelect(b *testing.B) { quit := make(chan struct{}) read := func(ch chan struct{}) { for { select { case _, ok := <-ch: if !ok { return } case <-quit: return } } } benchHelper(b, *n, read) } func BenchmarkGoroutineBlocking(b *testing.B) { read := func(ch chan struct{}) { for { if _, ok := <-ch; !ok { return } } } benchHelper(b, *n, read) } func BenchmarkGoroutineForRange(b *testing.B) { read := func(ch chan struct{}) { for range ch { } } benchHelper(b, *n, read) } func benchHelper(b *testing.B, n int, read func(chan struct{})) { m := make([]chan struct{}, n) for i := range m { m[i] = make(chan struct{}, 1) go read(m[i]) } b.StopTimer() b.ResetTimer() GC() for i := 0; i < b.N; i++ { for _, ch := range m { if ch != nil { ch <- struct{}{} } } time.Sleep(10 * time.Millisecond) b.StartTimer() GC() b.StopTimer() } for _, ch := range m { close(ch) } time.Sleep(10 * time.Millisecond) } func BenchmarkGoroutineIdle(b *testing.B) { quit := make(chan struct{}) fn := func() { <-quit } for i := 0; i < *n; i++ { go fn() } GC() b.ResetTimer() for i := 0; i < b.N; i++ { GC() } b.StopTimer() close(quit) time.Sleep(10 * time.Millisecond) }