// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) const itabInitSize = 512 var ( itabLock mutex // lock for accessing itab table itabTable = &itabTableInit // pointer to current table itabTableInit = itabTableType{size: itabInitSize} // starter table ) //Note: change the formula in the mallocgc call in itabAdd if you change these fields. type itabTableType struct { size uintptr // length of entries array. Always a power of 2. count uintptr // current number of filled entries. entries [itabInitSize]*itab // really [size] large } func itabHashFunc(inter *interfacetype, typ *_type) uintptr { // compiler has provided some good hash codes for us. return uintptr(inter.typ.hash ^ typ.hash) } func getitab(inter *interfacetype, typ *_type, canfail bool) *itab { if len(inter.mhdr) == 0 { throw("internal error - misuse of itab") } // easy case if typ.tflag&tflagUncommon == 0 { if canfail { return nil } name := inter.typ.nameOff(inter.mhdr[0].name) panic(&TypeAssertionError{"", typ.string(), inter.typ.string(), name.name()}) } var m *itab // First, look in the existing table to see if we can find the itab we need. // This is by far the most common case, so do it without locks. // Use atomic to ensure we see any previous writes done by the thread // that updates the itabTable field (with atomic.Storep in itabAdd). t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable))) if m = t.find(inter, typ); m != nil { goto finish } // Not found. Grab the lock and try again. lock(&itabLock) if m = itabTable.find(inter, typ); m != nil { unlock(&itabLock) goto finish } // Entry doesn't exist yet. Make a new entry & add it. m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*sys.PtrSize, 0, &memstats.other_sys)) m.inter = inter m._type = typ m.init() itabAdd(m) unlock(&itabLock) finish: if m.fun[0] != 0 { return m } if canfail { return nil } // this can only happen if the conversion // was already done once using the , ok form // and we have a cached negative result. // The cached result doesn't record which // interface function was missing, so initialize // the itab again to get the missing function name. panic(&TypeAssertionError{concreteString: typ.string(), assertedString: inter.typ.string(), missingMethod: m.init()}) } // find finds the given interface/type pair in t. // Returns nil if the given interface/type pair isn't present. func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab { // Implemented using quadratic probing. // Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k. // We're guaranteed to hit all table entries using this probe sequence. mask := t.size - 1 h := itabHashFunc(inter, typ) & mask for i := uintptr(1); ; i++ { p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize)) // Use atomic read here so if we see m != nil, we also see // the initializations of the fields of m. // m := *p m := (*itab)(atomic.Loadp(unsafe.Pointer(p))) if m == nil { return nil } if m.inter == inter && m._type == typ { return m } h += i h &= mask } } // itabAdd adds the given itab to the itab hash table. // itabLock must be held. func itabAdd(m *itab) { t := itabTable if t.count >= 3*(t.size/4) { // 75% load factor // Grow hash table. // t2 = new(itabTableType) + some additional entries // We lie and tell malloc we want pointer-free memory because // all the pointed-to values are not in the heap. t2 := (*itabTableType)(mallocgc((2+2*t.size)*sys.PtrSize, nil, true)) t2.size = t.size * 2 // Copy over entries. // Note: while copying, other threads may look for an itab and // fail to find it. That's ok, they will then try to get the itab lock // and as a consequence wait until this copying is complete. iterate_itabs(t2.add) if t2.count != t.count { throw("mismatched count during itab table copy") } // Publish new hash table. Use an atomic write: see comment in getitab. atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2)) // Adopt the new table as our own. t = itabTable // Note: the old table can be GC'ed here. } t.add(m) } // add adds the given itab to itab table t. // itabLock must be held. func (t *itabTableType) add(m *itab) { // See comment in find about the probe sequence. // Insert new itab in the first empty spot in the probe sequence. mask := t.size - 1 h := itabHashFunc(m.inter, m._type) & mask for i := uintptr(1); ; i++ { p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize)) m2 := *p if m2 == m { // A given itab may be used in more than one module // and thanks to the way global symbol resolution works, the // pointed-to itab may already have been inserted into the // global 'hash'. return } if m2 == nil { // Use atomic write here so if a reader sees m, it also // sees the correctly initialized fields of m. // NoWB is ok because m is not in heap memory. // *p = m atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m)) t.count++ return } h += i h &= mask } } // init fills in the m.fun array with all the code pointers for // the m.inter/m._type pair. If the type does not implement the interface, // it sets m.fun[0] to 0 and returns the name of an interface function that is missing. // It is ok to call this multiple times on the same m, even concurrently. func (m *itab) init() string { inter := m.inter typ := m._type x := typ.uncommon() // both inter and typ have method sorted by name, // and interface names are unique, // so can iterate over both in lock step; // the loop is O(ni+nt) not O(ni*nt). ni := len(inter.mhdr) nt := int(x.mcount) xmhdr := (*[1 << 16]method)(add(unsafe.Pointer(x), uintptr(x.moff)))[:nt:nt] j := 0 imethods: for k := 0; k < ni; k++ { i := &inter.mhdr[k] itype := inter.typ.typeOff(i.ityp) name := inter.typ.nameOff(i.name) iname := name.name() ipkg := name.pkgPath() if ipkg == "" { ipkg = inter.pkgpath.name() } for ; j < nt; j++ { t := &xmhdr[j] tname := typ.nameOff(t.name) if typ.typeOff(t.mtyp) == itype && tname.name() == iname { pkgPath := tname.pkgPath() if pkgPath == "" { pkgPath = typ.nameOff(x.pkgpath).name() } if tname.isExported() || pkgPath == ipkg { if m != nil { ifn := typ.textOff(t.ifn) *(*unsafe.Pointer)(add(unsafe.Pointer(&m.fun[0]), uintptr(k)*sys.PtrSize)) = ifn } continue imethods } } } // didn't find method m.fun[0] = 0 return iname } m.hash = typ.hash return "" } func itabsinit() { lock(&itabLock) for _, md := range activeModules() { for _, i := range md.itablinks { itabAdd(i) } } unlock(&itabLock) } // panicdottypeE is called when doing an e.(T) conversion and the conversion fails. // have = the dynamic type we have. // want = the static type we're trying to convert to. // iface = the static type we're converting from. func panicdottypeE(have, want, iface *_type) { haveString := "" if have != nil { haveString = have.string() } panic(&TypeAssertionError{iface.string(), haveString, want.string(), ""}) } // panicdottypeI is called when doing an i.(T) conversion and the conversion fails. // Same args as panicdottypeE, but "have" is the dynamic itab we have. func panicdottypeI(have *itab, want, iface *_type) { var t *_type if have != nil { t = have._type } panicdottypeE(t, want, iface) } // panicnildottype is called when doing a i.(T) conversion and the interface i is nil. // want = the static type we're trying to convert to. func panicnildottype(want *_type) { panic(&TypeAssertionError{"", "", want.string(), ""}) // TODO: Add the static type we're converting from as well. // It might generate a better error message. // Just to match other nil conversion errors, we don't for now. } // The conv and assert functions below do very similar things. // The convXXX functions are guaranteed by the compiler to succeed. // The assertXXX functions may fail (either panicking or returning false, // depending on whether they are 1-result or 2-result). // The convXXX functions succeed on a nil input, whereas the assertXXX // functions fail on a nil input. func convT2E(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2E)) } if msanenabled { msanread(elem, t.size) } x := mallocgc(t.size, t, true) // TODO: We allocate a zeroed object only to overwrite it with actual data. // Figure out how to avoid zeroing. Also below in convT2Eslice, convT2I, convT2Islice. typedmemmove(t, x, elem) e._type = t e.data = x return } func convT2E16(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2E16)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint16)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(2, t, false) *(*uint16)(x) = *(*uint16)(elem) } e._type = t e.data = x return } func convT2E32(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2E32)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint32)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(4, t, false) *(*uint32)(x) = *(*uint32)(elem) } e._type = t e.data = x return } func convT2E64(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2E64)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint64)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(8, t, false) *(*uint64)(x) = *(*uint64)(elem) } e._type = t e.data = x return } func convT2Estring(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Estring)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*string)(elem) == "" { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(t.size, t, true) *(*string)(x) = *(*string)(elem) } e._type = t e.data = x return } func convT2Eslice(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Eslice)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if v := *(*slice)(elem); uintptr(v.array) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(t.size, t, true) *(*slice)(x) = *(*slice)(elem) } e._type = t e.data = x return } func convT2Enoptr(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Enoptr)) } if msanenabled { msanread(elem, t.size) } x := mallocgc(t.size, t, false) memmove(x, elem, t.size) e._type = t e.data = x return } func convT2I(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2I)) } if msanenabled { msanread(elem, t.size) } x := mallocgc(t.size, t, true) typedmemmove(t, x, elem) i.tab = tab i.data = x return } func convT2I16(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2I16)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint16)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(2, t, false) *(*uint16)(x) = *(*uint16)(elem) } i.tab = tab i.data = x return } func convT2I32(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2I32)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint32)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(4, t, false) *(*uint32)(x) = *(*uint32)(elem) } i.tab = tab i.data = x return } func convT2I64(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2I64)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint64)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(8, t, false) *(*uint64)(x) = *(*uint64)(elem) } i.tab = tab i.data = x return } func convT2Istring(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Istring)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*string)(elem) == "" { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(t.size, t, true) *(*string)(x) = *(*string)(elem) } i.tab = tab i.data = x return } func convT2Islice(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Islice)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if v := *(*slice)(elem); uintptr(v.array) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(t.size, t, true) *(*slice)(x) = *(*slice)(elem) } i.tab = tab i.data = x return } func convT2Inoptr(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Inoptr)) } if msanenabled { msanread(elem, t.size) } x := mallocgc(t.size, t, false) memmove(x, elem, t.size) i.tab = tab i.data = x return } func convI2I(inter *interfacetype, i iface) (r iface) { tab := i.tab if tab == nil { return } if tab.inter == inter { r.tab = tab r.data = i.data return } r.tab = getitab(inter, tab._type, false) r.data = i.data return } func assertI2I(inter *interfacetype, i iface) (r iface) { tab := i.tab if tab == nil { // explicit conversions require non-nil interface value. panic(&TypeAssertionError{"", "", inter.typ.string(), ""}) } if tab.inter == inter { r.tab = tab r.data = i.data return } r.tab = getitab(inter, tab._type, false) r.data = i.data return } func assertI2I2(inter *interfacetype, i iface) (r iface, b bool) { tab := i.tab if tab == nil { return } if tab.inter != inter { tab = getitab(inter, tab._type, true) if tab == nil { return } } r.tab = tab r.data = i.data b = true return } func assertE2I(inter *interfacetype, e eface) (r iface) { t := e._type if t == nil { // explicit conversions require non-nil interface value. panic(&TypeAssertionError{"", "", inter.typ.string(), ""}) } r.tab = getitab(inter, t, false) r.data = e.data return } func assertE2I2(inter *interfacetype, e eface) (r iface, b bool) { t := e._type if t == nil { return } tab := getitab(inter, t, true) if tab == nil { return } r.tab = tab r.data = e.data b = true return } //go:linkname reflect_ifaceE2I reflect.ifaceE2I func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) { *dst = assertE2I(inter, e) } func iterate_itabs(fn func(*itab)) { // Note: only runs during stop the world or with itabLock held, // so no other locks/atomics needed. t := itabTable for i := uintptr(0); i < t.size; i++ { m := *(**itab)(add(unsafe.Pointer(&t.entries), i*sys.PtrSize)) if m != nil { fn(m) } } } // staticbytes is used to avoid convT2E for byte-sized values. var staticbytes = [...]byte{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff, }