// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/sys" "unsafe" ) func mapaccess1_fast32(t *maptype, h *hmap, key uint32) unsafe.Pointer { if raceenabled && h != nil { callerpc := getcallerpc() racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess1_fast32)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]) } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } var b *bmap if h.B == 0 { // One-bucket table. No need to hash. b = (*bmap)(h.buckets) } else { hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) m := bucketMask(h.B) b = (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) if c := h.oldbuckets; c != nil { if !h.sameSizeGrow() { // There used to be half as many buckets; mask down one more power of two. m >>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } } for ; b != nil; b = b.overflow(t) { for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 4) { if *(*uint32)(k) == key && b.tophash[i] != empty { return add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.valuesize)) } } } return unsafe.Pointer(&zeroVal[0]) } func mapaccess2_fast32(t *maptype, h *hmap, key uint32) (unsafe.Pointer, bool) { if raceenabled && h != nil { callerpc := getcallerpc() racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess2_fast32)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]), false } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } var b *bmap if h.B == 0 { // One-bucket table. No need to hash. b = (*bmap)(h.buckets) } else { hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) m := bucketMask(h.B) b = (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) if c := h.oldbuckets; c != nil { if !h.sameSizeGrow() { // There used to be half as many buckets; mask down one more power of two. m >>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } } for ; b != nil; b = b.overflow(t) { for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 4) { if *(*uint32)(k) == key && b.tophash[i] != empty { return add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.valuesize)), true } } } return unsafe.Pointer(&zeroVal[0]), false } func mapaccess1_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer { if raceenabled && h != nil { callerpc := getcallerpc() racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess1_fast64)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]) } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } var b *bmap if h.B == 0 { // One-bucket table. No need to hash. b = (*bmap)(h.buckets) } else { hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) m := bucketMask(h.B) b = (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) if c := h.oldbuckets; c != nil { if !h.sameSizeGrow() { // There used to be half as many buckets; mask down one more power of two. m >>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } } for ; b != nil; b = b.overflow(t) { for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 8) { if *(*uint64)(k) == key && b.tophash[i] != empty { return add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.valuesize)) } } } return unsafe.Pointer(&zeroVal[0]) } func mapaccess2_fast64(t *maptype, h *hmap, key uint64) (unsafe.Pointer, bool) { if raceenabled && h != nil { callerpc := getcallerpc() racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess2_fast64)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]), false } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } var b *bmap if h.B == 0 { // One-bucket table. No need to hash. b = (*bmap)(h.buckets) } else { hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) m := bucketMask(h.B) b = (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) if c := h.oldbuckets; c != nil { if !h.sameSizeGrow() { // There used to be half as many buckets; mask down one more power of two. m >>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } } for ; b != nil; b = b.overflow(t) { for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 8) { if *(*uint64)(k) == key && b.tophash[i] != empty { return add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.valuesize)), true } } } return unsafe.Pointer(&zeroVal[0]), false } func mapaccess1_faststr(t *maptype, h *hmap, ky string) unsafe.Pointer { if raceenabled && h != nil { callerpc := getcallerpc() racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess1_faststr)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]) } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } key := stringStructOf(&ky) if h.B == 0 { // One-bucket table. b := (*bmap)(h.buckets) if key.len < 32 { // short key, doing lots of comparisons is ok for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) { k := (*stringStruct)(kptr) if k.len != key.len || b.tophash[i] == empty { continue } if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)) } } return unsafe.Pointer(&zeroVal[0]) } // long key, try not to do more comparisons than necessary keymaybe := uintptr(bucketCnt) for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) { k := (*stringStruct)(kptr) if k.len != key.len || b.tophash[i] == empty { continue } if k.str == key.str { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)) } // check first 4 bytes if *((*[4]byte)(key.str)) != *((*[4]byte)(k.str)) { continue } // check last 4 bytes if *((*[4]byte)(add(key.str, uintptr(key.len)-4))) != *((*[4]byte)(add(k.str, uintptr(key.len)-4))) { continue } if keymaybe != bucketCnt { // Two keys are potential matches. Use hash to distinguish them. goto dohash } keymaybe = i } if keymaybe != bucketCnt { k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+keymaybe*2*sys.PtrSize)) if memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.valuesize)) } } return unsafe.Pointer(&zeroVal[0]) } dohash: hash := t.key.alg.hash(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0)) m := bucketMask(h.B) b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) if c := h.oldbuckets; c != nil { if !h.sameSizeGrow() { // There used to be half as many buckets; mask down one more power of two. m >>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } top := tophash(hash) for ; b != nil; b = b.overflow(t) { for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) { k := (*stringStruct)(kptr) if k.len != key.len || b.tophash[i] != top { continue } if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)) } } } return unsafe.Pointer(&zeroVal[0]) } func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool) { if raceenabled && h != nil { callerpc := getcallerpc() racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess2_faststr)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]), false } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } key := stringStructOf(&ky) if h.B == 0 { // One-bucket table. b := (*bmap)(h.buckets) if key.len < 32 { // short key, doing lots of comparisons is ok for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) { k := (*stringStruct)(kptr) if k.len != key.len || b.tophash[i] == empty { continue } if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true } } return unsafe.Pointer(&zeroVal[0]), false } // long key, try not to do more comparisons than necessary keymaybe := uintptr(bucketCnt) for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) { k := (*stringStruct)(kptr) if k.len != key.len || b.tophash[i] == empty { continue } if k.str == key.str { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true } // check first 4 bytes if *((*[4]byte)(key.str)) != *((*[4]byte)(k.str)) { continue } // check last 4 bytes if *((*[4]byte)(add(key.str, uintptr(key.len)-4))) != *((*[4]byte)(add(k.str, uintptr(key.len)-4))) { continue } if keymaybe != bucketCnt { // Two keys are potential matches. Use hash to distinguish them. goto dohash } keymaybe = i } if keymaybe != bucketCnt { k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+keymaybe*2*sys.PtrSize)) if memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.valuesize)), true } } return unsafe.Pointer(&zeroVal[0]), false } dohash: hash := t.key.alg.hash(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0)) m := bucketMask(h.B) b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) if c := h.oldbuckets; c != nil { if !h.sameSizeGrow() { // There used to be half as many buckets; mask down one more power of two. m >>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } top := tophash(hash) for ; b != nil; b = b.overflow(t) { for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) { k := (*stringStruct)(kptr) if k.len != key.len || b.tophash[i] != top { continue } if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true } } } return unsafe.Pointer(&zeroVal[0]), false } func mapassign_fast32(t *maptype, h *hmap, key uint32) unsafe.Pointer { if h == nil { panic(plainError("assignment to entry in nil map")) } if raceenabled { callerpc := getcallerpc() racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapassign_fast32)) } if h.flags&hashWriting != 0 { throw("concurrent map writes") } hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) // Set hashWriting after calling alg.hash for consistency with mapassign. h.flags |= hashWriting if h.buckets == nil { h.buckets = newobject(t.bucket) // newarray(t.bucket, 1) } again: bucket := hash & bucketMask(h.B) if h.growing() { growWork_fast32(t, h, bucket) } b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) var insertb *bmap var inserti uintptr var insertk unsafe.Pointer for { for i := uintptr(0); i < bucketCnt; i++ { if b.tophash[i] == empty { if insertb == nil { inserti = i insertb = b } continue } k := *((*uint32)(add(unsafe.Pointer(b), dataOffset+i*4))) if k != key { continue } inserti = i insertb = b goto done } ovf := b.overflow(t) if ovf == nil { break } b = ovf } // Did not find mapping for key. Allocate new cell & add entry. // If we hit the max load factor or we have too many overflow buckets, // and we're not already in the middle of growing, start growing. if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { hashGrow(t, h) goto again // Growing the table invalidates everything, so try again } if insertb == nil { // all current buckets are full, allocate a new one. insertb = h.newoverflow(t, b) inserti = 0 // not necessary, but avoids needlessly spilling inserti } insertb.tophash[inserti&(bucketCnt-1)] = tophash(hash) // mask inserti to avoid bounds checks insertk = add(unsafe.Pointer(insertb), dataOffset+inserti*4) // store new key at insert position *(*uint32)(insertk) = key h.count++ done: val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*4+inserti*uintptr(t.valuesize)) if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting return val } func mapassign_fast32ptr(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { if h == nil { panic(plainError("assignment to entry in nil map")) } if raceenabled { callerpc := getcallerpc() racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapassign_fast32)) } if h.flags&hashWriting != 0 { throw("concurrent map writes") } hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) // Set hashWriting after calling alg.hash for consistency with mapassign. h.flags |= hashWriting if h.buckets == nil { h.buckets = newobject(t.bucket) // newarray(t.bucket, 1) } again: bucket := hash & bucketMask(h.B) if h.growing() { growWork_fast32(t, h, bucket) } b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) var insertb *bmap var inserti uintptr var insertk unsafe.Pointer for { for i := uintptr(0); i < bucketCnt; i++ { if b.tophash[i] == empty { if insertb == nil { inserti = i insertb = b } continue } k := *((*unsafe.Pointer)(add(unsafe.Pointer(b), dataOffset+i*4))) if k != key { continue } inserti = i insertb = b goto done } ovf := b.overflow(t) if ovf == nil { break } b = ovf } // Did not find mapping for key. Allocate new cell & add entry. // If we hit the max load factor or we have too many overflow buckets, // and we're not already in the middle of growing, start growing. if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { hashGrow(t, h) goto again // Growing the table invalidates everything, so try again } if insertb == nil { // all current buckets are full, allocate a new one. insertb = h.newoverflow(t, b) inserti = 0 // not necessary, but avoids needlessly spilling inserti } insertb.tophash[inserti&(bucketCnt-1)] = tophash(hash) // mask inserti to avoid bounds checks insertk = add(unsafe.Pointer(insertb), dataOffset+inserti*4) // store new key at insert position *(*unsafe.Pointer)(insertk) = key h.count++ done: val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*4+inserti*uintptr(t.valuesize)) if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting return val } func mapassign_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer { if h == nil { panic(plainError("assignment to entry in nil map")) } if raceenabled { callerpc := getcallerpc() racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapassign_fast64)) } if h.flags&hashWriting != 0 { throw("concurrent map writes") } hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) // Set hashWriting after calling alg.hash for consistency with mapassign. h.flags |= hashWriting if h.buckets == nil { h.buckets = newobject(t.bucket) // newarray(t.bucket, 1) } again: bucket := hash & bucketMask(h.B) if h.growing() { growWork_fast64(t, h, bucket) } b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) var insertb *bmap var inserti uintptr var insertk unsafe.Pointer for { for i := uintptr(0); i < bucketCnt; i++ { if b.tophash[i] == empty { if insertb == nil { insertb = b inserti = i } continue } k := *((*uint64)(add(unsafe.Pointer(b), dataOffset+i*8))) if k != key { continue } insertb = b inserti = i goto done } ovf := b.overflow(t) if ovf == nil { break } b = ovf } // Did not find mapping for key. Allocate new cell & add entry. // If we hit the max load factor or we have too many overflow buckets, // and we're not already in the middle of growing, start growing. if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { hashGrow(t, h) goto again // Growing the table invalidates everything, so try again } if insertb == nil { // all current buckets are full, allocate a new one. insertb = h.newoverflow(t, b) inserti = 0 // not necessary, but avoids needlessly spilling inserti } insertb.tophash[inserti&(bucketCnt-1)] = tophash(hash) // mask inserti to avoid bounds checks insertk = add(unsafe.Pointer(insertb), dataOffset+inserti*8) // store new key at insert position *(*uint64)(insertk) = key h.count++ done: val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*8+inserti*uintptr(t.valuesize)) if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting return val } func mapassign_fast64ptr(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { if h == nil { panic(plainError("assignment to entry in nil map")) } if raceenabled { callerpc := getcallerpc() racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapassign_fast64)) } if h.flags&hashWriting != 0 { throw("concurrent map writes") } hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) // Set hashWriting after calling alg.hash for consistency with mapassign. h.flags |= hashWriting if h.buckets == nil { h.buckets = newobject(t.bucket) // newarray(t.bucket, 1) } again: bucket := hash & bucketMask(h.B) if h.growing() { growWork_fast64(t, h, bucket) } b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) var insertb *bmap var inserti uintptr var insertk unsafe.Pointer for { for i := uintptr(0); i < bucketCnt; i++ { if b.tophash[i] == empty { if insertb == nil { insertb = b inserti = i } continue } k := *((*unsafe.Pointer)(add(unsafe.Pointer(b), dataOffset+i*8))) if k != key { continue } insertb = b inserti = i goto done } ovf := b.overflow(t) if ovf == nil { break } b = ovf } // Did not find mapping for key. Allocate new cell & add entry. // If we hit the max load factor or we have too many overflow buckets, // and we're not already in the middle of growing, start growing. if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { hashGrow(t, h) goto again // Growing the table invalidates everything, so try again } if insertb == nil { // all current buckets are full, allocate a new one. insertb = h.newoverflow(t, b) inserti = 0 // not necessary, but avoids needlessly spilling inserti } insertb.tophash[inserti&(bucketCnt-1)] = tophash(hash) // mask inserti to avoid bounds checks insertk = add(unsafe.Pointer(insertb), dataOffset+inserti*8) // store new key at insert position *(*unsafe.Pointer)(insertk) = key h.count++ done: val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*8+inserti*uintptr(t.valuesize)) if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting return val } func mapassign_faststr(t *maptype, h *hmap, s string) unsafe.Pointer { if h == nil { panic(plainError("assignment to entry in nil map")) } if raceenabled { callerpc := getcallerpc() racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapassign_faststr)) } if h.flags&hashWriting != 0 { throw("concurrent map writes") } key := stringStructOf(&s) hash := t.key.alg.hash(noescape(unsafe.Pointer(&s)), uintptr(h.hash0)) // Set hashWriting after calling alg.hash for consistency with mapassign. h.flags |= hashWriting if h.buckets == nil { h.buckets = newobject(t.bucket) // newarray(t.bucket, 1) } again: bucket := hash & bucketMask(h.B) if h.growing() { growWork_faststr(t, h, bucket) } b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) top := tophash(hash) var insertb *bmap var inserti uintptr var insertk unsafe.Pointer for { for i := uintptr(0); i < bucketCnt; i++ { if b.tophash[i] != top { if b.tophash[i] == empty && insertb == nil { insertb = b inserti = i } continue } k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+i*2*sys.PtrSize)) if k.len != key.len { continue } if k.str != key.str && !memequal(k.str, key.str, uintptr(key.len)) { continue } // already have a mapping for key. Update it. inserti = i insertb = b goto done } ovf := b.overflow(t) if ovf == nil { break } b = ovf } // Did not find mapping for key. Allocate new cell & add entry. // If we hit the max load factor or we have too many overflow buckets, // and we're not already in the middle of growing, start growing. if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { hashGrow(t, h) goto again // Growing the table invalidates everything, so try again } if insertb == nil { // all current buckets are full, allocate a new one. insertb = h.newoverflow(t, b) inserti = 0 // not necessary, but avoids needlessly spilling inserti } insertb.tophash[inserti&(bucketCnt-1)] = top // mask inserti to avoid bounds checks insertk = add(unsafe.Pointer(insertb), dataOffset+inserti*2*sys.PtrSize) // store new key at insert position *((*stringStruct)(insertk)) = *key h.count++ done: val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*2*sys.PtrSize+inserti*uintptr(t.valuesize)) if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting return val } func mapdelete_fast32(t *maptype, h *hmap, key uint32) { if raceenabled && h != nil { callerpc := getcallerpc() racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapdelete_fast32)) } if h == nil || h.count == 0 { return } if h.flags&hashWriting != 0 { throw("concurrent map writes") } hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) // Set hashWriting after calling alg.hash for consistency with mapdelete h.flags |= hashWriting bucket := hash & bucketMask(h.B) if h.growing() { growWork_fast32(t, h, bucket) } b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize))) search: for ; b != nil; b = b.overflow(t) { for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 4) { if key != *(*uint32)(k) || b.tophash[i] == empty { continue } // Only clear key if there are pointers in it. if t.key.kind&kindNoPointers == 0 { memclrHasPointers(k, t.key.size) } // Only clear value if there are pointers in it. if t.elem.kind&kindNoPointers == 0 { v := add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.valuesize)) memclrHasPointers(v, t.elem.size) } b.tophash[i] = empty h.count-- break search } } if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting } func mapdelete_fast64(t *maptype, h *hmap, key uint64) { if raceenabled && h != nil { callerpc := getcallerpc() racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapdelete_fast64)) } if h == nil || h.count == 0 { return } if h.flags&hashWriting != 0 { throw("concurrent map writes") } hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) // Set hashWriting after calling alg.hash for consistency with mapdelete h.flags |= hashWriting bucket := hash & bucketMask(h.B) if h.growing() { growWork_fast64(t, h, bucket) } b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize))) search: for ; b != nil; b = b.overflow(t) { for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 8) { if key != *(*uint64)(k) || b.tophash[i] == empty { continue } // Only clear key if there are pointers in it. if t.key.kind&kindNoPointers == 0 { memclrHasPointers(k, t.key.size) } // Only clear value if there are pointers in it. if t.elem.kind&kindNoPointers == 0 { v := add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.valuesize)) memclrHasPointers(v, t.elem.size) } b.tophash[i] = empty h.count-- break search } } if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting } func mapdelete_faststr(t *maptype, h *hmap, ky string) { if raceenabled && h != nil { callerpc := getcallerpc() racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapdelete_faststr)) } if h == nil || h.count == 0 { return } if h.flags&hashWriting != 0 { throw("concurrent map writes") } key := stringStructOf(&ky) hash := t.key.alg.hash(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0)) // Set hashWriting after calling alg.hash for consistency with mapdelete h.flags |= hashWriting bucket := hash & bucketMask(h.B) if h.growing() { growWork_faststr(t, h, bucket) } b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize))) top := tophash(hash) search: for ; b != nil; b = b.overflow(t) { for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) { k := (*stringStruct)(kptr) if k.len != key.len || b.tophash[i] != top { continue } if k.str != key.str && !memequal(k.str, key.str, uintptr(key.len)) { continue } // Clear key's pointer. k.str = nil // Only clear value if there are pointers in it. if t.elem.kind&kindNoPointers == 0 { v := add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)) memclrHasPointers(v, t.elem.size) } b.tophash[i] = empty h.count-- break search } } if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting } func growWork_fast32(t *maptype, h *hmap, bucket uintptr) { // make sure we evacuate the oldbucket corresponding // to the bucket we're about to use evacuate_fast32(t, h, bucket&h.oldbucketmask()) // evacuate one more oldbucket to make progress on growing if h.growing() { evacuate_fast32(t, h, h.nevacuate) } } func evacuate_fast32(t *maptype, h *hmap, oldbucket uintptr) { b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) newbit := h.noldbuckets() if !evacuated(b) { // TODO: reuse overflow buckets instead of using new ones, if there // is no iterator using the old buckets. (If !oldIterator.) // xy contains the x and y (low and high) evacuation destinations. var xy [2]evacDst x := &xy[0] x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize))) x.k = add(unsafe.Pointer(x.b), dataOffset) x.v = add(x.k, bucketCnt*4) if !h.sameSizeGrow() { // Only calculate y pointers if we're growing bigger. // Otherwise GC can see bad pointers. y := &xy[1] y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize))) y.k = add(unsafe.Pointer(y.b), dataOffset) y.v = add(y.k, bucketCnt*4) } for ; b != nil; b = b.overflow(t) { k := add(unsafe.Pointer(b), dataOffset) v := add(k, bucketCnt*4) for i := 0; i < bucketCnt; i, k, v = i+1, add(k, 4), add(v, uintptr(t.valuesize)) { top := b.tophash[i] if top == empty { b.tophash[i] = evacuatedEmpty continue } if top < minTopHash { throw("bad map state") } var useY uint8 if !h.sameSizeGrow() { // Compute hash to make our evacuation decision (whether we need // to send this key/value to bucket x or bucket y). hash := t.key.alg.hash(k, uintptr(h.hash0)) if hash&newbit != 0 { useY = 1 } } b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY, enforced in makemap dst := &xy[useY] // evacuation destination if dst.i == bucketCnt { dst.b = h.newoverflow(t, dst.b) dst.i = 0 dst.k = add(unsafe.Pointer(dst.b), dataOffset) dst.v = add(dst.k, bucketCnt*4) } dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check // Copy key. if sys.PtrSize == 4 && t.key.kind&kindNoPointers == 0 && writeBarrier.enabled { writebarrierptr((*uintptr)(dst.k), *(*uintptr)(k)) } else { *(*uint32)(dst.k) = *(*uint32)(k) } typedmemmove(t.elem, dst.v, v) dst.i++ // These updates might push these pointers past the end of the // key or value arrays. That's ok, as we have the overflow pointer // at the end of the bucket to protect against pointing past the // end of the bucket. dst.k = add(dst.k, 4) dst.v = add(dst.v, uintptr(t.valuesize)) } } // Unlink the overflow buckets & clear key/value to help GC. if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 { b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)) // Preserve b.tophash because the evacuation // state is maintained there. ptr := add(b, dataOffset) n := uintptr(t.bucketsize) - dataOffset memclrHasPointers(ptr, n) } } if oldbucket == h.nevacuate { advanceEvacuationMark(h, t, newbit) } } func growWork_fast64(t *maptype, h *hmap, bucket uintptr) { // make sure we evacuate the oldbucket corresponding // to the bucket we're about to use evacuate_fast64(t, h, bucket&h.oldbucketmask()) // evacuate one more oldbucket to make progress on growing if h.growing() { evacuate_fast64(t, h, h.nevacuate) } } func evacuate_fast64(t *maptype, h *hmap, oldbucket uintptr) { b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) newbit := h.noldbuckets() if !evacuated(b) { // TODO: reuse overflow buckets instead of using new ones, if there // is no iterator using the old buckets. (If !oldIterator.) // xy contains the x and y (low and high) evacuation destinations. var xy [2]evacDst x := &xy[0] x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize))) x.k = add(unsafe.Pointer(x.b), dataOffset) x.v = add(x.k, bucketCnt*8) if !h.sameSizeGrow() { // Only calculate y pointers if we're growing bigger. // Otherwise GC can see bad pointers. y := &xy[1] y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize))) y.k = add(unsafe.Pointer(y.b), dataOffset) y.v = add(y.k, bucketCnt*8) } for ; b != nil; b = b.overflow(t) { k := add(unsafe.Pointer(b), dataOffset) v := add(k, bucketCnt*8) for i := 0; i < bucketCnt; i, k, v = i+1, add(k, 8), add(v, uintptr(t.valuesize)) { top := b.tophash[i] if top == empty { b.tophash[i] = evacuatedEmpty continue } if top < minTopHash { throw("bad map state") } var useY uint8 if !h.sameSizeGrow() { // Compute hash to make our evacuation decision (whether we need // to send this key/value to bucket x or bucket y). hash := t.key.alg.hash(k, uintptr(h.hash0)) if hash&newbit != 0 { useY = 1 } } b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY, enforced in makemap dst := &xy[useY] // evacuation destination if dst.i == bucketCnt { dst.b = h.newoverflow(t, dst.b) dst.i = 0 dst.k = add(unsafe.Pointer(dst.b), dataOffset) dst.v = add(dst.k, bucketCnt*8) } dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check // Copy key. if t.key.kind&kindNoPointers == 0 && writeBarrier.enabled { if sys.PtrSize == 8 { writebarrierptr((*uintptr)(dst.k), *(*uintptr)(k)) } else { // There are three ways to squeeze at least one 32 bit pointer into 64 bits. // Give up and call typedmemmove. typedmemmove(t.key, dst.k, k) } } else { *(*uint64)(dst.k) = *(*uint64)(k) } typedmemmove(t.elem, dst.v, v) dst.i++ // These updates might push these pointers past the end of the // key or value arrays. That's ok, as we have the overflow pointer // at the end of the bucket to protect against pointing past the // end of the bucket. dst.k = add(dst.k, 8) dst.v = add(dst.v, uintptr(t.valuesize)) } } // Unlink the overflow buckets & clear key/value to help GC. if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 { b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)) // Preserve b.tophash because the evacuation // state is maintained there. ptr := add(b, dataOffset) n := uintptr(t.bucketsize) - dataOffset memclrHasPointers(ptr, n) } } if oldbucket == h.nevacuate { advanceEvacuationMark(h, t, newbit) } } func growWork_faststr(t *maptype, h *hmap, bucket uintptr) { // make sure we evacuate the oldbucket corresponding // to the bucket we're about to use evacuate_faststr(t, h, bucket&h.oldbucketmask()) // evacuate one more oldbucket to make progress on growing if h.growing() { evacuate_faststr(t, h, h.nevacuate) } } func evacuate_faststr(t *maptype, h *hmap, oldbucket uintptr) { b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) newbit := h.noldbuckets() if !evacuated(b) { // TODO: reuse overflow buckets instead of using new ones, if there // is no iterator using the old buckets. (If !oldIterator.) // xy contains the x and y (low and high) evacuation destinations. var xy [2]evacDst x := &xy[0] x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize))) x.k = add(unsafe.Pointer(x.b), dataOffset) x.v = add(x.k, bucketCnt*2*sys.PtrSize) if !h.sameSizeGrow() { // Only calculate y pointers if we're growing bigger. // Otherwise GC can see bad pointers. y := &xy[1] y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize))) y.k = add(unsafe.Pointer(y.b), dataOffset) y.v = add(y.k, bucketCnt*2*sys.PtrSize) } for ; b != nil; b = b.overflow(t) { k := add(unsafe.Pointer(b), dataOffset) v := add(k, bucketCnt*2*sys.PtrSize) for i := 0; i < bucketCnt; i, k, v = i+1, add(k, 2*sys.PtrSize), add(v, uintptr(t.valuesize)) { top := b.tophash[i] if top == empty { b.tophash[i] = evacuatedEmpty continue } if top < minTopHash { throw("bad map state") } var useY uint8 if !h.sameSizeGrow() { // Compute hash to make our evacuation decision (whether we need // to send this key/value to bucket x or bucket y). hash := t.key.alg.hash(k, uintptr(h.hash0)) if hash&newbit != 0 { useY = 1 } } b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY, enforced in makemap dst := &xy[useY] // evacuation destination if dst.i == bucketCnt { dst.b = h.newoverflow(t, dst.b) dst.i = 0 dst.k = add(unsafe.Pointer(dst.b), dataOffset) dst.v = add(dst.k, bucketCnt*2*sys.PtrSize) } dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check // Copy key. *(*string)(dst.k) = *(*string)(k) typedmemmove(t.elem, dst.v, v) dst.i++ // These updates might push these pointers past the end of the // key or value arrays. That's ok, as we have the overflow pointer // at the end of the bucket to protect against pointing past the // end of the bucket. dst.k = add(dst.k, 2*sys.PtrSize) dst.v = add(dst.v, uintptr(t.valuesize)) } } // Unlink the overflow buckets & clear key/value to help GC. // Unlink the overflow buckets & clear key/value to help GC. if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 { b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)) // Preserve b.tophash because the evacuation // state is maintained there. ptr := add(b, dataOffset) n := uintptr(t.bucketsize) - dataOffset memclrHasPointers(ptr, n) } } if oldbucket == h.nevacuate { advanceEvacuationMark(h, t, newbit) } }