// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build ppc64 ppc64le #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #include "asm_ppc64x.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer // initialize essential registers BL runtime·reginit(SB) SUB $(FIXED_FRAME+16), R1 MOVD R2, 24(R1) // stash the TOC pointer away again now we've created a new frame MOVW R3, FIXED_FRAME+0(R1) // argc MOVD R4, FIXED_FRAME+8(R1) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVD $runtime·g0(SB), g MOVD $(-64*1024), R31 ADD R31, R1, R3 MOVD R3, g_stackguard0(g) MOVD R3, g_stackguard1(g) MOVD R3, (g_stack+stack_lo)(g) MOVD R1, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVD _cgo_init(SB), R12 CMP R0, R12 BEQ nocgo MOVD R12, CTR // r12 = "global function entry point" MOVD R13, R5 // arg 2: TLS base pointer MOVD $setg_gcc<>(SB), R4 // arg 1: setg MOVD g, R3 // arg 0: G // C functions expect 32 bytes of space on caller stack frame // and a 16-byte aligned R1 MOVD R1, R14 // save current stack SUB $32, R1 // reserve 32 bytes RLDCR $0, R1, $~15, R1 // 16-byte align BL (CTR) // may clobber R0, R3-R12 MOVD R14, R1 // restore stack MOVD 24(R1), R2 XOR R0, R0 // fix R0 nocgo: // update stackguard after _cgo_init MOVD (g_stack+stack_lo)(g), R3 ADD $const__StackGuard, R3 MOVD R3, g_stackguard0(g) MOVD R3, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVD $runtime·m0(SB), R3 // save m->g0 = g0 MOVD g, m_g0(R3) // save m0 to g0->m MOVD R3, g_m(g) BL runtime·check(SB) // args are already prepared BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVD $runtime·mainPC(SB), R3 // entry MOVDU R3, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) BL runtime·newproc(SB) ADD $(16+FIXED_FRAME), R1 // start this M BL runtime·mstart(SB) MOVD R0, 0(R0) RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 MOVD R0, 0(R0) // TODO: TD RET TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET TEXT _cgo_reginit(SB),NOSPLIT|NOFRAME,$0-0 // crosscall_ppc64 and crosscall2 need to reginit, but can't // get at the 'runtime.reginit' symbol. BR runtime·reginit(SB) TEXT runtime·reginit(SB),NOSPLIT|NOFRAME,$0-0 // set R0 to zero, it's expected by the toolchain XOR R0, R0 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8 MOVD buf+0(FP), R3 MOVD R1, gobuf_sp(R3) MOVD LR, R31 MOVD R31, gobuf_pc(R3) MOVD g, gobuf_g(R3) MOVD R0, gobuf_lr(R3) MOVD R0, gobuf_ret(R3) // Assert ctxt is zero. See func save. MOVD gobuf_ctxt(R3), R3 CMP R0, R3 BEQ 2(PC) BL runtime·badctxt(SB) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $16-8 MOVD buf+0(FP), R5 MOVD gobuf_g(R5), g // make sure g is not nil BL runtime·save_g(SB) MOVD 0(g), R4 MOVD gobuf_sp(R5), R1 MOVD gobuf_lr(R5), R31 MOVD R31, LR MOVD gobuf_ret(R5), R3 MOVD gobuf_ctxt(R5), R11 MOVD R0, gobuf_sp(R5) MOVD R0, gobuf_ret(R5) MOVD R0, gobuf_lr(R5) MOVD R0, gobuf_ctxt(R5) CMP R0, R0 // set condition codes for == test, needed by stack split MOVD gobuf_pc(R5), R12 MOVD R12, CTR BR (CTR) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 // Save caller state in g->sched MOVD R1, (g_sched+gobuf_sp)(g) MOVD LR, R31 MOVD R31, (g_sched+gobuf_pc)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVD g, R3 MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) CMP g, R3 BNE 2(PC) BR runtime·badmcall(SB) MOVD fn+0(FP), R11 // context MOVD 0(R11), R12 // code pointer MOVD R12, CTR MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp MOVDU R3, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) BL (CTR) MOVD 24(R1), R2 BR runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 // We have several undefs here so that 16 bytes past // $runtime·systemstack_switch lies within them whether or not the // instructions that derive r2 from r12 are there. UNDEF UNDEF UNDEF BL (LR) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVD fn+0(FP), R3 // R3 = fn MOVD R3, R11 // context MOVD g_m(g), R4 // R4 = m MOVD m_gsignal(R4), R5 // R5 = gsignal CMP g, R5 BEQ noswitch MOVD m_g0(R4), R5 // R5 = g0 CMP g, R5 BEQ noswitch MOVD m_curg(R4), R6 CMP g, R6 BEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVD $runtime·badsystemstack(SB), R12 MOVD R12, CTR BL (CTR) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVD $runtime·systemstack_switch(SB), R6 ADD $16, R6 // get past prologue (including r2-setting instructions when they're there) MOVD R6, (g_sched+gobuf_pc)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // switch to g0 MOVD R5, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $FIXED_FRAME, R3 MOVD $runtime·mstart(SB), R4 MOVD R4, 0(R3) MOVD R3, R1 // call target function MOVD 0(R11), R12 // code pointer MOVD R12, CTR BL (CTR) // restore TOC pointer. It seems unlikely that we will use systemstack // to call a function defined in another module, but the results of // doing so would be so confusing that it's worth doing this. MOVD g_m(g), R3 MOVD m_curg(R3), g MOVD (g_sched+gobuf_sp)(g), R3 MOVD 24(R3), R2 // switch back to g MOVD g_m(g), R3 MOVD m_curg(R3), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 MOVD R0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly // On other arches we do a tail call here, but it appears to be // impossible to tail call a function pointer in shared mode on // ppc64 because the caller is responsible for restoring the TOC. MOVD 0(R11), R12 // code pointer MOVD R12, CTR BL (CTR) MOVD 24(R1), R2 RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R3: framesize, R4: argsize, R5: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVD g_m(g), R7 MOVD m_g0(R7), R8 CMP g, R8 BNE 3(PC) BL runtime·badmorestackg0(SB) BL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVD m_gsignal(R7), R8 CMP g, R8 BNE 3(PC) BL runtime·badmorestackgsignal(SB) BL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVD R1, (g_sched+gobuf_sp)(g) MOVD LR, R8 MOVD R8, (g_sched+gobuf_pc)(g) MOVD R5, (g_sched+gobuf_lr)(g) MOVD R11, (g_sched+gobuf_ctxt)(g) // Called from f. // Set m->morebuf to f's caller. MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVD g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVD m_g0(R7), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 MOVDU R0, -(FIXED_FRAME+0)(R1) // create a call frame on g0 BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 MOVD R0, R11 BR runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVD $MAXSIZE, R31; \ CMP R3, R31; \ BGT 4(PC); \ MOVD $NAME(SB), R12; \ MOVD R12, CTR; \ BR (CTR) // Note: can't just "BR NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 BR ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32 MOVWZ argsize+24(FP), R3 DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVD $runtime·badreflectcall(SB), R12 MOVD R12, CTR BR (CTR) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVD arg+16(FP), R3; \ MOVWZ argsize+24(FP), R4; \ MOVD R1, R5; \ ADD $(FIXED_FRAME-1), R5; \ SUB $1, R3; \ ADD R5, R4; \ CMP R5, R4; \ BEQ 4(PC); \ MOVBZU 1(R3), R6; \ MOVBZU R6, 1(R5); \ BR -4(PC); \ /* call function */ \ MOVD f+8(FP), R11; \ MOVD (R11), R12; \ MOVD R12, CTR; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (CTR); \ MOVD 24(R1), R2; \ /* copy return values back */ \ MOVD argtype+0(FP), R7; \ MOVD arg+16(FP), R3; \ MOVWZ n+24(FP), R4; \ MOVWZ retoffset+28(FP), R6; \ ADD $FIXED_FRAME, R1, R5; \ ADD R6, R5; \ ADD R6, R3; \ SUB R6, R4; \ BL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $32-0 MOVD R7, FIXED_FRAME+0(R1) MOVD R3, FIXED_FRAME+8(R1) MOVD R5, FIXED_FRAME+16(R1) MOVD R4, FIXED_FRAME+24(R1) BL runtime·reflectcallmove(SB) RET CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-0 RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 8 bytes to get back to either nop or toc reload before deferreturn // 3. BR to fn // When dynamically linking Go, it is not sufficient to rewind to the BL // deferreturn -- we might be jumping between modules and so we need to reset // the TOC pointer in r2. To do this, codegen inserts MOVD 24(R1), R2 *before* // the BL deferreturn and jmpdefer rewinds to that. TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16 MOVD 0(R1), R31 SUB $8, R31 MOVD R31, LR MOVD fv+0(FP), R11 MOVD argp+8(FP), R1 SUB $FIXED_FRAME, R1 MOVD 0(R11), R12 MOVD R12, CTR BR (CTR) // Save state of caller into g->sched. Smashes R31. TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 MOVD LR, R31 MOVD R31, (g_sched+gobuf_pc)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD R0, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOVD (g_sched+gobuf_ctxt)(g), R31 CMP R0, R31 BEQ 2(PC) BL runtime·badctxt(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVD fn+0(FP), R3 MOVD arg+8(FP), R4 MOVD R1, R7 // save original stack pointer MOVD g, R5 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVD g_m(g), R6 MOVD m_g0(R6), R6 CMP R6, g BEQ g0 BL gosave<>(SB) MOVD R6, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers, plus 32 bytes of callee // save area that lives on the caller stack. SUB $48, R1 RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI MOVD R5, 40(R1) // save old g on stack MOVD (g_stack+stack_hi)(R5), R5 SUB R7, R5 MOVD R5, 32(R1) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?) // This is a "global call", so put the global entry point in r12 MOVD R3, R12 MOVD R12, CTR MOVD R4, R3 // arg in r3 BL (CTR) // C code can clobber R0, so set it back to 0. F27-F31 are // callee save, so we don't need to recover those. XOR R0, R0 // Restore g, stack pointer, toc pointer. // R3 is errno, so don't touch it MOVD 40(R1), g MOVD (g_stack+stack_hi)(g), R5 MOVD 32(R1), R6 SUB R6, R5 MOVD 24(R5), R2 BL runtime·save_g(SB) MOVD (g_stack+stack_hi)(g), R5 MOVD 32(R1), R6 SUB R6, R5 MOVD R5, R1 MOVW R3, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$32-32 MOVD $fn+0(FP), R3 MOVD R3, FIXED_FRAME+0(R1) MOVD frame+8(FP), R3 MOVD R3, FIXED_FRAME+8(R1) MOVD framesize+16(FP), R3 MOVD R3, FIXED_FRAME+16(R1) MOVD ctxt+24(FP), R3 MOVD R3, FIXED_FRAME+24(R1) MOVD $runtime·cgocallback_gofunc(SB), R12 MOVD R12, CTR BL (CTR) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R3 CMP R3, $0 BEQ nocgo BL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMP g, $0 BEQ needm MOVD g_m(g), R8 MOVD R8, savedm-8(SP) BR havem needm: MOVD g, savedm-8(SP) // g is zero, so is m. MOVD $runtime·needm(SB), R12 MOVD R12, CTR BL (CTR) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVD g_m(g), R8 MOVD m_g0(R8), R3 MOVD R1, (g_sched+gobuf_sp)(R3) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP). MOVD m_g0(R8), R3 MOVD (g_sched+gobuf_sp)(R3), R4 MOVD R4, savedsp-16(SP) MOVD R1, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -8(SP) is unused (where SP refers to // m->curg's SP while we're setting it up, before we've adjusted it). MOVD m_curg(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVD (g_sched+gobuf_pc)(g), R5 MOVD R5, -(FIXED_FRAME+16)(R4) MOVD ctxt+24(FP), R3 MOVD R3, -16(R4) MOVD $-(FIXED_FRAME+16)(R4), R1 BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVD 0(R1), R5 MOVD R5, (g_sched+gobuf_pc)(g) MOVD $(FIXED_FRAME+16)(R1), R4 MOVD R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 MOVD savedsp-16(SP), R4 MOVD R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVD savedm-8(SP), R6 CMP R6, $0 BNE droppedm MOVD $runtime·dropm(SB), R12 MOVD R12, CTR BL (CTR) droppedm: // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVD gg+0(FP), g // This only happens if iscgo, so jump straight to save_g BL runtime·save_g(SB) RET // void setg_gcc(G*); set g in C TLS. // Must obey the gcc calling convention. TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0 // The standard prologue clobbers R31, which is callee-save in // the C ABI, so we have to use $-8-0 and save LR ourselves. MOVD LR, R4 // Also save g and R31, since they're callee-save in C ABI MOVD R31, R5 MOVD g, R6 MOVD R3, g BL runtime·save_g(SB) MOVD R6, g MOVD R5, R31 MOVD R4, LR RET TEXT runtime·getcallerpc(SB),NOSPLIT|NOFRAME,$0-8 MOVD 0(R1), R3 // LR saved by caller MOVD R3, ret+0(FP) RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R0 UNDEF #define TBRL 268 #define TBRU 269 /* Time base Upper/Lower */ // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),NOSPLIT,$0-8 MOVW SPR(TBRU), R4 MOVW SPR(TBRL), R3 MOVW SPR(TBRU), R5 CMPW R4, R5 BNE -4(PC) SLD $32, R5 OR R5, R3 MOVD R3, ret+0(FP) RET // AES hashing not implemented for ppc64 TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·memequal(SB),NOSPLIT,$0-25 MOVD a+0(FP), R3 MOVD b+8(FP), R4 MOVD size+16(FP), R5 BL runtime·memeqbody(SB) MOVB R9, ret+24(FP) RET // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17 MOVD a+0(FP), R3 MOVD b+8(FP), R4 CMP R3, R4 BEQ eq MOVD 8(R11), R5 // compiler stores size at offset 8 in the closure BL runtime·memeqbody(SB) MOVB R9, ret+16(FP) RET eq: MOVD $1, R3 MOVB R3, ret+16(FP) RET // Do an efficient memcmp for ppc64le // R3 = s1 len // R4 = s2 len // R5 = s1 addr // R6 = s2 addr // R7 = addr of return value TEXT cmpbodyLE<>(SB),NOSPLIT|NOFRAME,$0-0 MOVD R3,R8 // set up length CMP R3,R4,CR2 // unequal? BC 12,8,setuplen // BLT CR2 MOVD R4,R8 // use R4 for comparison len setuplen: MOVD R8,CTR // set up loop counter CMP R8,$8 // only optimize >=8 BLT simplecheck DCBT (R5) // cache hint DCBT (R6) CMP R8,$32 // optimize >= 32 MOVD R8,R9 BLT setup8a // 8 byte moves only setup32a: SRADCC $5,R8,R9 // number of 32 byte chunks MOVD R9,CTR // Special processing for 32 bytes or longer. // Loading this way is faster and correct as long as the // doublewords being compared are equal. Once they // are found unequal, reload them in proper byte order // to determine greater or less than. loop32a: MOVD 0(R5),R9 // doublewords to compare MOVD 0(R6),R10 // get 4 doublewords MOVD 8(R5),R14 MOVD 8(R6),R15 CMPU R9,R10 // bytes equal? MOVD $0,R16 // set up for cmpne BNE cmpne // further compare for LT or GT MOVD 16(R5),R9 // get next pair of doublewords MOVD 16(R6),R10 CMPU R14,R15 // bytes match? MOVD $8,R16 // set up for cmpne BNE cmpne // further compare for LT or GT MOVD 24(R5),R14 // get next pair of doublewords MOVD 24(R6),R15 CMPU R9,R10 // bytes match? MOVD $16,R16 // set up for cmpne BNE cmpne // further compare for LT or GT MOVD $-8,R16 // for cmpne, R5,R6 already inc by 32 ADD $32,R5 // bump up to next 32 ADD $32,R6 CMPU R14,R15 // bytes match? BC 8,2,loop32a // br ctr and cr BNE cmpne ANDCC $24,R8,R9 // Any 8 byte chunks? BEQ leftover // and result is 0 setup8a: SRADCC $3,R9,R9 // get the 8 byte count BEQ leftover // shifted value is 0 MOVD R9,CTR // loop count for doublewords loop8: MOVDBR (R5+R0),R9 // doublewords to compare MOVDBR (R6+R0),R10 // LE compare order ADD $8,R5 ADD $8,R6 CMPU R9,R10 // match? BC 8,2,loop8 // bt ctr <> 0 && cr BGT greater BLT less leftover: ANDCC $7,R8,R9 // check for leftover bytes MOVD R9,CTR // save the ctr BNE simple // leftover bytes BC 12,10,equal // test CR2 for length comparison BC 12,8,less BR greater simplecheck: CMP R8,$0 // remaining compare length 0 BNE simple // do simple compare BC 12,10,equal // test CR2 for length comparison BC 12,8,less // 1st len < 2nd len, result less BR greater // 1st len > 2nd len must be greater simple: MOVBZ 0(R5), R9 // get byte from 1st operand ADD $1,R5 MOVBZ 0(R6), R10 // get byte from 2nd operand ADD $1,R6 CMPU R9, R10 BC 8,2,simple // bc ctr <> 0 && cr BGT greater // 1st > 2nd BLT less // 1st < 2nd BC 12,10,equal // test CR2 for length comparison BC 12,9,greater // 2nd len > 1st len BR less // must be less cmpne: // only here is not equal MOVDBR (R5+R16),R8 // reload in reverse order MOVDBR (R6+R16),R9 CMPU R8,R9 // compare correct endianness BGT greater // here only if NE less: MOVD $-1,R3 MOVD R3,(R7) // return value if A < B RET equal: MOVD $0,(R7) // return value if A == B RET greater: MOVD $1,R3 MOVD R3,(R7) // return value if A > B RET // Do an efficient memcmp for ppc64 (BE) // R3 = s1 len // R4 = s2 len // R5 = s1 addr // R6 = s2 addr // R7 = addr of return value TEXT cmpbodyBE<>(SB),NOSPLIT|NOFRAME,$0-0 MOVD R3,R8 // set up length CMP R3,R4,CR2 // unequal? BC 12,8,setuplen // BLT CR2 MOVD R4,R8 // use R4 for comparison len setuplen: MOVD R8,CTR // set up loop counter CMP R8,$8 // only optimize >=8 BLT simplecheck DCBT (R5) // cache hint DCBT (R6) CMP R8,$32 // optimize >= 32 MOVD R8,R9 BLT setup8a // 8 byte moves only setup32a: SRADCC $5,R8,R9 // number of 32 byte chunks MOVD R9,CTR loop32a: MOVD 0(R5),R9 // doublewords to compare MOVD 0(R6),R10 // get 4 doublewords MOVD 8(R5),R14 MOVD 8(R6),R15 CMPU R9,R10 // bytes equal? BLT less // found to be less BGT greater // found to be greater MOVD 16(R5),R9 // get next pair of doublewords MOVD 16(R6),R10 CMPU R14,R15 // bytes match? BLT less // found less BGT greater // found greater MOVD 24(R5),R14 // get next pair of doublewords MOVD 24(R6),R15 CMPU R9,R10 // bytes match? BLT less // found to be less BGT greater // found to be greater ADD $32,R5 // bump up to next 32 ADD $32,R6 CMPU R14,R15 // bytes match? BC 8,2,loop32a // br ctr and cr BLT less // with BE, byte ordering is BGT greater // good for compare ANDCC $24,R8,R9 // Any 8 byte chunks? BEQ leftover // and result is 0 setup8a: SRADCC $3,R9,R9 // get the 8 byte count BEQ leftover // shifted value is 0 MOVD R9,CTR // loop count for doublewords loop8: MOVD (R5),R9 MOVD (R6),R10 ADD $8,R5 ADD $8,R6 CMPU R9,R10 // match? BC 8,2,loop8 // bt ctr <> 0 && cr BGT greater BLT less leftover: ANDCC $7,R8,R9 // check for leftover bytes MOVD R9,CTR // save the ctr BNE simple // leftover bytes BC 12,10,equal // test CR2 for length comparison BC 12,8,less BR greater simplecheck: CMP R8,$0 // remaining compare length 0 BNE simple // do simple compare BC 12,10,equal // test CR2 for length comparison BC 12,8,less // 1st len < 2nd len, result less BR greater // same len, must be equal simple: MOVBZ 0(R5),R9 // get byte from 1st operand ADD $1,R5 MOVBZ 0(R6),R10 // get byte from 2nd operand ADD $1,R6 CMPU R9,R10 BC 8,2,simple // bc ctr <> 0 && cr BGT greater // 1st > 2nd BLT less // 1st < 2nd BC 12,10,equal // test CR2 for length comparison BC 12,9,greater // 2nd len > 1st len less: MOVD $-1,R3 MOVD R3,(R7) // return value if A < B RET equal: MOVD $0,(R7) // return value if A == B RET greater: MOVD $1,R3 MOVD R3,(R7) // return value if A > B RET // Do an efficient memequal for ppc64 // R3 = s1 // R4 = s2 // R5 = len // R9 = return value TEXT runtime·memeqbody(SB),NOSPLIT|NOFRAME,$0-0 MOVD R5,CTR CMP R5,$8 // only optimize >=8 BLT simplecheck DCBT (R3) // cache hint DCBT (R4) CMP R5,$32 // optimize >= 32 MOVD R5,R6 // needed if setup8a branch BLT setup8a // 8 byte moves only setup32a: // 8 byte aligned, >= 32 bytes SRADCC $5,R5,R6 // number of 32 byte chunks to compare MOVD R6,CTR loop32a: MOVD 0(R3),R6 // doublewords to compare MOVD 0(R4),R7 MOVD 8(R3),R8 // MOVD 8(R4),R9 CMP R6,R7 // bytes batch? BNE noteq MOVD 16(R3),R6 MOVD 16(R4),R7 CMP R8,R9 // bytes match? MOVD 24(R3),R8 MOVD 24(R4),R9 BNE noteq CMP R6,R7 // bytes match? BNE noteq ADD $32,R3 // bump up to next 32 ADD $32,R4 CMP R8,R9 // bytes match? BC 8,2,loop32a // br ctr and cr BNE noteq ANDCC $24,R5,R6 // Any 8 byte chunks? BEQ leftover // and result is 0 setup8a: SRADCC $3,R6,R6 // get the 8 byte count BEQ leftover // shifted value is 0 MOVD R6,CTR loop8: MOVD 0(R3),R6 // doublewords to compare ADD $8,R3 MOVD 0(R4),R7 ADD $8,R4 CMP R6,R7 // match? BC 8,2,loop8 // bt ctr <> 0 && cr BNE noteq leftover: ANDCC $7,R5,R6 // check for leftover bytes BEQ equal MOVD R6,CTR BR simple simplecheck: CMP R5,$0 BEQ equal simple: MOVBZ 0(R3), R6 ADD $1,R3 MOVBZ 0(R4), R7 ADD $1,R4 CMP R6, R7 BNE noteq BC 8,2,simple BNE noteq BR equal noteq: MOVD $0, R9 RET equal: MOVD $1, R9 RET TEXT bytes·Equal(SB),NOSPLIT,$0-49 MOVD a_len+8(FP), R4 MOVD b_len+32(FP), R5 CMP R5, R4 // unequal lengths are not equal BNE noteq MOVD a+0(FP), R3 MOVD b+24(FP), R4 BL runtime·memeqbody(SB) MOVBZ R9,ret+48(FP) RET noteq: MOVBZ $0,ret+48(FP) RET equal: MOVD $1,R3 MOVBZ R3,ret+48(FP) RET TEXT bytes·IndexByte(SB),NOSPLIT|NOFRAME,$0-40 MOVD s+0(FP), R3 // R3 = byte array pointer MOVD s_len+8(FP), R4 // R4 = length MOVBZ c+24(FP), R5 // R5 = byte MOVD $ret+32(FP), R14 // R14 = &ret BR runtime·indexbytebody<>(SB) TEXT strings·IndexByte(SB),NOSPLIT|NOFRAME,$0-32 MOVD s+0(FP), R3 // R3 = string MOVD s_len+8(FP), R4 // R4 = length MOVBZ c+16(FP), R5 // R5 = byte MOVD $ret+24(FP), R14 // R14 = &ret BR runtime·indexbytebody<>(SB) TEXT runtime·indexbytebody<>(SB),NOSPLIT|NOFRAME,$0-0 DCBT (R3) // Prepare cache line. MOVD R3,R17 // Save base address for calculating the index later. RLDICR $0,R3,$60,R8 // Align address to doubleword boundary in R8. RLDIMI $8,R5,$48,R5 // Replicating the byte across the register. ADD R4,R3,R7 // Last acceptable address in R7. RLDIMI $16,R5,$32,R5 CMPU R4,$32 // Check if it's a small string (<32 bytes). Those will be processed differently. MOVD $-1,R9 WORD $0x54661EB8 // Calculate padding in R6 (rlwinm r6,r3,3,26,28). RLDIMI $32,R5,$0,R5 MOVD R7,R10 // Save last acceptable address in R10 for later. ADD $-1,R7,R7 #ifdef GOARCH_ppc64le SLD R6,R9,R9 // Prepare mask for Little Endian #else SRD R6,R9,R9 // Same for Big Endian #endif BLE small_string // Jump to the small string case if it's <32 bytes. // If we are 64-byte aligned, branch to qw_align just to get the auxiliary values // in V0, V1 and V10, then branch to the preloop. ANDCC $63,R3,R11 BEQ CR0,qw_align RLDICL $0,R3,$61,R11 MOVD 0(R8),R12 // Load one doubleword from the aligned address in R8. CMPB R12,R5,R3 // Check for a match. AND R9,R3,R3 // Mask bytes below s_base RLDICL $0,R7,$61,R6 // length-1 RLDICR $0,R7,$60,R7 // Last doubleword in R7 CMPU R3,$0,CR7 // If we have a match, jump to the final computation BNE CR7,done ADD $8,R8,R8 ADD $-8,R4,R4 ADD R4,R11,R4 // Check for quadword alignment ANDCC $15,R8,R11 BEQ CR0,qw_align // Not aligned, so handle the next doubleword MOVD 0(R8),R12 CMPB R12,R5,R3 CMPU R3,$0,CR7 BNE CR7,done ADD $8,R8,R8 ADD $-8,R4,R4 // Either quadword aligned or 64-byte at this point. We can use LVX. qw_align: // Set up auxiliary data for the vectorized algorithm. VSPLTISB $0,V0 // Replicate 0 across V0 VSPLTISB $3,V10 // Use V10 as control for VBPERMQ MTVRD R5,V1 LVSL (R0+R0),V11 VSLB V11,V10,V10 VSPLTB $7,V1,V1 // Replicate byte across V1 CMPU R4, $64 // If len <= 64, don't use the vectorized loop BLE tail // We will load 4 quardwords per iteration in the loop, so check for // 64-byte alignment. If 64-byte aligned, then branch to the preloop. ANDCC $63,R8,R11 BEQ CR0,preloop // Not 64-byte aligned. Load one quadword at a time until aligned. LVX (R8+R0),V4 VCMPEQUBCC V1,V4,V6 // Check for byte in V4 BNE CR6,found_qw_align ADD $16,R8,R8 ADD $-16,R4,R4 ANDCC $63,R8,R11 BEQ CR0,preloop LVX (R8+R0),V4 VCMPEQUBCC V1,V4,V6 // Check for byte in V4 BNE CR6,found_qw_align ADD $16,R8,R8 ADD $-16,R4,R4 ANDCC $63,R8,R11 BEQ CR0,preloop LVX (R8+R0),V4 VCMPEQUBCC V1,V4,V6 // Check for byte in V4 BNE CR6,found_qw_align ADD $-16,R4,R4 ADD $16,R8,R8 // 64-byte aligned. Prepare for the main loop. preloop: CMPU R4,$64 BLE tail // If len <= 64, don't use the vectorized loop // We are now aligned to a 64-byte boundary. We will load 4 quadwords // per loop iteration. The last doubleword is in R10, so our loop counter // starts at (R10-R8)/64. SUB R8,R10,R6 SRD $6,R6,R9 // Loop counter in R9 MOVD R9,CTR MOVD $16,R11 // Load offsets for the vector loads MOVD $32,R9 MOVD $48,R7 // Main loop we will load 64 bytes per iteration loop: LVX (R8+R0),V2 // Load 4 16-byte vectors LVX (R11+R8),V3 LVX (R9+R8),V4 LVX (R7+R8),V5 VCMPEQUB V1,V2,V6 // Look for byte in each vector VCMPEQUB V1,V3,V7 VCMPEQUB V1,V4,V8 VCMPEQUB V1,V5,V9 VOR V6,V7,V11 // Compress the result in a single vector VOR V8,V9,V12 VOR V11,V12,V11 VCMPEQUBCC V0,V11,V11 // Check for byte BGE CR6,found ADD $64,R8,R8 BC 16,0,loop // bdnz loop // Handle the tailing bytes or R4 <= 64 RLDICL $0,R6,$58,R4 tail: CMPU R4,$0 BEQ notfound LVX (R8+R0),V4 VCMPEQUBCC V1,V4,V6 BNE CR6,found_qw_align ADD $16,R8,R8 CMPU R4,$16,CR6 BLE CR6,notfound ADD $-16,R4,R4 LVX (R8+R0),V4 VCMPEQUBCC V1,V4,V6 BNE CR6,found_qw_align ADD $16,R8,R8 CMPU R4,$16,CR6 BLE CR6,notfound ADD $-16,R4,R4 LVX (R8+R0),V4 VCMPEQUBCC V1,V4,V6 BNE CR6,found_qw_align ADD $16,R8,R8 CMPU R4,$16,CR6 BLE CR6,notfound ADD $-16,R4,R4 LVX (R8+R0),V4 VCMPEQUBCC V1,V4,V6 BNE CR6,found_qw_align notfound: MOVD $-1,R3 MOVD R3,(R14) RET found: // We will now compress the results into a single doubleword, // so it can be moved to a GPR for the final index calculation. // The bytes in V6-V9 are either 0x00 or 0xFF. So, permute the // first bit of each byte into bits 48-63. VBPERMQ V6,V10,V6 VBPERMQ V7,V10,V7 VBPERMQ V8,V10,V8 VBPERMQ V9,V10,V9 // Shift each 16-bit component into its correct position for // merging into a single doubleword. #ifdef GOARCH_ppc64le VSLDOI $2,V7,V7,V7 VSLDOI $4,V8,V8,V8 VSLDOI $6,V9,V9,V9 #else VSLDOI $6,V6,V6,V6 VSLDOI $4,V7,V7,V7 VSLDOI $2,V8,V8,V8 #endif // Merge V6-V9 into a single doubleword and move to a GPR. VOR V6,V7,V11 VOR V8,V9,V4 VOR V4,V11,V4 MFVRD V4,R3 #ifdef GOARCH_ppc64le ADD $-1,R3,R11 ANDN R3,R11,R11 POPCNTD R11,R11 // Count trailing zeros (Little Endian). #else CNTLZD R3,R11 // Count leading zeros (Big Endian). #endif ADD R8,R11,R3 // Calculate byte address return: SUB R17,R3 MOVD R3,(R14) RET found_qw_align: // Use the same algorithm as above. Compress the result into // a single doubleword and move it to a GPR for the final // calculation. VBPERMQ V6,V10,V6 #ifdef GOARCH_ppc64le MFVRD V6,R3 ADD $-1,R3,R11 ANDN R3,R11,R11 POPCNTD R11,R11 #else VSLDOI $6,V6,V6,V6 MFVRD V6,R3 CNTLZD R3,R11 #endif ADD R8,R11,R3 CMPU R11,R4 BLT return BR notfound done: // At this point, R3 has 0xFF in the same position as the byte we are // looking for in the doubleword. Use that to calculate the exact index // of the byte. #ifdef GOARCH_ppc64le ADD $-1,R3,R11 ANDN R3,R11,R11 POPCNTD R11,R11 // Count trailing zeros (Little Endian). #else CNTLZD R3,R11 // Count leading zeros (Big Endian). #endif CMPU R8,R7 // Check if we are at the last doubleword. SRD $3,R11 // Convert trailing zeros to bytes. ADD R11,R8,R3 CMPU R11,R6,CR7 // If at the last doubleword, check the byte offset. BNE return BLE CR7,return BR notfound small_string: // We unroll this loop for better performance. CMPU R4,$0 // Check for length=0 BEQ notfound MOVD 0(R8),R12 // Load one doubleword from the aligned address in R8. CMPB R12,R5,R3 // Check for a match. AND R9,R3,R3 // Mask bytes below s_base. CMPU R3,$0,CR7 // If we have a match, jump to the final computation. RLDICL $0,R7,$61,R6 // length-1 RLDICR $0,R7,$60,R7 // Last doubleword in R7. CMPU R8,R7 BNE CR7,done BEQ notfound // Hit length. MOVDU 8(R8),R12 CMPB R12,R5,R3 CMPU R3,$0,CR6 CMPU R8,R7 BNE CR6,done BEQ notfound MOVDU 8(R8),R12 CMPB R12,R5,R3 CMPU R3,$0,CR6 CMPU R8,R7 BNE CR6,done BEQ notfound MOVDU 8(R8),R12 CMPB R12,R5,R3 CMPU R3,$0,CR6 CMPU R8,R7 BNE CR6,done BEQ notfound MOVDU 8(R8),R12 CMPB R12,R5,R3 CMPU R3,$0,CR6 BNE CR6,done BR notfound TEXT runtime·cmpstring(SB),NOSPLIT|NOFRAME,$0-40 MOVD s1_base+0(FP), R5 MOVD s2_base+16(FP), R6 MOVD s1_len+8(FP), R3 CMP R5,R6,CR7 MOVD s2_len+24(FP), R4 MOVD $ret+32(FP), R7 CMP R3,R4,CR6 BEQ CR7,equal notequal: #ifdef GOARCH_ppc64le BR cmpbodyLE<>(SB) #else BR cmpbodyBE<>(SB) #endif equal: BEQ CR6,done MOVD $1, R8 BGT CR6,greater NEG R8 greater: MOVD R8, (R7) RET done: MOVD $0, (R7) RET TEXT bytes·Compare(SB),NOSPLIT|NOFRAME,$0-56 MOVD s1+0(FP), R5 MOVD s2+24(FP), R6 MOVD s1+8(FP), R3 CMP R5,R6,CR7 MOVD s2+32(FP), R4 MOVD $ret+48(FP), R7 CMP R3,R4,CR6 BEQ CR7,equal #ifdef GOARCH_ppc64le BR cmpbodyLE<>(SB) #else BR cmpbodyBE<>(SB) #endif equal: BEQ CR6,done MOVD $1, R8 BGT CR6,greater NEG R8 greater: MOVD R8, (R7) RET done: MOVD $0, (R7) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R3 RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0 // g (R30) and R31 are callee-save in the C ABI, so save them MOVD g, R4 MOVD R31, R5 MOVD LR, R6 BL runtime·load_g(SB) // clobbers g (R30), R31 MOVD g_m(g), R3 MOVD m_curg(R3), R3 MOVD (g_stack+stack_hi)(R3), R3 MOVD R4, g MOVD R5, R31 MOVD R6, LR RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. // // When dynamically linking Go, it can be returned to from a function // implemented in a different module and so needs to reload the TOC pointer // from the stack (although this function declares that it does not set up x-a // frame, newproc1 does in fact allocate one for goexit and saves the TOC // pointer in the correct place). // goexit+_PCQuantum is halfway through the usual global entry point prologue // that derives r2 from r12 which is a bit silly, but not harmful. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0 MOVD 24(R1), R2 BL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit MOVD R0, R0 // NOP TEXT runtime·sigreturn(SB),NOSPLIT,$0-0 RET // prepGoExitFrame saves the current TOC pointer (i.e. the TOC pointer for the // module containing runtime) to the frame that goexit will execute in when // the goroutine exits. It's implemented in assembly mainly because that's the // easiest way to get access to R2. TEXT runtime·prepGoExitFrame(SB),NOSPLIT,$0-8 MOVD sp+0(FP), R3 MOVD R2, 24(R3) RET TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0 ADD $-8, R1 MOVD R31, 0(R1) MOVD runtime·lastmoduledatap(SB), R4 MOVD R3, moduledata_next(R4) MOVD R3, runtime·lastmoduledatap(SB) MOVD 0(R1), R31 ADD $8, R1 RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R3 MOVB R3, ret+0(FP) RET