// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package io_test import ( "bytes" "crypto/sha1" "errors" "fmt" . "io" "io/ioutil" "runtime" "strings" "testing" "time" ) func TestMultiReader(t *testing.T) { var mr Reader var buf []byte nread := 0 withFooBar := func(tests func()) { r1 := strings.NewReader("foo ") r2 := strings.NewReader("") r3 := strings.NewReader("bar") mr = MultiReader(r1, r2, r3) buf = make([]byte, 20) tests() } expectRead := func(size int, expected string, eerr error) { nread++ n, gerr := mr.Read(buf[0:size]) if n != len(expected) { t.Errorf("#%d, expected %d bytes; got %d", nread, len(expected), n) } got := string(buf[0:n]) if got != expected { t.Errorf("#%d, expected %q; got %q", nread, expected, got) } if gerr != eerr { t.Errorf("#%d, expected error %v; got %v", nread, eerr, gerr) } buf = buf[n:] } withFooBar(func() { expectRead(2, "fo", nil) expectRead(5, "o ", nil) expectRead(5, "bar", nil) expectRead(5, "", EOF) }) withFooBar(func() { expectRead(4, "foo ", nil) expectRead(1, "b", nil) expectRead(3, "ar", nil) expectRead(1, "", EOF) }) withFooBar(func() { expectRead(5, "foo ", nil) }) } func TestMultiWriter(t *testing.T) { sink := new(bytes.Buffer) // Hide bytes.Buffer's WriteString method: testMultiWriter(t, struct { Writer fmt.Stringer }{sink, sink}) } func TestMultiWriter_String(t *testing.T) { testMultiWriter(t, new(bytes.Buffer)) } // test that a multiWriter.WriteString calls results in at most 1 allocation, // even if multiple targets don't support WriteString. func TestMultiWriter_WriteStringSingleAlloc(t *testing.T) { var sink1, sink2 bytes.Buffer type simpleWriter struct { // hide bytes.Buffer's WriteString Writer } mw := MultiWriter(simpleWriter{&sink1}, simpleWriter{&sink2}) allocs := int(testing.AllocsPerRun(1000, func() { WriteString(mw, "foo") })) if allocs != 1 { t.Errorf("num allocations = %d; want 1", allocs) } } type writeStringChecker struct{ called bool } func (c *writeStringChecker) WriteString(s string) (n int, err error) { c.called = true return len(s), nil } func (c *writeStringChecker) Write(p []byte) (n int, err error) { return len(p), nil } func TestMultiWriter_StringCheckCall(t *testing.T) { var c writeStringChecker mw := MultiWriter(&c) WriteString(mw, "foo") if !c.called { t.Error("did not see WriteString call to writeStringChecker") } } func testMultiWriter(t *testing.T, sink interface { Writer fmt.Stringer }) { sha1 := sha1.New() mw := MultiWriter(sha1, sink) sourceString := "My input text." source := strings.NewReader(sourceString) written, err := Copy(mw, source) if written != int64(len(sourceString)) { t.Errorf("short write of %d, not %d", written, len(sourceString)) } if err != nil { t.Errorf("unexpected error: %v", err) } sha1hex := fmt.Sprintf("%x", sha1.Sum(nil)) if sha1hex != "01cb303fa8c30a64123067c5aa6284ba7ec2d31b" { t.Error("incorrect sha1 value") } if sink.String() != sourceString { t.Errorf("expected %q; got %q", sourceString, sink.String()) } } // writerFunc is an io.Writer implemented by the underlying func. type writerFunc func(p []byte) (int, error) func (f writerFunc) Write(p []byte) (int, error) { return f(p) } // Test that MultiWriter properly flattens chained multiWriters, func TestMultiWriterSingleChainFlatten(t *testing.T) { pc := make([]uintptr, 1000) // 1000 should fit the full stack n := runtime.Callers(0, pc) var myDepth = callDepth(pc[:n]) var writeDepth int // will contain the depth from which writerFunc.Writer was called var w Writer = MultiWriter(writerFunc(func(p []byte) (int, error) { n := runtime.Callers(1, pc) writeDepth += callDepth(pc[:n]) return 0, nil })) mw := w // chain a bunch of multiWriters for i := 0; i < 100; i++ { mw = MultiWriter(w) } mw = MultiWriter(w, mw, w, mw) mw.Write(nil) // don't care about errors, just want to check the call-depth for Write if writeDepth != 4*(myDepth+2) { // 2 should be multiWriter.Write and writerFunc.Write t.Errorf("multiWriter did not flatten chained multiWriters: expected writeDepth %d, got %d", 4*(myDepth+2), writeDepth) } } func TestMultiWriterError(t *testing.T) { f1 := writerFunc(func(p []byte) (int, error) { return len(p) / 2, ErrShortWrite }) f2 := writerFunc(func(p []byte) (int, error) { t.Errorf("MultiWriter called f2.Write") return len(p), nil }) w := MultiWriter(f1, f2) n, err := w.Write(make([]byte, 100)) if n != 50 || err != ErrShortWrite { t.Errorf("Write = %d, %v, want 50, ErrShortWrite", n, err) } } // Test that MultiReader copies the input slice and is insulated from future modification. func TestMultiReaderCopy(t *testing.T) { slice := []Reader{strings.NewReader("hello world")} r := MultiReader(slice...) slice[0] = nil data, err := ioutil.ReadAll(r) if err != nil || string(data) != "hello world" { t.Errorf("ReadAll() = %q, %v, want %q, nil", data, err, "hello world") } } // Test that MultiWriter copies the input slice and is insulated from future modification. func TestMultiWriterCopy(t *testing.T) { var buf bytes.Buffer slice := []Writer{&buf} w := MultiWriter(slice...) slice[0] = nil n, err := w.Write([]byte("hello world")) if err != nil || n != 11 { t.Errorf("Write(`hello world`) = %d, %v, want 11, nil", n, err) } if buf.String() != "hello world" { t.Errorf("buf.String() = %q, want %q", buf.String(), "hello world") } } // readerFunc is an io.Reader implemented by the underlying func. type readerFunc func(p []byte) (int, error) func (f readerFunc) Read(p []byte) (int, error) { return f(p) } // callDepth returns the logical call depth for the given PCs. func callDepth(callers []uintptr) (depth int) { frames := runtime.CallersFrames(callers) more := true for more { _, more = frames.Next() depth++ } return } // Test that MultiReader properly flattens chained multiReaders when Read is called func TestMultiReaderFlatten(t *testing.T) { pc := make([]uintptr, 1000) // 1000 should fit the full stack n := runtime.Callers(0, pc) var myDepth = callDepth(pc[:n]) var readDepth int // will contain the depth from which fakeReader.Read was called var r Reader = MultiReader(readerFunc(func(p []byte) (int, error) { n := runtime.Callers(1, pc) readDepth = callDepth(pc[:n]) return 0, errors.New("irrelevant") })) // chain a bunch of multiReaders for i := 0; i < 100; i++ { r = MultiReader(r) } r.Read(nil) // don't care about errors, just want to check the call-depth for Read if readDepth != myDepth+2 { // 2 should be multiReader.Read and fakeReader.Read t.Errorf("multiReader did not flatten chained multiReaders: expected readDepth %d, got %d", myDepth+2, readDepth) } } // byteAndEOFReader is a Reader which reads one byte (the underlying // byte) and io.EOF at once in its Read call. type byteAndEOFReader byte func (b byteAndEOFReader) Read(p []byte) (n int, err error) { if len(p) == 0 { // Read(0 bytes) is useless. We expect no such useless // calls in this test. panic("unexpected call") } p[0] = byte(b) return 1, EOF } // This used to yield bytes forever; issue 16795. func TestMultiReaderSingleByteWithEOF(t *testing.T) { got, err := ioutil.ReadAll(LimitReader(MultiReader(byteAndEOFReader('a'), byteAndEOFReader('b')), 10)) if err != nil { t.Fatal(err) } const want = "ab" if string(got) != want { t.Errorf("got %q; want %q", got, want) } } // Test that a reader returning (n, EOF) at the end of an MultiReader // chain continues to return EOF on its final read, rather than // yielding a (0, EOF). func TestMultiReaderFinalEOF(t *testing.T) { r := MultiReader(bytes.NewReader(nil), byteAndEOFReader('a')) buf := make([]byte, 2) n, err := r.Read(buf) if n != 1 || err != EOF { t.Errorf("got %v, %v; want 1, EOF", n, err) } } func TestMultiReaderFreesExhaustedReaders(t *testing.T) { var mr Reader closed := make(chan struct{}) // The closure ensures that we don't have a live reference to buf1 // on our stack after MultiReader is inlined (Issue 18819). This // is a work around for a limitation in liveness analysis. func() { buf1 := bytes.NewReader([]byte("foo")) buf2 := bytes.NewReader([]byte("bar")) mr = MultiReader(buf1, buf2) runtime.SetFinalizer(buf1, func(*bytes.Reader) { close(closed) }) }() buf := make([]byte, 4) if n, err := ReadFull(mr, buf); err != nil || string(buf) != "foob" { t.Fatalf(`ReadFull = %d (%q), %v; want 3, "foo", nil`, n, buf[:n], err) } runtime.GC() select { case <-closed: case <-time.After(5 * time.Second): t.Fatal("timeout waiting for collection of buf1") } if n, err := ReadFull(mr, buf[:2]); err != nil || string(buf[:2]) != "ar" { t.Fatalf(`ReadFull = %d (%q), %v; want 2, "ar", nil`, n, buf[:n], err) } } func TestInterleavedMultiReader(t *testing.T) { r1 := strings.NewReader("123") r2 := strings.NewReader("45678") mr1 := MultiReader(r1, r2) mr2 := MultiReader(mr1) buf := make([]byte, 4) // Have mr2 use mr1's []Readers. // Consume r1 (and clear it for GC to handle) and consume part of r2. n, err := ReadFull(mr2, buf) if got := string(buf[:n]); got != "1234" || err != nil { t.Errorf(`ReadFull(mr2) = (%q, %v), want ("1234", nil)`, got, err) } // Consume the rest of r2 via mr1. // This should not panic even though mr2 cleared r1. n, err = ReadFull(mr1, buf) if got := string(buf[:n]); got != "5678" || err != nil { t.Errorf(`ReadFull(mr1) = (%q, %v), want ("5678", nil)`, got, err) } }