// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls import ( "crypto" "crypto/hmac" "crypto/md5" "crypto/sha1" "crypto/sha256" "crypto/sha512" "errors" "fmt" "hash" ) // Split a premaster secret in two as specified in RFC 4346, section 5. func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { s1 = secret[0 : (len(secret)+1)/2] s2 = secret[len(secret)/2:] return } // pHash implements the P_hash function, as defined in RFC 4346, section 5. func pHash(result, secret, seed []byte, hash func() hash.Hash) { h := hmac.New(hash, secret) h.Write(seed) a := h.Sum(nil) j := 0 for j < len(result) { h.Reset() h.Write(a) h.Write(seed) b := h.Sum(nil) copy(result[j:], b) j += len(b) h.Reset() h.Write(a) a = h.Sum(nil) } } // prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. func prf10(result, secret, label, seed []byte) { hashSHA1 := sha1.New hashMD5 := md5.New labelAndSeed := make([]byte, len(label)+len(seed)) copy(labelAndSeed, label) copy(labelAndSeed[len(label):], seed) s1, s2 := splitPreMasterSecret(secret) pHash(result, s1, labelAndSeed, hashMD5) result2 := make([]byte, len(result)) pHash(result2, s2, labelAndSeed, hashSHA1) for i, b := range result2 { result[i] ^= b } } // prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { return func(result, secret, label, seed []byte) { labelAndSeed := make([]byte, len(label)+len(seed)) copy(labelAndSeed, label) copy(labelAndSeed[len(label):], seed) pHash(result, secret, labelAndSeed, hashFunc) } } // prf30 implements the SSL 3.0 pseudo-random function, as defined in // www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6. func prf30(result, secret, label, seed []byte) { hashSHA1 := sha1.New() hashMD5 := md5.New() done := 0 i := 0 // RFC 5246 section 6.3 says that the largest PRF output needed is 128 // bytes. Since no more ciphersuites will be added to SSLv3, this will // remain true. Each iteration gives us 16 bytes so 10 iterations will // be sufficient. var b [11]byte for done < len(result) { for j := 0; j <= i; j++ { b[j] = 'A' + byte(i) } hashSHA1.Reset() hashSHA1.Write(b[:i+1]) hashSHA1.Write(secret) hashSHA1.Write(seed) digest := hashSHA1.Sum(nil) hashMD5.Reset() hashMD5.Write(secret) hashMD5.Write(digest) done += copy(result[done:], hashMD5.Sum(nil)) i++ } } const ( tlsRandomLength = 32 // Length of a random nonce in TLS 1.1. masterSecretLength = 48 // Length of a master secret in TLS 1.1. finishedVerifyLength = 12 // Length of verify_data in a Finished message. ) var masterSecretLabel = []byte("master secret") var keyExpansionLabel = []byte("key expansion") var clientFinishedLabel = []byte("client finished") var serverFinishedLabel = []byte("server finished") func prfAndHashForVersion(version uint16, suite *cipherSuite) (func(result, secret, label, seed []byte), crypto.Hash) { switch version { case VersionSSL30: return prf30, crypto.Hash(0) case VersionTLS10, VersionTLS11: return prf10, crypto.Hash(0) case VersionTLS12: if suite.flags&suiteSHA384 != 0 { return prf12(sha512.New384), crypto.SHA384 } return prf12(sha256.New), crypto.SHA256 default: panic("unknown version") } } func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { prf, _ := prfAndHashForVersion(version, suite) return prf } // masterFromPreMasterSecret generates the master secret from the pre-master // secret. See http://tools.ietf.org/html/rfc5246#section-8.1 func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { seed := make([]byte, 0, len(clientRandom)+len(serverRandom)) seed = append(seed, clientRandom...) seed = append(seed, serverRandom...) masterSecret := make([]byte, masterSecretLength) prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed) return masterSecret } // keysFromMasterSecret generates the connection keys from the master // secret, given the lengths of the MAC key, cipher key and IV, as defined in // RFC 2246, section 6.3. func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { seed := make([]byte, 0, len(serverRandom)+len(clientRandom)) seed = append(seed, serverRandom...) seed = append(seed, clientRandom...) n := 2*macLen + 2*keyLen + 2*ivLen keyMaterial := make([]byte, n) prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed) clientMAC = keyMaterial[:macLen] keyMaterial = keyMaterial[macLen:] serverMAC = keyMaterial[:macLen] keyMaterial = keyMaterial[macLen:] clientKey = keyMaterial[:keyLen] keyMaterial = keyMaterial[keyLen:] serverKey = keyMaterial[:keyLen] keyMaterial = keyMaterial[keyLen:] clientIV = keyMaterial[:ivLen] keyMaterial = keyMaterial[ivLen:] serverIV = keyMaterial[:ivLen] return } // lookupTLSHash looks up the corresponding crypto.Hash for a given // hash from a TLS SignatureScheme. func lookupTLSHash(signatureAlgorithm SignatureScheme) (crypto.Hash, error) { switch signatureAlgorithm { case PKCS1WithSHA1, ECDSAWithSHA1: return crypto.SHA1, nil case PKCS1WithSHA256, PSSWithSHA256, ECDSAWithP256AndSHA256: return crypto.SHA256, nil case PKCS1WithSHA384, PSSWithSHA384, ECDSAWithP384AndSHA384: return crypto.SHA384, nil case PKCS1WithSHA512, PSSWithSHA512, ECDSAWithP521AndSHA512: return crypto.SHA512, nil default: return 0, fmt.Errorf("tls: unsupported signature algorithm: %#04x", signatureAlgorithm) } } func newFinishedHash(version uint16, cipherSuite *cipherSuite) finishedHash { var buffer []byte if version == VersionSSL30 || version >= VersionTLS12 { buffer = []byte{} } prf, hash := prfAndHashForVersion(version, cipherSuite) if hash != 0 { return finishedHash{hash.New(), hash.New(), nil, nil, buffer, version, prf} } return finishedHash{sha1.New(), sha1.New(), md5.New(), md5.New(), buffer, version, prf} } // A finishedHash calculates the hash of a set of handshake messages suitable // for including in a Finished message. type finishedHash struct { client hash.Hash server hash.Hash // Prior to TLS 1.2, an additional MD5 hash is required. clientMD5 hash.Hash serverMD5 hash.Hash // In TLS 1.2, a full buffer is sadly required. buffer []byte version uint16 prf func(result, secret, label, seed []byte) } func (h *finishedHash) Write(msg []byte) (n int, err error) { h.client.Write(msg) h.server.Write(msg) if h.version < VersionTLS12 { h.clientMD5.Write(msg) h.serverMD5.Write(msg) } if h.buffer != nil { h.buffer = append(h.buffer, msg...) } return len(msg), nil } func (h finishedHash) Sum() []byte { if h.version >= VersionTLS12 { return h.client.Sum(nil) } out := make([]byte, 0, md5.Size+sha1.Size) out = h.clientMD5.Sum(out) return h.client.Sum(out) } // finishedSum30 calculates the contents of the verify_data member of a SSLv3 // Finished message given the MD5 and SHA1 hashes of a set of handshake // messages. func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic []byte) []byte { md5.Write(magic) md5.Write(masterSecret) md5.Write(ssl30Pad1[:]) md5Digest := md5.Sum(nil) md5.Reset() md5.Write(masterSecret) md5.Write(ssl30Pad2[:]) md5.Write(md5Digest) md5Digest = md5.Sum(nil) sha1.Write(magic) sha1.Write(masterSecret) sha1.Write(ssl30Pad1[:40]) sha1Digest := sha1.Sum(nil) sha1.Reset() sha1.Write(masterSecret) sha1.Write(ssl30Pad2[:40]) sha1.Write(sha1Digest) sha1Digest = sha1.Sum(nil) ret := make([]byte, len(md5Digest)+len(sha1Digest)) copy(ret, md5Digest) copy(ret[len(md5Digest):], sha1Digest) return ret } var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54} var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52} // clientSum returns the contents of the verify_data member of a client's // Finished message. func (h finishedHash) clientSum(masterSecret []byte) []byte { if h.version == VersionSSL30 { return finishedSum30(h.clientMD5, h.client, masterSecret, ssl3ClientFinishedMagic[:]) } out := make([]byte, finishedVerifyLength) h.prf(out, masterSecret, clientFinishedLabel, h.Sum()) return out } // serverSum returns the contents of the verify_data member of a server's // Finished message. func (h finishedHash) serverSum(masterSecret []byte) []byte { if h.version == VersionSSL30 { return finishedSum30(h.serverMD5, h.server, masterSecret, ssl3ServerFinishedMagic[:]) } out := make([]byte, finishedVerifyLength) h.prf(out, masterSecret, serverFinishedLabel, h.Sum()) return out } // selectClientCertSignatureAlgorithm returns a SignatureScheme to sign a // client's CertificateVerify with, or an error if none can be found. func (h finishedHash) selectClientCertSignatureAlgorithm(serverList []SignatureScheme, sigType uint8) (SignatureScheme, error) { for _, v := range serverList { if signatureFromSignatureScheme(v) == sigType && isSupportedSignatureAlgorithm(v, supportedSignatureAlgorithms) { return v, nil } } return 0, errors.New("tls: no supported signature algorithm found for signing client certificate") } // hashForClientCertificate returns a digest, hash function, and TLS 1.2 hash // id suitable for signing by a TLS client certificate. func (h finishedHash) hashForClientCertificate(sigType uint8, signatureAlgorithm SignatureScheme, masterSecret []byte) ([]byte, crypto.Hash, error) { if (h.version == VersionSSL30 || h.version >= VersionTLS12) && h.buffer == nil { panic("a handshake hash for a client-certificate was requested after discarding the handshake buffer") } if h.version == VersionSSL30 { if sigType != signatureRSA { return nil, 0, errors.New("tls: unsupported signature type for client certificate") } md5Hash := md5.New() md5Hash.Write(h.buffer) sha1Hash := sha1.New() sha1Hash.Write(h.buffer) return finishedSum30(md5Hash, sha1Hash, masterSecret, nil), crypto.MD5SHA1, nil } if h.version >= VersionTLS12 { hashAlg, err := lookupTLSHash(signatureAlgorithm) if err != nil { return nil, 0, err } hash := hashAlg.New() hash.Write(h.buffer) return hash.Sum(nil), hashAlg, nil } if sigType == signatureECDSA { return h.server.Sum(nil), crypto.SHA1, nil } return h.Sum(), crypto.MD5SHA1, nil } // discardHandshakeBuffer is called when there is no more need to // buffer the entirety of the handshake messages. func (h *finishedHash) discardHandshakeBuffer() { h.buffer = nil }