// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build s390x package elliptic import ( "crypto/subtle" "math/big" ) type p256CurveFast struct { *CurveParams } type p256Point struct { x [32]byte y [32]byte z [32]byte } var ( p256 Curve p256PreFast *[37][64]p256Point ) // hasVectorFacility reports whether the machine has the z/Architecture // vector facility installed and enabled. func hasVectorFacility() bool var hasVX = hasVectorFacility() func initP256Arch() { if hasVX { p256 = p256CurveFast{p256Params} initTable() return } // No vector support, use pure Go implementation. p256 = p256Curve{p256Params} return } func (curve p256CurveFast) Params() *CurveParams { return curve.CurveParams } // Functions implemented in p256_asm_s390x.s // Montgomery multiplication modulo P256 // //go:noescape func p256MulAsm(res, in1, in2 []byte) // Montgomery square modulo P256 func p256Sqr(res, in []byte) { p256MulAsm(res, in, in) } // Montgomery multiplication by 1 // //go:noescape func p256FromMont(res, in []byte) // iff cond == 1 val <- -val // //go:noescape func p256NegCond(val *p256Point, cond int) // if cond == 0 res <- b; else res <- a // //go:noescape func p256MovCond(res, a, b *p256Point, cond int) // Constant time table access // //go:noescape func p256Select(point *p256Point, table []p256Point, idx int) //go:noescape func p256SelectBase(point *p256Point, table []p256Point, idx int) // Montgomery multiplication modulo Ord(G) // //go:noescape func p256OrdMul(res, in1, in2 []byte) // Montgomery square modulo Ord(G), repeated n times func p256OrdSqr(res, in []byte, n int) { copy(res, in) for i := 0; i < n; i += 1 { p256OrdMul(res, res, res) } } // Point add with P2 being affine point // If sign == 1 -> P2 = -P2 // If sel == 0 -> P3 = P1 // if zero == 0 -> P3 = P2 // //go:noescape func p256PointAddAffineAsm(P3, P1, P2 *p256Point, sign, sel, zero int) // Point add // //go:noescape func p256PointAddAsm(P3, P1, P2 *p256Point) int //go:noescape func p256PointDoubleAsm(P3, P1 *p256Point) func (curve p256CurveFast) Inverse(k *big.Int) *big.Int { if k.Cmp(p256Params.N) >= 0 { // This should never happen. reducedK := new(big.Int).Mod(k, p256Params.N) k = reducedK } // table will store precomputed powers of x. The 32 bytes at index // i store x^(i+1). var table [15][32]byte x := fromBig(k) // This code operates in the Montgomery domain where R = 2^256 mod n // and n is the order of the scalar field. (See initP256 for the // value.) Elements in the Montgomery domain take the form a×R and // multiplication of x and y in the calculates (x × y × R^-1) mod n. RR // is R×R mod n thus the Montgomery multiplication x and RR gives x×R, // i.e. converts x into the Montgomery domain. Stored in BigEndian form RR := []byte{0x66, 0xe1, 0x2d, 0x94, 0xf3, 0xd9, 0x56, 0x20, 0x28, 0x45, 0xb2, 0x39, 0x2b, 0x6b, 0xec, 0x59, 0x46, 0x99, 0x79, 0x9c, 0x49, 0xbd, 0x6f, 0xa6, 0x83, 0x24, 0x4c, 0x95, 0xbe, 0x79, 0xee, 0xa2} p256OrdMul(table[0][:], x, RR) // Prepare the table, no need in constant time access, because the // power is not a secret. (Entry 0 is never used.) for i := 2; i < 16; i += 2 { p256OrdSqr(table[i-1][:], table[(i/2)-1][:], 1) p256OrdMul(table[i][:], table[i-1][:], table[0][:]) } copy(x, table[14][:]) // f p256OrdSqr(x[0:32], x[0:32], 4) p256OrdMul(x[0:32], x[0:32], table[14][:]) // ff t := make([]byte, 32) copy(t, x) p256OrdSqr(x, x, 8) p256OrdMul(x, x, t) // ffff copy(t, x) p256OrdSqr(x, x, 16) p256OrdMul(x, x, t) // ffffffff copy(t, x) p256OrdSqr(x, x, 64) // ffffffff0000000000000000 p256OrdMul(x, x, t) // ffffffff00000000ffffffff p256OrdSqr(x, x, 32) // ffffffff00000000ffffffff00000000 p256OrdMul(x, x, t) // ffffffff00000000ffffffffffffffff // Remaining 32 windows expLo := [32]byte{0xb, 0xc, 0xe, 0x6, 0xf, 0xa, 0xa, 0xd, 0xa, 0x7, 0x1, 0x7, 0x9, 0xe, 0x8, 0x4, 0xf, 0x3, 0xb, 0x9, 0xc, 0xa, 0xc, 0x2, 0xf, 0xc, 0x6, 0x3, 0x2, 0x5, 0x4, 0xf} for i := 0; i < 32; i++ { p256OrdSqr(x, x, 4) p256OrdMul(x, x, table[expLo[i]-1][:]) } // Multiplying by one in the Montgomery domain converts a Montgomery // value out of the domain. one := []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} p256OrdMul(x, x, one) return new(big.Int).SetBytes(x) } // fromBig converts a *big.Int into a format used by this code. func fromBig(big *big.Int) []byte { // This could be done a lot more efficiently... res := big.Bytes() if 32 == len(res) { return res } t := make([]byte, 32) offset := 32 - len(res) for i := len(res) - 1; i >= 0; i-- { t[i+offset] = res[i] } return t } // p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar // is equal or greater than the order of the group, it's reduced modulo that order. func p256GetMultiplier(in []byte) []byte { n := new(big.Int).SetBytes(in) if n.Cmp(p256Params.N) >= 0 { n.Mod(n, p256Params.N) } return fromBig(n) } // p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the // underlying field of the curve. (See initP256 for the value.) Thus rr here is // R×R mod p. See comment in Inverse about how this is used. var rr = []byte{0x00, 0x00, 0x00, 0x04, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03} // (This is one, in the Montgomery domain.) var one = []byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01} func maybeReduceModP(in *big.Int) *big.Int { if in.Cmp(p256Params.P) < 0 { return in } return new(big.Int).Mod(in, p256Params.P) } func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) { var r1, r2 p256Point scalarReduced := p256GetMultiplier(baseScalar) r1IsInfinity := scalarIsZero(scalarReduced) r1.p256BaseMult(scalarReduced) copy(r2.x[:], fromBig(maybeReduceModP(bigX))) copy(r2.y[:], fromBig(maybeReduceModP(bigY))) copy(r2.z[:], one) p256MulAsm(r2.x[:], r2.x[:], rr[:]) p256MulAsm(r2.y[:], r2.y[:], rr[:]) scalarReduced = p256GetMultiplier(scalar) r2IsInfinity := scalarIsZero(scalarReduced) r2.p256ScalarMult(p256GetMultiplier(scalar)) var sum, double p256Point pointsEqual := p256PointAddAsm(&sum, &r1, &r2) p256PointDoubleAsm(&double, &r1) p256MovCond(&sum, &double, &sum, pointsEqual) p256MovCond(&sum, &r1, &sum, r2IsInfinity) p256MovCond(&sum, &r2, &sum, r1IsInfinity) return sum.p256PointToAffine() } func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) { var r p256Point r.p256BaseMult(p256GetMultiplier(scalar)) return r.p256PointToAffine() } func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { var r p256Point copy(r.x[:], fromBig(maybeReduceModP(bigX))) copy(r.y[:], fromBig(maybeReduceModP(bigY))) copy(r.z[:], one) p256MulAsm(r.x[:], r.x[:], rr[:]) p256MulAsm(r.y[:], r.y[:], rr[:]) r.p256ScalarMult(p256GetMultiplier(scalar)) return r.p256PointToAffine() } // scalarIsZero returns 1 if scalar represents the zero value, and zero // otherwise. func scalarIsZero(scalar []byte) int { b := byte(0) for _, s := range scalar { b |= s } return subtle.ConstantTimeByteEq(b, 0) } func (p *p256Point) p256PointToAffine() (x, y *big.Int) { zInv := make([]byte, 32) zInvSq := make([]byte, 32) p256Inverse(zInv, p.z[:]) p256Sqr(zInvSq, zInv) p256MulAsm(zInv, zInv, zInvSq) p256MulAsm(zInvSq, p.x[:], zInvSq) p256MulAsm(zInv, p.y[:], zInv) p256FromMont(zInvSq, zInvSq) p256FromMont(zInv, zInv) return new(big.Int).SetBytes(zInvSq), new(big.Int).SetBytes(zInv) } // p256Inverse sets out to in^-1 mod p. func p256Inverse(out, in []byte) { var stack [6 * 32]byte p2 := stack[32*0 : 32*0+32] p4 := stack[32*1 : 32*1+32] p8 := stack[32*2 : 32*2+32] p16 := stack[32*3 : 32*3+32] p32 := stack[32*4 : 32*4+32] p256Sqr(out, in) p256MulAsm(p2, out, in) // 3*p p256Sqr(out, p2) p256Sqr(out, out) p256MulAsm(p4, out, p2) // f*p p256Sqr(out, p4) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256MulAsm(p8, out, p4) // ff*p p256Sqr(out, p8) for i := 0; i < 7; i++ { p256Sqr(out, out) } p256MulAsm(p16, out, p8) // ffff*p p256Sqr(out, p16) for i := 0; i < 15; i++ { p256Sqr(out, out) } p256MulAsm(p32, out, p16) // ffffffff*p p256Sqr(out, p32) for i := 0; i < 31; i++ { p256Sqr(out, out) } p256MulAsm(out, out, in) for i := 0; i < 32*4; i++ { p256Sqr(out, out) } p256MulAsm(out, out, p32) for i := 0; i < 32; i++ { p256Sqr(out, out) } p256MulAsm(out, out, p32) for i := 0; i < 16; i++ { p256Sqr(out, out) } p256MulAsm(out, out, p16) for i := 0; i < 8; i++ { p256Sqr(out, out) } p256MulAsm(out, out, p8) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256MulAsm(out, out, p4) p256Sqr(out, out) p256Sqr(out, out) p256MulAsm(out, out, p2) p256Sqr(out, out) p256Sqr(out, out) p256MulAsm(out, out, in) } func boothW5(in uint) (int, int) { var s uint = ^((in >> 5) - 1) var d uint = (1 << 6) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func boothW7(in uint) (int, int) { var s uint = ^((in >> 7) - 1) var d uint = (1 << 8) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func initTable() { p256PreFast = new([37][64]p256Point) //z coordinate not used basePoint := p256Point{ x: [32]byte{0x18, 0x90, 0x5f, 0x76, 0xa5, 0x37, 0x55, 0xc6, 0x79, 0xfb, 0x73, 0x2b, 0x77, 0x62, 0x25, 0x10, 0x75, 0xba, 0x95, 0xfc, 0x5f, 0xed, 0xb6, 0x01, 0x79, 0xe7, 0x30, 0xd4, 0x18, 0xa9, 0x14, 0x3c}, //(p256.x*2^256)%p y: [32]byte{0x85, 0x71, 0xff, 0x18, 0x25, 0x88, 0x5d, 0x85, 0xd2, 0xe8, 0x86, 0x88, 0xdd, 0x21, 0xf3, 0x25, 0x8b, 0x4a, 0xb8, 0xe4, 0xba, 0x19, 0xe4, 0x5c, 0xdd, 0xf2, 0x53, 0x57, 0xce, 0x95, 0x56, 0x0a}, //(p256.y*2^256)%p z: [32]byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, //(p256.z*2^256)%p } t1 := new(p256Point) t2 := new(p256Point) *t2 = basePoint zInv := make([]byte, 32) zInvSq := make([]byte, 32) for j := 0; j < 64; j++ { *t1 = *t2 for i := 0; i < 37; i++ { // The window size is 7 so we need to double 7 times. if i != 0 { for k := 0; k < 7; k++ { p256PointDoubleAsm(t1, t1) } } // Convert the point to affine form. (Its values are // still in Montgomery form however.) p256Inverse(zInv, t1.z[:]) p256Sqr(zInvSq, zInv) p256MulAsm(zInv, zInv, zInvSq) p256MulAsm(t1.x[:], t1.x[:], zInvSq) p256MulAsm(t1.y[:], t1.y[:], zInv) copy(t1.z[:], basePoint.z[:]) // Update the table entry copy(p256PreFast[i][j].x[:], t1.x[:]) copy(p256PreFast[i][j].y[:], t1.y[:]) } if j == 0 { p256PointDoubleAsm(t2, &basePoint) } else { p256PointAddAsm(t2, t2, &basePoint) } } } func (p *p256Point) p256BaseMult(scalar []byte) { wvalue := (uint(scalar[31]) << 1) & 0xff sel, sign := boothW7(uint(wvalue)) p256SelectBase(p, p256PreFast[0][:], sel) p256NegCond(p, sign) copy(p.z[:], one[:]) var t0 p256Point copy(t0.z[:], one[:]) index := uint(6) zero := sel for i := 1; i < 37; i++ { if index < 247 { wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0xff } else { wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0xff } index += 7 sel, sign = boothW7(uint(wvalue)) p256SelectBase(&t0, p256PreFast[i][:], sel) p256PointAddAffineAsm(p, p, &t0, sign, sel, zero) zero |= sel } } func (p *p256Point) p256ScalarMult(scalar []byte) { // precomp is a table of precomputed points that stores powers of p // from p^1 to p^16. var precomp [16]p256Point var t0, t1, t2, t3 p256Point // Prepare the table *&precomp[0] = *p p256PointDoubleAsm(&t0, p) p256PointDoubleAsm(&t1, &t0) p256PointDoubleAsm(&t2, &t1) p256PointDoubleAsm(&t3, &t2) *&precomp[1] = t0 // 2 *&precomp[3] = t1 // 4 *&precomp[7] = t2 // 8 *&precomp[15] = t3 // 16 p256PointAddAsm(&t0, &t0, p) p256PointAddAsm(&t1, &t1, p) p256PointAddAsm(&t2, &t2, p) *&precomp[2] = t0 // 3 *&precomp[4] = t1 // 5 *&precomp[8] = t2 // 9 p256PointDoubleAsm(&t0, &t0) p256PointDoubleAsm(&t1, &t1) *&precomp[5] = t0 // 6 *&precomp[9] = t1 // 10 p256PointAddAsm(&t2, &t0, p) p256PointAddAsm(&t1, &t1, p) *&precomp[6] = t2 // 7 *&precomp[10] = t1 // 11 p256PointDoubleAsm(&t0, &t0) p256PointDoubleAsm(&t2, &t2) *&precomp[11] = t0 // 12 *&precomp[13] = t2 // 14 p256PointAddAsm(&t0, &t0, p) p256PointAddAsm(&t2, &t2, p) *&precomp[12] = t0 // 13 *&precomp[14] = t2 // 15 // Start scanning the window from top bit index := uint(254) var sel, sign int wvalue := (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f sel, _ = boothW5(uint(wvalue)) p256Select(p, precomp[:], sel) zero := sel for index > 4 { index -= 5 p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) if index < 247 { wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0x3f } else { wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f } sel, sign = boothW5(uint(wvalue)) p256Select(&t0, precomp[:], sel) p256NegCond(&t0, sign) p256PointAddAsm(&t1, p, &t0) p256MovCond(&t1, &t1, p, sel) p256MovCond(p, &t1, &t0, zero) zero |= sel } p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) p256PointDoubleAsm(p, p) wvalue = (uint(scalar[31]) << 1) & 0x3f sel, sign = boothW5(uint(wvalue)) p256Select(&t0, precomp[:], sel) p256NegCond(&t0, sign) p256PointAddAsm(&t1, p, &t0) p256MovCond(&t1, &t1, p, sel) p256MovCond(p, &t1, &t0, zero) }