// Inferno utils/5l/asm.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package ppc64 import ( "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/ld" "cmd/link/internal/sym" "debug/elf" "encoding/binary" "fmt" "log" ) func genplt(ctxt *ld.Link) { // The ppc64 ABI PLT has similar concepts to other // architectures, but is laid out quite differently. When we // see an R_PPC64_REL24 relocation to a dynamic symbol // (indicating that the call needs to go through the PLT), we // generate up to three stubs and reserve a PLT slot. // // 1) The call site will be bl x; nop (where the relocation // applies to the bl). We rewrite this to bl x_stub; ld // r2,24(r1). The ld is necessary because x_stub will save // r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). // // 2) We reserve space for a pointer in the .plt section (once // per referenced dynamic function). .plt is a data // section filled solely by the dynamic linker (more like // .plt.got on other architectures). Initially, the // dynamic linker will fill each slot with a pointer to the // corresponding x@plt entry point. // // 3) We generate the "call stub" x_stub (once per dynamic // function/object file pair). This saves the TOC in the // TOC save slot, reads the function pointer from x's .plt // slot and calls it like any other global entry point // (including setting r12 to the function address). // // 4) We generate the "symbol resolver stub" x@plt (once per // dynamic function). This is solely a branch to the glink // resolver stub. // // 5) We generate the glink resolver stub (only once). This // computes which symbol resolver stub we came through and // invokes the dynamic resolver via a pointer provided by // the dynamic linker. This will patch up the .plt slot to // point directly at the function so future calls go // straight from the call stub to the real function, and // then call the function. // NOTE: It's possible we could make ppc64 closer to other // architectures: ppc64's .plt is like .plt.got on other // platforms and ppc64's .glink is like .plt on other // platforms. // Find all R_PPC64_REL24 relocations that reference dynamic // imports. Reserve PLT entries for these symbols and // generate call stubs. The call stubs need to live in .text, // which is why we need to do this pass this early. // // This assumes "case 1" from the ABI, where the caller needs // us to save and restore the TOC pointer. var stubs []*sym.Symbol for _, s := range ctxt.Textp { for i := range s.R { r := &s.R[i] if r.Type != 256+objabi.RelocType(elf.R_PPC64_REL24) || r.Sym.Type != sym.SDYNIMPORT { continue } // Reserve PLT entry and generate symbol // resolver addpltsym(ctxt, r.Sym) // Generate call stub n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name) stub := ctxt.Syms.Lookup(n, 0) if s.Attr.Reachable() { stub.Attr |= sym.AttrReachable } if stub.Size == 0 { // Need outer to resolve .TOC. stub.Outer = s stubs = append(stubs, stub) gencallstub(ctxt, 1, stub, r.Sym) } // Update the relocation to use the call stub r.Sym = stub // Restore TOC after bl. The compiler put a // nop here for us to overwrite. const o1 = 0xe8410018 // ld r2,24(r1) ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1) } } // Put call stubs at the beginning (instead of the end). // So when resolving the relocations to calls to the stubs, // the addresses are known and trampolines can be inserted // when necessary. ctxt.Textp = append(stubs, ctxt.Textp...) } func genaddmoduledata(ctxt *ld.Link) { addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", 0) if addmoduledata.Type == sym.STEXT && ctxt.BuildMode != ld.BuildModePlugin { return } addmoduledata.Attr |= sym.AttrReachable initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0) initfunc.Type = sym.STEXT initfunc.Attr |= sym.AttrLocal initfunc.Attr |= sym.AttrReachable o := func(op uint32) { initfunc.AddUint32(ctxt.Arch, op) } // addis r2, r12, .TOC.-func@ha rel := initfunc.AddRel() rel.Off = int32(initfunc.Size) rel.Siz = 8 rel.Sym = ctxt.Syms.Lookup(".TOC.", 0) rel.Sym.Attr |= sym.AttrReachable rel.Type = objabi.R_ADDRPOWER_PCREL o(0x3c4c0000) // addi r2, r2, .TOC.-func@l o(0x38420000) // mflr r31 o(0x7c0802a6) // stdu r31, -32(r1) o(0xf801ffe1) // addis r3, r2, local.moduledata@got@ha rel = initfunc.AddRel() rel.Off = int32(initfunc.Size) rel.Siz = 8 if s := ctxt.Syms.ROLookup("local.moduledata", 0); s != nil { rel.Sym = s } else if s := ctxt.Syms.ROLookup("local.pluginmoduledata", 0); s != nil { rel.Sym = s } else { rel.Sym = ctxt.Syms.Lookup("runtime.firstmoduledata", 0) } rel.Sym.Attr |= sym.AttrReachable rel.Sym.Attr |= sym.AttrLocal rel.Type = objabi.R_ADDRPOWER_GOT o(0x3c620000) // ld r3, local.moduledata@got@l(r3) o(0xe8630000) // bl runtime.addmoduledata rel = initfunc.AddRel() rel.Off = int32(initfunc.Size) rel.Siz = 4 rel.Sym = addmoduledata rel.Type = objabi.R_CALLPOWER o(0x48000001) // nop o(0x60000000) // ld r31, 0(r1) o(0xe8010000) // mtlr r31 o(0x7c0803a6) // addi r1,r1,32 o(0x38210020) // blr o(0x4e800020) if ctxt.BuildMode == ld.BuildModePlugin { ctxt.Textp = append(ctxt.Textp, addmoduledata) } initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0) ctxt.Textp = append(ctxt.Textp, initfunc) initarray_entry.Attr |= sym.AttrReachable initarray_entry.Attr |= sym.AttrLocal initarray_entry.Type = sym.SINITARR initarray_entry.AddAddr(ctxt.Arch, initfunc) } func gentext(ctxt *ld.Link) { if ctxt.DynlinkingGo() { genaddmoduledata(ctxt) } if ctxt.LinkMode == ld.LinkInternal { genplt(ctxt) } } // Construct a call stub in stub that calls symbol targ via its PLT // entry. func gencallstub(ctxt *ld.Link, abicase int, stub *sym.Symbol, targ *sym.Symbol) { if abicase != 1 { // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC // relocations, we'll need to implement cases 2 and 3. log.Fatalf("gencallstub only implements case 1 calls") } plt := ctxt.Syms.Lookup(".plt", 0) stub.Type = sym.STEXT // Save TOC pointer in TOC save slot stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1) // Load the function pointer from the PLT. r := stub.AddRel() r.Off = int32(stub.Size) r.Sym = plt r.Add = int64(targ.Plt) r.Siz = 2 if ctxt.Arch.ByteOrder == binary.BigEndian { r.Off += int32(r.Siz) } r.Type = objabi.R_POWER_TOC r.Variant = sym.RV_POWER_HA stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha r = stub.AddRel() r.Off = int32(stub.Size) r.Sym = plt r.Add = int64(targ.Plt) r.Siz = 2 if ctxt.Arch.ByteOrder == binary.BigEndian { r.Off += int32(r.Siz) } r.Type = objabi.R_POWER_TOC r.Variant = sym.RV_POWER_LO stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) // Jump to the loaded pointer stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr } func adddynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool { targ := r.Sym switch r.Type { default: if r.Type >= 256 { ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type)) return false } // Handle relocations found in ELF object files. case 256 + objabi.RelocType(elf.R_PPC64_REL24): r.Type = objabi.R_CALLPOWER // This is a local call, so the caller isn't setting // up r12 and r2 is the same for the caller and // callee. Hence, we need to go to the local entry // point. (If we don't do this, the callee will try // to use r12 to compute r2.) r.Add += int64(r.Sym.Localentry) * 4 if targ.Type == sym.SDYNIMPORT { // Should have been handled in elfsetupplt ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import") } return true case 256 + objabi.RelocType(elf.R_PPC_REL32): r.Type = objabi.R_PCREL r.Add += 4 if targ.Type == sym.SDYNIMPORT { ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import") } return true case 256 + objabi.RelocType(elf.R_PPC64_ADDR64): r.Type = objabi.R_ADDR if targ.Type == sym.SDYNIMPORT { // These happen in .toc sections ld.Adddynsym(ctxt, targ) rela := ctxt.Syms.Lookup(".rela", 0) rela.AddAddrPlus(ctxt.Arch, s, int64(r.Off)) rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(targ.Dynid), uint32(elf.R_PPC64_ADDR64))) rela.AddUint64(ctxt.Arch, uint64(r.Add)) r.Type = 256 // ignore during relocsym } return true case 256 + objabi.RelocType(elf.R_PPC64_TOC16): r.Type = objabi.R_POWER_TOC r.Variant = sym.RV_POWER_LO | sym.RV_CHECK_OVERFLOW return true case 256 + objabi.RelocType(elf.R_PPC64_TOC16_LO): r.Type = objabi.R_POWER_TOC r.Variant = sym.RV_POWER_LO return true case 256 + objabi.RelocType(elf.R_PPC64_TOC16_HA): r.Type = objabi.R_POWER_TOC r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW return true case 256 + objabi.RelocType(elf.R_PPC64_TOC16_HI): r.Type = objabi.R_POWER_TOC r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW return true case 256 + objabi.RelocType(elf.R_PPC64_TOC16_DS): r.Type = objabi.R_POWER_TOC r.Variant = sym.RV_POWER_DS | sym.RV_CHECK_OVERFLOW return true case 256 + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS): r.Type = objabi.R_POWER_TOC r.Variant = sym.RV_POWER_DS return true case 256 + objabi.RelocType(elf.R_PPC64_REL16_LO): r.Type = objabi.R_PCREL r.Variant = sym.RV_POWER_LO r.Add += 2 // Compensate for relocation size of 2 return true case 256 + objabi.RelocType(elf.R_PPC64_REL16_HI): r.Type = objabi.R_PCREL r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW r.Add += 2 return true case 256 + objabi.RelocType(elf.R_PPC64_REL16_HA): r.Type = objabi.R_PCREL r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW r.Add += 2 return true } // Handle references to ELF symbols from our own object files. if targ.Type != sym.SDYNIMPORT { return true } // TODO(austin): Translate our relocations to ELF return false } func elfreloc1(ctxt *ld.Link, r *sym.Reloc, sectoff int64) bool { ctxt.Out.Write64(uint64(sectoff)) elfsym := r.Xsym.ElfsymForReloc() switch r.Type { default: return false case objabi.R_ADDR: switch r.Siz { case 4: ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32) case 8: ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32) default: return false } case objabi.R_POWER_TLS: ctxt.Out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32) case objabi.R_POWER_TLS_LE: ctxt.Out.Write64(uint64(elf.R_PPC64_TPREL16) | uint64(elfsym)<<32) case objabi.R_POWER_TLS_IE: ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32) ctxt.Out.Write64(uint64(r.Xadd)) ctxt.Out.Write64(uint64(sectoff + 4)) ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER: ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) ctxt.Out.Write64(uint64(r.Xadd)) ctxt.Out.Write64(uint64(sectoff + 4)) ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER_DS: ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) ctxt.Out.Write64(uint64(r.Xadd)) ctxt.Out.Write64(uint64(sectoff + 4)) ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER_GOT: ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32) ctxt.Out.Write64(uint64(r.Xadd)) ctxt.Out.Write64(uint64(sectoff + 4)) ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER_PCREL: ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32) ctxt.Out.Write64(uint64(r.Xadd)) ctxt.Out.Write64(uint64(sectoff + 4)) ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32) r.Xadd += 4 case objabi.R_ADDRPOWER_TOCREL: ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) ctxt.Out.Write64(uint64(r.Xadd)) ctxt.Out.Write64(uint64(sectoff + 4)) ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER_TOCREL_DS: ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) ctxt.Out.Write64(uint64(r.Xadd)) ctxt.Out.Write64(uint64(sectoff + 4)) ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32) case objabi.R_CALLPOWER: if r.Siz != 4 { return false } ctxt.Out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32) } ctxt.Out.Write64(uint64(r.Xadd)) return true } func elfsetupplt(ctxt *ld.Link) { plt := ctxt.Syms.Lookup(".plt", 0) if plt.Size == 0 { // The dynamic linker stores the address of the // dynamic resolver and the DSO identifier in the two // doublewords at the beginning of the .plt section // before the PLT array. Reserve space for these. plt.Size = 16 } } func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool { return false } // Return the value of .TOC. for symbol s func symtoc(ctxt *ld.Link, s *sym.Symbol) int64 { var toc *sym.Symbol if s.Outer != nil { toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version)) } else { toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) } if toc == nil { ld.Errorf(s, "TOC-relative relocation in object without .TOC.") return 0 } return toc.Value } func archrelocaddr(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val *int64) bool { var o1, o2 uint32 if ctxt.Arch.ByteOrder == binary.BigEndian { o1 = uint32(*val >> 32) o2 = uint32(*val) } else { o1 = uint32(*val) o2 = uint32(*val >> 32) } // We are spreading a 31-bit address across two instructions, putting the // high (adjusted) part in the low 16 bits of the first instruction and the // low part in the low 16 bits of the second instruction, or, in the DS case, // bits 15-2 (inclusive) of the address into bits 15-2 of the second // instruction (it is an error in this case if the low 2 bits of the address // are non-zero). t := ld.Symaddr(r.Sym) + r.Add if t < 0 || t >= 1<<31 { ld.Errorf(s, "relocation for %s is too big (>=2G): %d", s.Name, ld.Symaddr(r.Sym)) } if t&0x8000 != 0 { t += 0x10000 } switch r.Type { case objabi.R_ADDRPOWER: o1 |= (uint32(t) >> 16) & 0xffff o2 |= uint32(t) & 0xffff case objabi.R_ADDRPOWER_DS: o1 |= (uint32(t) >> 16) & 0xffff if t&3 != 0 { ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) } o2 |= uint32(t) & 0xfffc default: return false } if ctxt.Arch.ByteOrder == binary.BigEndian { *val = int64(o1)<<32 | int64(o2) } else { *val = int64(o2)<<32 | int64(o1) } return true } // resolve direct jump relocation r in s, and add trampoline if necessary func trampoline(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol) { // Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it. // For internal linking, trampolines are always created for long calls. // For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in // r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created. if ctxt.LinkMode == ld.LinkExternal && (ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE) { // No trampolines needed since r2 contains the TOC return } t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) switch r.Type { case objabi.R_CALLPOWER: // If branch offset is too far then create a trampoline. if (ctxt.LinkMode == ld.LinkExternal && s.Sect != r.Sym.Sect) || (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) != t) || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) { var tramp *sym.Symbol for i := 0; ; i++ { // Using r.Add as part of the name is significant in functions like duffzero where the call // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as // distinct trampolines. name := r.Sym.Name if r.Add == 0 { name = name + fmt.Sprintf("-tramp%d", i) } else { name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i) } // Look up the trampoline in case it already exists tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version)) if tramp.Value == 0 { break } t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off)) // With internal linking, the trampoline can be used if it is not too far. // With external linking, the trampoline must be in this section for it to be reused. if (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) == t) || (ctxt.LinkMode == ld.LinkExternal && s.Sect == tramp.Sect) { break } } if tramp.Type == 0 { if ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE { // Should have returned for above cases ld.Errorf(s, "unexpected trampoline for shared or dynamic linking\n") } else { ctxt.AddTramp(tramp) gentramp(ctxt.Arch, ctxt.LinkMode, tramp, r.Sym, int64(r.Add)) } } r.Sym = tramp r.Add = 0 // This was folded into the trampoline target address r.Done = false } default: ld.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type)) } } func gentramp(arch *sys.Arch, linkmode ld.LinkMode, tramp, target *sym.Symbol, offset int64) { // Used for default build mode for an executable // Address of the call target is generated using // relocation and doesn't depend on r2 (TOC). tramp.Size = 16 // 4 instructions tramp.P = make([]byte, tramp.Size) t := ld.Symaddr(target) + offset o1 := uint32(0x3fe00000) // lis r31,targetaddr hi o2 := uint32(0x3bff0000) // addi r31,targetaddr lo // With external linking, the target address must be // relocated using LO and HA if linkmode == ld.LinkExternal { tr := tramp.AddRel() tr.Off = 0 tr.Type = objabi.R_ADDRPOWER tr.Siz = 8 // generates 2 relocations: HA + LO tr.Sym = target tr.Add = offset } else { // adjustment needed if lo has sign bit set // when using addi to compute address val := uint32((t & 0xffff0000) >> 16) if t&0x8000 != 0 { val += 1 } o1 |= val // hi part of addr o2 |= uint32(t & 0xffff) // lo part of addr } o3 := uint32(0x7fe903a6) // mtctr r31 o4 := uint32(0x4e800420) // bctr arch.ByteOrder.PutUint32(tramp.P, o1) arch.ByteOrder.PutUint32(tramp.P[4:], o2) arch.ByteOrder.PutUint32(tramp.P[8:], o3) arch.ByteOrder.PutUint32(tramp.P[12:], o4) } func archreloc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val *int64) bool { if ctxt.LinkMode == ld.LinkExternal { switch r.Type { default: return false case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE: r.Done = false // check Outer is nil, Type is TLSBSS? r.Xadd = r.Add r.Xsym = r.Sym return true case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS, objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS, objabi.R_ADDRPOWER_GOT, objabi.R_ADDRPOWER_PCREL: r.Done = false // set up addend for eventual relocation via outer symbol. rs := r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer) rs = rs.Outer } if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil { ld.Errorf(s, "missing section for %s", rs.Name) } r.Xsym = rs return true case objabi.R_CALLPOWER: r.Done = false r.Xsym = r.Sym r.Xadd = r.Add return true } } switch r.Type { case objabi.R_CONST: *val = r.Add return true case objabi.R_GOTOFF: *val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0)) return true case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS: return archrelocaddr(ctxt, r, s, val) case objabi.R_CALLPOWER: // Bits 6 through 29 = (S + A - P) >> 2 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) if t&3 != 0 { ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) } // If branch offset is too far then create a trampoline. if int64(int32(t<<6)>>6) != t { ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t) } *val |= int64(uint32(t) &^ 0xfc000003) return true case objabi.R_POWER_TOC: // S + A - .TOC. *val = ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s) return true case objabi.R_POWER_TLS_LE: // The thread pointer points 0x7000 bytes after the start of the the // thread local storage area as documented in section "3.7.2 TLS // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI // Specification". v := r.Sym.Value - 0x7000 if int64(int16(v)) != v { ld.Errorf(s, "TLS offset out of range %d", v) } *val = (*val &^ 0xffff) | (v & 0xffff) return true } return false } func archrelocvariant(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, t int64) int64 { switch r.Variant & sym.RV_TYPE_MASK { default: ld.Errorf(s, "unexpected relocation variant %d", r.Variant) fallthrough case sym.RV_NONE: return t case sym.RV_POWER_LO: if r.Variant&sym.RV_CHECK_OVERFLOW != 0 { // Whether to check for signed or unsigned // overflow depends on the instruction var o1 uint32 if ctxt.Arch.ByteOrder == binary.BigEndian { o1 = ld.Be32(s.P[r.Off-2:]) } else { o1 = ld.Le32(s.P[r.Off:]) } switch o1 >> 26 { case 24, // ori 26, // xori 28: // andi if t>>16 != 0 { goto overflow } default: if int64(int16(t)) != t { goto overflow } } } return int64(int16(t)) case sym.RV_POWER_HA: t += 0x8000 fallthrough // Fallthrough case sym.RV_POWER_HI: t >>= 16 if r.Variant&sym.RV_CHECK_OVERFLOW != 0 { // Whether to check for signed or unsigned // overflow depends on the instruction var o1 uint32 if ctxt.Arch.ByteOrder == binary.BigEndian { o1 = ld.Be32(s.P[r.Off-2:]) } else { o1 = ld.Le32(s.P[r.Off:]) } switch o1 >> 26 { case 25, // oris 27, // xoris 29: // andis if t>>16 != 0 { goto overflow } default: if int64(int16(t)) != t { goto overflow } } } return int64(int16(t)) case sym.RV_POWER_DS: var o1 uint32 if ctxt.Arch.ByteOrder == binary.BigEndian { o1 = uint32(ld.Be16(s.P[r.Off:])) } else { o1 = uint32(ld.Le16(s.P[r.Off:])) } if t&3 != 0 { ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) } if (r.Variant&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { goto overflow } return int64(o1)&0x3 | int64(int16(t)) } overflow: ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t) return t } func addpltsym(ctxt *ld.Link, s *sym.Symbol) { if s.Plt >= 0 { return } ld.Adddynsym(ctxt, s) if ctxt.IsELF { plt := ctxt.Syms.Lookup(".plt", 0) rela := ctxt.Syms.Lookup(".rela.plt", 0) if plt.Size == 0 { elfsetupplt(ctxt) } // Create the glink resolver if necessary glink := ensureglinkresolver(ctxt) // Write symbol resolver stub (just a branch to the // glink resolver stub) r := glink.AddRel() r.Sym = glink r.Off = int32(glink.Size) r.Siz = 4 r.Type = objabi.R_CALLPOWER glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink // In the ppc64 ABI, the dynamic linker is responsible // for writing the entire PLT. We just need to // reserve 8 bytes for each PLT entry and generate a // JMP_SLOT dynamic relocation for it. // // TODO(austin): ABI v1 is different s.Plt = int32(plt.Size) plt.Size += 8 rela.AddAddrPlus(ctxt.Arch, plt, int64(s.Plt)) rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_PPC64_JMP_SLOT))) rela.AddUint64(ctxt.Arch, 0) } else { ld.Errorf(s, "addpltsym: unsupported binary format") } } // Generate the glink resolver stub if necessary and return the .glink section func ensureglinkresolver(ctxt *ld.Link) *sym.Symbol { glink := ctxt.Syms.Lookup(".glink", 0) if glink.Size != 0 { return glink } // This is essentially the resolver from the ppc64 ELF ABI. // At entry, r12 holds the address of the symbol resolver stub // for the target routine and the argument registers hold the // arguments for the target routine. // // This stub is PIC, so first get the PC of label 1 into r11. // Other things will be relative to this. glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0 glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11 glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlf r0 // Compute the .plt array index from the entry point address. // Because this is PIC, everything is relative to label 1b (in // r11): // r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4 glink.AddUint32(ctxt.Arch, 0x3800ffd0) // li r0,-(res_0-1b)=-48 glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12 glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11 glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2 // r11 = address of the first byte of the PLT r := glink.AddRel() r.Off = int32(glink.Size) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Siz = 8 r.Type = objabi.R_ADDRPOWER glink.AddUint32(ctxt.Arch, 0x3d600000) // addis r11,0,.plt@ha glink.AddUint32(ctxt.Arch, 0x396b0000) // addi r11,r11,.plt@l // Load r12 = dynamic resolver address and r11 = DSO // identifier from the first two doublewords of the PLT. glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11) glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11) // Jump to the dynamic resolver glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr // The symbol resolvers must immediately follow. // res_0: // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes // before the first symbol resolver stub. s := ctxt.Syms.Lookup(".dynamic", 0) ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32) return glink } func asmb(ctxt *ld.Link) { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f asmb\n", ld.Cputime()) } if ctxt.IsELF { ld.Asmbelfsetup() } for _, sect := range ld.Segtext.Sections { ctxt.Out.SeekSet(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) // Handle additional text sections with Codeblk if sect.Name == ".text" { ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) } else { ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) } } if ld.Segrodata.Filelen > 0 { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f rodatblk\n", ld.Cputime()) } ctxt.Out.SeekSet(int64(ld.Segrodata.Fileoff)) ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen)) } if ld.Segrelrodata.Filelen > 0 { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f relrodatblk\n", ld.Cputime()) } ctxt.Out.SeekSet(int64(ld.Segrelrodata.Fileoff)) ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen)) } if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f datblk\n", ld.Cputime()) } ctxt.Out.SeekSet(int64(ld.Segdata.Fileoff)) ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen)) ctxt.Out.SeekSet(int64(ld.Segdwarf.Fileoff)) ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen)) /* output symbol table */ ld.Symsize = 0 ld.Lcsize = 0 symo := uint32(0) if !*ld.FlagS { // TODO: rationalize if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f sym\n", ld.Cputime()) } switch ctxt.HeadType { default: if ctxt.IsELF { symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound))) } case objabi.Hplan9: symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) } ctxt.Out.SeekSet(int64(symo)) switch ctxt.HeadType { default: if ctxt.IsELF { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f elfsym\n", ld.Cputime()) } ld.Asmelfsym(ctxt) ctxt.Out.Flush() ctxt.Out.Write(ld.Elfstrdat) if ctxt.LinkMode == ld.LinkExternal { ld.Elfemitreloc(ctxt) } } case objabi.Hplan9: ld.Asmplan9sym(ctxt) ctxt.Out.Flush() sym := ctxt.Syms.Lookup("pclntab", 0) if sym != nil { ld.Lcsize = int32(len(sym.P)) ctxt.Out.Write(sym.P) ctxt.Out.Flush() } } } if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f header\n", ld.Cputime()) } ctxt.Out.SeekSet(0) switch ctxt.HeadType { default: case objabi.Hplan9: /* plan 9 */ ctxt.Out.Write32(0x647) /* magic */ ctxt.Out.Write32(uint32(ld.Segtext.Filelen)) /* sizes */ ctxt.Out.Write32(uint32(ld.Segdata.Filelen)) ctxt.Out.Write32(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) ctxt.Out.Write32(uint32(ld.Symsize)) /* nsyms */ ctxt.Out.Write32(uint32(ld.Entryvalue(ctxt))) /* va of entry */ ctxt.Out.Write32(0) ctxt.Out.Write32(uint32(ld.Lcsize)) case objabi.Hlinux, objabi.Hfreebsd, objabi.Hnetbsd, objabi.Hopenbsd, objabi.Hnacl: ld.Asmbelf(ctxt, int64(symo)) } ctxt.Out.Flush() if *ld.FlagC { fmt.Printf("textsize=%d\n", ld.Segtext.Filelen) fmt.Printf("datsize=%d\n", ld.Segdata.Filelen) fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen) fmt.Printf("symsize=%d\n", ld.Symsize) fmt.Printf("lcsize=%d\n", ld.Lcsize) fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize)) } }