// Derived from Inferno utils/6l/obj.c and utils/6l/span.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package ld import ( "cmd/internal/gcprog" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/sym" "fmt" "log" "os" "sort" "strconv" "strings" "sync" ) // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency func isRuntimeDepPkg(pkg string) bool { switch pkg { case "runtime", "sync/atomic": // runtime may call to sync/atomic, due to go:linkname return true } return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") } // Estimate the max size needed to hold any new trampolines created for this function. This // is used to determine when the section can be split if it becomes too large, to ensure that // the trampolines are in the same section as the function that uses them. func maxSizeTrampolinesPPC64(s *sym.Symbol, isTramp bool) uint64 { // If Thearch.Trampoline is nil, then trampoline support is not available on this arch. // A trampoline does not need any dependent trampolines. if Thearch.Trampoline == nil || isTramp { return 0 } n := uint64(0) for ri := range s.R { r := &s.R[ri] if r.Type.IsDirectJump() { n++ } } // Trampolines in ppc64 are 4 instructions. return n * 16 } // detect too-far jumps in function s, and add trampolines if necessary // ARM, PPC64 & PPC64LE support trampoline insertion for internal and external linking // On PPC64 & PPC64LE the text sections might be split but will still insert trampolines // where necessary. func trampoline(ctxt *Link, s *sym.Symbol) { if Thearch.Trampoline == nil { return // no need or no support of trampolines on this arch } for ri := range s.R { r := &s.R[ri] if !r.Type.IsDirectJump() { continue } if Symaddr(r.Sym) == 0 && r.Sym.Type != sym.SDYNIMPORT { if r.Sym.File != s.File { if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) { Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File) } // runtime and its dependent packages may call to each other. // they are fine, as they will be laid down together. } continue } Thearch.Trampoline(ctxt, r, s) } } // resolve relocations in s. func relocsym(ctxt *Link, s *sym.Symbol) { for ri := int32(0); ri < int32(len(s.R)); ri++ { r := &s.R[ri] if r.Done { // Relocation already processed by an earlier phase. continue } r.Done = true off := r.Off siz := int32(r.Siz) if off < 0 || off+siz > int32(len(s.P)) { rname := "" if r.Sym != nil { rname = r.Sym.Name } Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P)) continue } if r.Sym != nil && ((r.Sym.Type == 0 && !r.Sym.Attr.VisibilityHidden()) || r.Sym.Type == sym.SXREF) { // When putting the runtime but not main into a shared library // these symbols are undefined and that's OK. if ctxt.BuildMode == BuildModeShared { if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" { r.Sym.Type = sym.SDYNIMPORT } else if strings.HasPrefix(r.Sym.Name, "go.info.") { // Skip go.info symbols. They are only needed to communicate // DWARF info between the compiler and linker. continue } } else { Errorf(s, "relocation target %s not defined", r.Sym.Name) continue } } if r.Type >= 256 { continue } if r.Siz == 0 { // informational relocation - no work to do continue } if r.Type == objabi.R_DWARFFILEREF { // These should have been processed previously during // line table writing. Errorf(s, "orphan R_DWARFFILEREF reloc to %v", r.Sym.Name) continue } // We need to be able to reference dynimport symbols when linking against // shared libraries, and Solaris needs it always if ctxt.HeadType != objabi.Hsolaris && r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT && !ctxt.DynlinkingGo() && !r.Sym.Attr.SubSymbol() { if !(ctxt.Arch.Family == sys.PPC64 && ctxt.LinkMode == LinkExternal && r.Sym.Name == ".TOC.") { Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", r.Sym.Name, r.Sym.Type, r.Sym.Type, r.Type, sym.RelocName(ctxt.Arch, r.Type)) } } if r.Sym != nil && r.Sym.Type != sym.STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() { Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name) } // TODO(mundaym): remove this special case - see issue 14218. if ctxt.Arch.Family == sys.S390X { switch r.Type { case objabi.R_PCRELDBL: r.Type = objabi.R_PCREL r.Variant = sym.RV_390_DBL case objabi.R_CALL: r.Variant = sym.RV_390_DBL } } var o int64 switch r.Type { default: switch siz { default: Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) case 1: o = int64(s.P[off]) case 2: o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:])) case 4: o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:])) case 8: o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:])) } if !Thearch.Archreloc(ctxt, r, s, &o) { Errorf(s, "unknown reloc to %v: %d (%s)", r.Sym.Name, r.Type, sym.RelocName(ctxt.Arch, r.Type)) } case objabi.R_TLS_LE: isAndroidX86 := objabi.GOOS == "android" && (ctxt.Arch.InFamily(sys.AMD64, sys.I386)) if ctxt.LinkMode == LinkExternal && ctxt.IsELF && !isAndroidX86 { r.Done = false if r.Sym == nil { r.Sym = ctxt.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if ctxt.Arch.Family != sys.AMD64 { o = r.Add } break } if ctxt.IsELF && ctxt.Arch.Family == sys.ARM { // On ELF ARM, the thread pointer is 8 bytes before // the start of the thread-local data block, so add 8 // to the actual TLS offset (r->sym->value). // This 8 seems to be a fundamental constant of // ELF on ARM (or maybe Glibc on ARM); it is not // related to the fact that our own TLS storage happens // to take up 8 bytes. o = 8 + r.Sym.Value } else if ctxt.IsELF || ctxt.HeadType == objabi.Hplan9 || ctxt.HeadType == objabi.Hdarwin || isAndroidX86 { o = int64(ctxt.Tlsoffset) + r.Add } else if ctxt.HeadType == objabi.Hwindows { o = r.Add } else { log.Fatalf("unexpected R_TLS_LE relocation for %v", ctxt.HeadType) } case objabi.R_TLS_IE: isAndroidX86 := objabi.GOOS == "android" && (ctxt.Arch.InFamily(sys.AMD64, sys.I386)) if ctxt.LinkMode == LinkExternal && ctxt.IsELF && !isAndroidX86 { r.Done = false if r.Sym == nil { r.Sym = ctxt.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if ctxt.Arch.Family != sys.AMD64 { o = r.Add } break } if ctxt.BuildMode == BuildModePIE && ctxt.IsELF { // We are linking the final executable, so we // can optimize any TLS IE relocation to LE. if Thearch.TLSIEtoLE == nil { log.Fatalf("internal linking of TLS IE not supported on %v", ctxt.Arch.Family) } Thearch.TLSIEtoLE(s, int(off), int(r.Siz)) o = int64(ctxt.Tlsoffset) // TODO: o += r.Add when ctxt.Arch.Family != sys.AMD64? // Why do we treat r.Add differently on AMD64? // Is the external linker using Xadd at all? } else { log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name) } case objabi.R_ADDR: if ctxt.LinkMode == LinkExternal && r.Sym.Type != sym.SCONST { r.Done = false // set up addend for eventual relocation via outer symbol. rs := r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) rs = rs.Outer } if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil { Errorf(s, "missing section for relocation target %s", rs.Name) } r.Xsym = rs o = r.Xadd if ctxt.IsELF { if ctxt.Arch.Family == sys.AMD64 { o = 0 } } else if ctxt.HeadType == objabi.Hdarwin { // ld64 for arm64 has a bug where if the address pointed to by o exists in the // symbol table (dynid >= 0), or is inside a symbol that exists in the symbol // table, then it will add o twice into the relocated value. // The workaround is that on arm64 don't ever add symaddr to o and always use // extern relocation by requiring rs->dynid >= 0. if rs.Type != sym.SHOSTOBJ { if ctxt.Arch.Family == sys.ARM64 && rs.Dynid < 0 { Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o) } if ctxt.Arch.Family != sys.ARM64 { o += Symaddr(rs) } } } else if ctxt.HeadType == objabi.Hwindows { // nothing to do } else { Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, ctxt.HeadType) } break } o = Symaddr(r.Sym) + r.Add // On amd64, 4-byte offsets will be sign-extended, so it is impossible to // access more than 2GB of static data; fail at link time is better than // fail at runtime. See https://golang.org/issue/7980. // Instead of special casing only amd64, we treat this as an error on all // 64-bit architectures so as to be future-proof. if int32(o) < 0 && ctxt.Arch.PtrSize > 4 && siz == 4 { Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add) errorexit() } case objabi.R_DWARFSECREF: if r.Sym.Sect == nil { Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name) } if ctxt.LinkMode == LinkExternal { r.Done = false // On most platforms, the external linker needs to adjust DWARF references // as it combines DWARF sections. However, on Darwin, dsymutil does the // DWARF linking, and it understands how to follow section offsets. // Leaving in the relocation records confuses it (see // https://golang.org/issue/22068) so drop them for Darwin. if ctxt.HeadType == objabi.Hdarwin { r.Done = true } // PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL // for R_DWARFSECREF relocations, while R_ADDR is replaced with // IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32. // Do not replace R_DWARFSECREF with R_ADDR for windows - // let PE code emit correct relocations. if ctxt.HeadType != objabi.Hwindows { r.Type = objabi.R_ADDR } r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0) r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) o = r.Xadd if ctxt.IsELF && ctxt.Arch.Family == sys.AMD64 { o = 0 } break } o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr) case objabi.R_WEAKADDROFF: if !r.Sym.Attr.Reachable() { continue } fallthrough case objabi.R_ADDROFF: // The method offset tables using this relocation expect the offset to be relative // to the start of the first text section, even if there are multiple. if r.Sym.Sect.Name == ".text" { o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add } else { o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add } case objabi.R_ADDRCUOFF: // debug_range and debug_loc elements use this relocation type to get an // offset from the start of the compile unit. o = Symaddr(r.Sym) + r.Add - Symaddr(r.Sym.Lib.Textp[0]) // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. case objabi.R_GOTPCREL: if ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin && r.Sym != nil && r.Sym.Type != sym.SCONST { r.Done = false r.Xadd = r.Add r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk r.Xsym = r.Sym o = r.Xadd o += int64(r.Siz) break } fallthrough case objabi.R_CALL, objabi.R_PCREL: if ctxt.LinkMode == LinkExternal && r.Sym != nil && r.Sym.Type != sym.SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) { r.Done = false // set up addend for eventual relocation via outer symbol. rs := r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) rs = rs.Outer } r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil { Errorf(s, "missing section for relocation target %s", rs.Name) } r.Xsym = rs o = r.Xadd if ctxt.IsELF { if ctxt.Arch.Family == sys.AMD64 { o = 0 } } else if ctxt.HeadType == objabi.Hdarwin { if r.Type == objabi.R_CALL { if rs.Type != sym.SHOSTOBJ { o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) } o -= int64(r.Off) // relative to section offset, not symbol } else if ctxt.Arch.Family == sys.ARM { // see ../arm/asm.go:/machoreloc1 o += Symaddr(rs) - int64(s.Value) - int64(r.Off) } else { o += int64(r.Siz) } } else if ctxt.HeadType == objabi.Hwindows && ctxt.Arch.Family == sys.AMD64 { // only amd64 needs PCREL // PE/COFF's PC32 relocation uses the address after the relocated // bytes as the base. Compensate by skewing the addend. o += int64(r.Siz) } else { Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, ctxt.HeadType) } break } o = 0 if r.Sym != nil { o += Symaddr(r.Sym) } o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz)) case objabi.R_SIZE: o = r.Sym.Size + r.Add } if r.Variant != sym.RV_NONE { o = Thearch.Archrelocvariant(ctxt, r, s, o) } if false { nam := "<nil>" if r.Sym != nil { nam = r.Sym.Name } fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d (%s)/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, sym.RelocName(ctxt.Arch, r.Type), r.Variant, o) } switch siz { default: Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) fallthrough // TODO(rsc): Remove. case 1: s.P[off] = byte(int8(o)) case 2: if o != int64(int16(o)) { Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o) } i16 := int16(o) ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) case 4: if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL { if o != int64(int32(o)) { Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o) } } else { if o != int64(int32(o)) && o != int64(uint32(o)) { Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o)) } } fl := int32(o) ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) case 8: ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) } } } func (ctxt *Link) reloc() { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f reloc\n", Cputime()) } for _, s := range ctxt.Textp { relocsym(ctxt, s) } for _, s := range datap { relocsym(ctxt, s) } for _, s := range dwarfp { relocsym(ctxt, s) } } func windynrelocsym(ctxt *Link, s *sym.Symbol) { rel := ctxt.Syms.Lookup(".rel", 0) if s == rel { return } for ri := 0; ri < len(s.R); ri++ { r := &s.R[ri] targ := r.Sym if targ == nil { continue } if !targ.Attr.Reachable() { if r.Type == objabi.R_WEAKADDROFF { continue } Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name) } if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files. targ.Plt = int32(rel.Size) r.Sym = rel r.Add = int64(targ.Plt) // jmp *addr if ctxt.Arch.Family == sys.I386 { rel.AddUint8(0xff) rel.AddUint8(0x25) rel.AddAddr(ctxt.Arch, targ) rel.AddUint8(0x90) rel.AddUint8(0x90) } else { rel.AddUint8(0xff) rel.AddUint8(0x24) rel.AddUint8(0x25) rel.AddAddrPlus4(targ, 0) rel.AddUint8(0x90) } } else if r.Sym.Plt >= 0 { r.Sym = rel r.Add = int64(targ.Plt) } } } func dynrelocsym(ctxt *Link, s *sym.Symbol) { if ctxt.HeadType == objabi.Hwindows { if ctxt.LinkMode == LinkInternal { windynrelocsym(ctxt, s) } return } for ri := 0; ri < len(s.R); ri++ { r := &s.R[ri] if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal { // It's expected that some relocations will be done // later by relocsym (R_TLS_LE, R_ADDROFF), so // don't worry if Adddynrel returns false. Thearch.Adddynrel(ctxt, s, r) continue } if r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT || r.Type >= 256 { if r.Sym != nil && !r.Sym.Attr.Reachable() { Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name) } if !Thearch.Adddynrel(ctxt, s, r) { Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", r.Sym.Name, r.Type, sym.RelocName(ctxt.Arch, r.Type), r.Sym.Type, r.Sym.Type) } } } } func dynreloc(ctxt *Link, data *[sym.SXREF][]*sym.Symbol) { // -d suppresses dynamic loader format, so we may as well not // compute these sections or mark their symbols as reachable. if *FlagD && ctxt.HeadType != objabi.Hwindows { return } if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f dynreloc\n", Cputime()) } for _, s := range ctxt.Textp { dynrelocsym(ctxt, s) } for _, syms := range data { for _, s := range syms { dynrelocsym(ctxt, s) } } if ctxt.IsELF { elfdynhash(ctxt) } } func Codeblk(ctxt *Link, addr int64, size int64) { CodeblkPad(ctxt, addr, size, zeros[:]) } func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) { if *flagA { ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) } blk(ctxt, ctxt.Textp, addr, size, pad) /* again for printing */ if !*flagA { return } syms := ctxt.Textp for i, s := range syms { if !s.Attr.Reachable() { continue } if s.Value >= addr { syms = syms[i:] break } } eaddr := addr + size var q []byte for _, s := range syms { if !s.Attr.Reachable() { continue } if s.Value >= eaddr { break } if addr < s.Value { ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) for ; addr < s.Value; addr++ { ctxt.Logf(" %.2x", 0) } ctxt.Logf("\n") } ctxt.Logf("%.6x\t%-20s\n", uint64(addr), s.Name) q = s.P for len(q) >= 16 { ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16]) addr += 16 q = q[16:] } if len(q) > 0 { ctxt.Logf("%.6x\t% x\n", uint64(addr), q) addr += int64(len(q)) } } if addr < eaddr { ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) for ; addr < eaddr; addr++ { ctxt.Logf(" %.2x", 0) } } } func blk(ctxt *Link, syms []*sym.Symbol, addr, size int64, pad []byte) { for i, s := range syms { if !s.Attr.SubSymbol() && s.Value >= addr { syms = syms[i:] break } } eaddr := addr + size for _, s := range syms { if s.Attr.SubSymbol() { continue } if s.Value >= eaddr { break } if s.Value < addr { Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) errorexit() } if addr < s.Value { ctxt.Out.WriteStringPad("", int(s.Value-addr), pad) addr = s.Value } ctxt.Out.Write(s.P) addr += int64(len(s.P)) if addr < s.Value+s.Size { ctxt.Out.WriteStringPad("", int(s.Value+s.Size-addr), pad) addr = s.Value + s.Size } if addr != s.Value+s.Size { Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) errorexit() } if s.Value+s.Size >= eaddr { break } } if addr < eaddr { ctxt.Out.WriteStringPad("", int(eaddr-addr), pad) } ctxt.Out.Flush() } func Datblk(ctxt *Link, addr int64, size int64) { if *flagA { ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) } blk(ctxt, datap, addr, size, zeros[:]) /* again for printing */ if !*flagA { return } syms := datap for i, sym := range syms { if sym.Value >= addr { syms = syms[i:] break } } eaddr := addr + size for _, sym := range syms { if sym.Value >= eaddr { break } if addr < sym.Value { ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr)) addr = sym.Value } ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr)) for i, b := range sym.P { if i > 0 && i%16 == 0 { ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i)) } ctxt.Logf(" %.2x", b) } addr += int64(len(sym.P)) for ; addr < sym.Value+sym.Size; addr++ { ctxt.Logf(" %.2x", 0) } ctxt.Logf("\n") if ctxt.LinkMode != LinkExternal { continue } for _, r := range sym.R { rsname := "" if r.Sym != nil { rsname = r.Sym.Name } typ := "?" switch r.Type { case objabi.R_ADDR: typ = "addr" case objabi.R_PCREL: typ = "pcrel" case objabi.R_CALL: typ = "call" } ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add) } } if addr < eaddr { ctxt.Logf("\t%.8x| 00 ...\n", uint(addr)) } ctxt.Logf("\t%.8x|\n", uint(eaddr)) } func Dwarfblk(ctxt *Link, addr int64, size int64) { if *flagA { ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) } blk(ctxt, dwarfp, addr, size, zeros[:]) } var zeros [512]byte var ( strdata = make(map[string]string) strnames []string ) func addstrdata1(ctxt *Link, arg string) { eq := strings.Index(arg, "=") dot := strings.LastIndex(arg[:eq+1], ".") if eq < 0 || dot < 0 { Exitf("-X flag requires argument of the form importpath.name=value") } pkg := arg[:dot] if ctxt.BuildMode == BuildModePlugin && pkg == "main" { pkg = *flagPluginPath } pkg = objabi.PathToPrefix(pkg) name := pkg + arg[dot:eq] value := arg[eq+1:] if _, ok := strdata[name]; !ok { strnames = append(strnames, name) } strdata[name] = value } func addstrdata(ctxt *Link, name, value string) { s := ctxt.Syms.ROLookup(name, 0) if s == nil || s.Gotype == nil { // Not defined in the loaded packages. return } if s.Gotype.Name != "type.string" { Errorf(s, "cannot set with -X: not a var of type string (%s)", s.Gotype.Name) return } if s.Type == sym.SBSS { s.Type = sym.SDATA } p := fmt.Sprintf("%s.str", s.Name) sp := ctxt.Syms.Lookup(p, 0) Addstring(sp, value) sp.Type = sym.SRODATA s.Size = 0 s.P = s.P[:0] s.R = s.R[:0] reachable := s.Attr.Reachable() s.AddAddr(ctxt.Arch, sp) s.AddUint(ctxt.Arch, uint64(len(value))) // addstring, addaddr, etc., mark the symbols as reachable. // In this case that is not necessarily true, so stick to what // we know before entering this function. s.Attr.Set(sym.AttrReachable, reachable) sp.Attr.Set(sym.AttrReachable, reachable) } func (ctxt *Link) dostrdata() { for _, name := range strnames { addstrdata(ctxt, name, strdata[name]) } } func Addstring(s *sym.Symbol, str string) int64 { if s.Type == 0 { s.Type = sym.SNOPTRDATA } s.Attr |= sym.AttrReachable r := s.Size if s.Name == ".shstrtab" { elfsetstring(s, str, int(r)) } s.P = append(s.P, str...) s.P = append(s.P, 0) s.Size = int64(len(s.P)) return r } // addgostring adds str, as a Go string value, to s. symname is the name of the // symbol used to define the string data and must be unique per linked object. func addgostring(ctxt *Link, s *sym.Symbol, symname, str string) { sdata := ctxt.Syms.Lookup(symname, 0) if sdata.Type != sym.Sxxx { Errorf(s, "duplicate symname in addgostring: %s", symname) } sdata.Attr |= sym.AttrReachable sdata.Attr |= sym.AttrLocal sdata.Type = sym.SRODATA sdata.Size = int64(len(str)) sdata.P = []byte(str) s.AddAddr(ctxt.Arch, sdata) s.AddUint(ctxt.Arch, uint64(len(str))) } func addinitarrdata(ctxt *Link, s *sym.Symbol) { p := s.Name + ".ptr" sp := ctxt.Syms.Lookup(p, 0) sp.Type = sym.SINITARR sp.Size = 0 sp.Attr |= sym.AttrDuplicateOK sp.AddAddr(ctxt.Arch, s) } func dosymtype(ctxt *Link) { switch ctxt.BuildMode { case BuildModeCArchive, BuildModeCShared: for _, s := range ctxt.Syms.Allsym { // Create a new entry in the .init_array section that points to the // library initializer function. if s.Name == *flagEntrySymbol { addinitarrdata(ctxt, s) } } } } // symalign returns the required alignment for the given symbol s. func symalign(s *sym.Symbol) int32 { min := int32(Thearch.Minalign) if s.Align >= min { return s.Align } else if s.Align != 0 { return min } if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") { // String data is just bytes. // If we align it, we waste a lot of space to padding. return min } align := int32(Thearch.Maxalign) for int64(align) > s.Size && align > min { align >>= 1 } return align } func aligndatsize(datsize int64, s *sym.Symbol) int64 { return Rnd(datsize, int64(symalign(s))) } const debugGCProg = false type GCProg struct { ctxt *Link sym *sym.Symbol w gcprog.Writer } func (p *GCProg) Init(ctxt *Link, name string) { p.ctxt = ctxt p.sym = ctxt.Syms.Lookup(name, 0) p.w.Init(p.writeByte(ctxt)) if debugGCProg { fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) p.w.Debug(os.Stderr) } } func (p *GCProg) writeByte(ctxt *Link) func(x byte) { return func(x byte) { p.sym.AddUint8(x) } } func (p *GCProg) End(size int64) { p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize)) p.w.End() if debugGCProg { fmt.Fprintf(os.Stderr, "ld: end GCProg\n") } } func (p *GCProg) AddSym(s *sym.Symbol) { typ := s.Gotype // Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS; // everything we see should have pointers and should therefore have a type. if typ == nil { switch s.Name { case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": // Ignore special symbols that are sometimes laid out // as real symbols. See comment about dyld on darwin in // the address function. return } Errorf(s, "missing Go type information for global symbol: size %d", s.Size) return } ptrsize := int64(p.ctxt.Arch.PtrSize) nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize if debugGCProg { fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) } if decodetypeUsegcprog(p.ctxt.Arch, typ) == 0 { // Copy pointers from mask into program. mask := decodetypeGcmask(p.ctxt, typ) for i := int64(0); i < nptr; i++ { if (mask[i/8]>>uint(i%8))&1 != 0 { p.w.Ptr(s.Value/ptrsize + i) } } return } // Copy program. prog := decodetypeGcprog(p.ctxt, typ) p.w.ZeroUntil(s.Value / ptrsize) p.w.Append(prog[4:], nptr) } // dataSortKey is used to sort a slice of data symbol *sym.Symbol pointers. // The sort keys are kept inline to improve cache behavior while sorting. type dataSortKey struct { size int64 name string sym *sym.Symbol } type bySizeAndName []dataSortKey func (d bySizeAndName) Len() int { return len(d) } func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } func (d bySizeAndName) Less(i, j int) bool { s1, s2 := d[i], d[j] if s1.size != s2.size { return s1.size < s2.size } return s1.name < s2.name } // cutoff is the maximum data section size permitted by the linker // (see issue #9862). const cutoff = 2e9 // 2 GB (or so; looks better in errors than 2^31) func checkdatsize(ctxt *Link, datsize int64, symn sym.SymKind) { if datsize > cutoff { Errorf(nil, "too much data in section %v (over %v bytes)", symn, cutoff) } } // datap is a collection of reachable data symbols in address order. // Generated by dodata. var datap []*sym.Symbol func (ctxt *Link) dodata() { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f dodata\n", Cputime()) } if ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin { // The values in moduledata are filled out by relocations // pointing to the addresses of these special symbols. // Typically these symbols have no size and are not laid // out with their matching section. // // However on darwin, dyld will find the special symbol // in the first loaded module, even though it is local. // // (An hypothesis, formed without looking in the dyld sources: // these special symbols have no size, so their address // matches a real symbol. The dynamic linker assumes we // want the normal symbol with the same address and finds // it in the other module.) // // To work around this we lay out the symbls whose // addresses are vital for multi-module programs to work // as normal symbols, and give them a little size. bss := ctxt.Syms.Lookup("runtime.bss", 0) bss.Size = 8 bss.Attr.Set(sym.AttrSpecial, false) ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(sym.AttrSpecial, false) data := ctxt.Syms.Lookup("runtime.data", 0) data.Size = 8 data.Attr.Set(sym.AttrSpecial, false) ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(sym.AttrSpecial, false) types := ctxt.Syms.Lookup("runtime.types", 0) types.Type = sym.STYPE types.Size = 8 types.Attr.Set(sym.AttrSpecial, false) etypes := ctxt.Syms.Lookup("runtime.etypes", 0) etypes.Type = sym.SFUNCTAB etypes.Attr.Set(sym.AttrSpecial, false) } // Collect data symbols by type into data. var data [sym.SXREF][]*sym.Symbol for _, s := range ctxt.Syms.Allsym { if !s.Attr.Reachable() || s.Attr.Special() || s.Attr.SubSymbol() { continue } if s.Type <= sym.STEXT || s.Type >= sym.SXREF { continue } data[s.Type] = append(data[s.Type], s) } // Now that we have the data symbols, but before we start // to assign addresses, record all the necessary // dynamic relocations. These will grow the relocation // symbol, which is itself data. // // On darwin, we need the symbol table numbers for dynreloc. if ctxt.HeadType == objabi.Hdarwin { machosymorder(ctxt) } dynreloc(ctxt, &data) if ctxt.UseRelro() { // "read only" data with relocations needs to go in its own section // when building a shared library. We do this by boosting objects of // type SXXX with relocations to type SXXXRELRO. for _, symnro := range sym.ReadOnly { symnrelro := sym.RelROMap[symnro] ro := []*sym.Symbol{} relro := data[symnrelro] for _, s := range data[symnro] { isRelro := len(s.R) > 0 switch s.Type { case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO: // Symbols are not sorted yet, so it is possible // that an Outer symbol has been changed to a // relro Type before it reaches here. isRelro = true } if isRelro { s.Type = symnrelro if s.Outer != nil { s.Outer.Type = s.Type } relro = append(relro, s) } else { ro = append(ro, s) } } // Check that we haven't made two symbols with the same .Outer into // different types (because references two symbols with non-nil Outer // become references to the outer symbol + offset it's vital that the // symbol and the outer end up in the same section). for _, s := range relro { if s.Outer != nil && s.Outer.Type != s.Type { Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", s.Outer.Name, s.Type, s.Outer.Type) } } data[symnro] = ro data[symnrelro] = relro } } // Sort symbols. var dataMaxAlign [sym.SXREF]int32 var wg sync.WaitGroup for symn := range data { symn := sym.SymKind(symn) wg.Add(1) go func() { data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn]) wg.Done() }() } wg.Wait() // Allocate sections. // Data is processed before segtext, because we need // to see all symbols in the .data and .bss sections in order // to generate garbage collection information. datsize := int64(0) // Writable data sections that do not need any specialized handling. writable := []sym.SymKind{ sym.SELFSECT, sym.SMACHO, sym.SMACHOGOT, sym.SWINDOWS, } for _, symn := range writable { for _, s := range data[symn] { sect := addsection(ctxt.Arch, &Segdata, s.Name, 06) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = sym.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, symn) } // .got (and .toc on ppc64) if len(data[sym.SELFGOT]) > 0 { sect := addsection(ctxt.Arch, &Segdata, ".got", 06) sect.Align = dataMaxAlign[sym.SELFGOT] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) var toc *sym.Symbol for _, s := range data[sym.SELFGOT] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = sym.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) // Resolve .TOC. symbol for this object file (ppc64) toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) if toc != nil { toc.Sect = sect toc.Outer = s toc.Sub = s.Sub s.Sub = toc toc.Value = 0x8000 } datsize += s.Size } checkdatsize(ctxt, datsize, sym.SELFGOT) sect.Length = uint64(datsize) - sect.Vaddr } /* pointer-free data */ sect := addsection(ctxt.Arch, &Segdata, ".noptrdata", 06) sect.Align = dataMaxAlign[sym.SNOPTRDATA] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect for _, s := range data[sym.SNOPTRDATA] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = sym.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, sym.SNOPTRDATA) sect.Length = uint64(datsize) - sect.Vaddr hasinitarr := ctxt.linkShared /* shared library initializer */ switch ctxt.BuildMode { case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin: hasinitarr = true } if hasinitarr { sect := addsection(ctxt.Arch, &Segdata, ".init_array", 06) sect.Align = dataMaxAlign[sym.SINITARR] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) for _, s := range data[sym.SINITARR] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, sym.SINITARR) } /* data */ sect = addsection(ctxt.Arch, &Segdata, ".data", 06) sect.Align = dataMaxAlign[sym.SDATA] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.data", 0).Sect = sect ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect var gc GCProg gc.Init(ctxt, "runtime.gcdata") for _, s := range data[sym.SDATA] { s.Sect = sect s.Type = sym.SDATA datsize = aligndatsize(datsize, s) s.Value = int64(uint64(datsize) - sect.Vaddr) gc.AddSym(s) datsize += s.Size } checkdatsize(ctxt, datsize, sym.SDATA) sect.Length = uint64(datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* bss */ sect = addsection(ctxt.Arch, &Segdata, ".bss", 06) sect.Align = dataMaxAlign[sym.SBSS] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect gc = GCProg{} gc.Init(ctxt, "runtime.gcbss") for _, s := range data[sym.SBSS] { s.Sect = sect datsize = aligndatsize(datsize, s) s.Value = int64(uint64(datsize) - sect.Vaddr) gc.AddSym(s) datsize += s.Size } checkdatsize(ctxt, datsize, sym.SBSS) sect.Length = uint64(datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* pointer-free bss */ sect = addsection(ctxt.Arch, &Segdata, ".noptrbss", 06) sect.Align = dataMaxAlign[sym.SNOPTRBSS] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect for _, s := range data[sym.SNOPTRBSS] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr ctxt.Syms.Lookup("runtime.end", 0).Sect = sect checkdatsize(ctxt, datsize, sym.SNOPTRBSS) if len(data[sym.STLSBSS]) > 0 { var sect *sym.Section if ctxt.IsELF && (ctxt.LinkMode == LinkExternal || !*FlagD) { sect = addsection(ctxt.Arch, &Segdata, ".tbss", 06) sect.Align = int32(ctxt.Arch.PtrSize) sect.Vaddr = 0 } datsize = 0 for _, s := range data[sym.STLSBSS] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = datsize datsize += s.Size } checkdatsize(ctxt, datsize, sym.STLSBSS) if sect != nil { sect.Length = uint64(datsize) } } /* * We finished data, begin read-only data. * Not all systems support a separate read-only non-executable data section. * ELF systems do. * OS X and Plan 9 do not. * Windows PE may, but if so we have not implemented it. * And if we're using external linking mode, the point is moot, * since it's not our decision; that code expects the sections in * segtext. */ var segro *sym.Segment if ctxt.IsELF && ctxt.LinkMode == LinkInternal { segro = &Segrodata } else { segro = &Segtext } datsize = 0 /* read-only executable ELF, Mach-O sections */ if len(data[sym.STEXT]) != 0 { Errorf(nil, "dodata found an sym.STEXT symbol: %s", data[sym.STEXT][0].Name) } for _, s := range data[sym.SELFRXSECT] { sect := addsection(ctxt.Arch, &Segtext, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, sym.SELFRXSECT) } /* read-only data */ sect = addsection(ctxt.Arch, segro, ".rodata", 04) sect.Vaddr = 0 ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect if !ctxt.UseRelro() { ctxt.Syms.Lookup("runtime.types", 0).Sect = sect ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect } for _, symn := range sym.ReadOnly { align := dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } datsize = Rnd(datsize, int64(sect.Align)) for _, symn := range sym.ReadOnly { for _, s := range data[symn] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, symn) } sect.Length = uint64(datsize) - sect.Vaddr /* read-only ELF, Mach-O sections */ for _, s := range data[sym.SELFROSECT] { sect = addsection(ctxt.Arch, segro, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, sym.SELFROSECT) for _, s := range data[sym.SMACHOPLT] { sect = addsection(ctxt.Arch, segro, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, sym.SMACHOPLT) // There is some data that are conceptually read-only but are written to by // relocations. On GNU systems, we can arrange for the dynamic linker to // mprotect sections after relocations are applied by giving them write // permissions in the object file and calling them ".data.rel.ro.FOO". We // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, // but for the other sections that this applies to, we just write a read-only // .FOO section or a read-write .data.rel.ro.FOO section depending on the // situation. // TODO(mwhudson): It would make sense to do this more widely, but it makes // the system linker segfault on darwin. addrelrosection := func(suffix string) *sym.Section { return addsection(ctxt.Arch, segro, suffix, 04) } if ctxt.UseRelro() { addrelrosection = func(suffix string) *sym.Section { seg := &Segrelrodata if ctxt.LinkMode == LinkExternal { // Using a separate segment with an external // linker results in some programs moving // their data sections unexpectedly, which // corrupts the moduledata. So we use the // rodata segment and let the external linker // sort out a rel.ro segment. seg = &Segrodata } return addsection(ctxt.Arch, seg, ".data.rel.ro"+suffix, 06) } /* data only written by relocations */ sect = addrelrosection("") sect.Vaddr = 0 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect for _, symnro := range sym.ReadOnly { symn := sym.RelROMap[symnro] align := dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } datsize = Rnd(datsize, int64(sect.Align)) for _, symnro := range sym.ReadOnly { symn := sym.RelROMap[symnro] for _, s := range data[symn] { datsize = aligndatsize(datsize, s) if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name) } s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, symn) } sect.Length = uint64(datsize) - sect.Vaddr } /* typelink */ sect = addrelrosection(".typelink") sect.Align = dataMaxAlign[sym.STYPELINK] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) typelink := ctxt.Syms.Lookup("runtime.typelink", 0) typelink.Sect = sect typelink.Type = sym.SRODATA datsize += typelink.Size checkdatsize(ctxt, datsize, sym.STYPELINK) sect.Length = uint64(datsize) - sect.Vaddr /* itablink */ sect = addrelrosection(".itablink") sect.Align = dataMaxAlign[sym.SITABLINK] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect for _, s := range data[sym.SITABLINK] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, sym.SITABLINK) sect.Length = uint64(datsize) - sect.Vaddr /* gosymtab */ sect = addrelrosection(".gosymtab") sect.Align = dataMaxAlign[sym.SSYMTAB] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect for _, s := range data[sym.SSYMTAB] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, sym.SSYMTAB) sect.Length = uint64(datsize) - sect.Vaddr /* gopclntab */ sect = addrelrosection(".gopclntab") sect.Align = dataMaxAlign[sym.SPCLNTAB] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect for _, s := range data[sym.SPCLNTAB] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, sym.SRODATA) sect.Length = uint64(datsize) - sect.Vaddr // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. if datsize != int64(uint32(datsize)) { Errorf(nil, "read-only data segment too large: %d", datsize) } for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ { datap = append(datap, data[symn]...) } dwarfgeneratedebugsyms(ctxt) var i int for ; i < len(dwarfp); i++ { s := dwarfp[i] if s.Type != sym.SDWARFSECT { break } sect = addsection(ctxt.Arch, &Segdwarf, s.Name, 04) sect.Align = 1 datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, sym.SDWARFSECT) for i < len(dwarfp) { curType := dwarfp[i].Type var sect *sym.Section switch curType { case sym.SDWARFINFO: sect = addsection(ctxt.Arch, &Segdwarf, ".debug_info", 04) case sym.SDWARFRANGE: sect = addsection(ctxt.Arch, &Segdwarf, ".debug_ranges", 04) case sym.SDWARFLOC: sect = addsection(ctxt.Arch, &Segdwarf, ".debug_loc", 04) default: Errorf(dwarfp[i], "unknown DWARF section %v", curType) } sect.Align = 1 datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) for ; i < len(dwarfp); i++ { s := dwarfp[i] if s.Type != curType { break } s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) s.Attr |= sym.AttrLocal datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, curType) } /* number the sections */ n := int32(1) for _, sect := range Segtext.Sections { sect.Extnum = int16(n) n++ } for _, sect := range Segrodata.Sections { sect.Extnum = int16(n) n++ } for _, sect := range Segrelrodata.Sections { sect.Extnum = int16(n) n++ } for _, sect := range Segdata.Sections { sect.Extnum = int16(n) n++ } for _, sect := range Segdwarf.Sections { sect.Extnum = int16(n) n++ } } func dodataSect(ctxt *Link, symn sym.SymKind, syms []*sym.Symbol) (result []*sym.Symbol, maxAlign int32) { if ctxt.HeadType == objabi.Hdarwin { // Some symbols may no longer belong in syms // due to movement in machosymorder. newSyms := make([]*sym.Symbol, 0, len(syms)) for _, s := range syms { if s.Type == symn { newSyms = append(newSyms, s) } } syms = newSyms } var head, tail *sym.Symbol symsSort := make([]dataSortKey, 0, len(syms)) for _, s := range syms { if s.Attr.OnList() { log.Fatalf("symbol %s listed multiple times", s.Name) } s.Attr |= sym.AttrOnList switch { case s.Size < int64(len(s.P)): Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P)) case s.Size < 0: Errorf(s, "negative size (%d bytes)", s.Size) case s.Size > cutoff: Errorf(s, "symbol too large (%d bytes)", s.Size) } // If the usually-special section-marker symbols are being laid // out as regular symbols, put them either at the beginning or // end of their section. if ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin { switch s.Name { case "runtime.text", "runtime.bss", "runtime.data", "runtime.types": head = s continue case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes": tail = s continue } } key := dataSortKey{ size: s.Size, name: s.Name, sym: s, } switch s.Type { case sym.SELFGOT: // For ppc64, we want to interleave the .got and .toc sections // from input files. Both are type sym.SELFGOT, so in that case // we skip size comparison and fall through to the name // comparison (conveniently, .got sorts before .toc). key.size = 0 } symsSort = append(symsSort, key) } sort.Sort(bySizeAndName(symsSort)) off := 0 if head != nil { syms[0] = head off++ } for i, symSort := range symsSort { syms[i+off] = symSort.sym align := symalign(symSort.sym) if maxAlign < align { maxAlign = align } } if tail != nil { syms[len(syms)-1] = tail } if ctxt.IsELF && symn == sym.SELFROSECT { // Make .rela and .rela.plt contiguous, the ELF ABI requires this // and Solaris actually cares. reli, plti := -1, -1 for i, s := range syms { switch s.Name { case ".rel.plt", ".rela.plt": plti = i case ".rel", ".rela": reli = i } } if reli >= 0 && plti >= 0 && plti != reli+1 { var first, second int if plti > reli { first, second = reli, plti } else { first, second = plti, reli } rel, plt := syms[reli], syms[plti] copy(syms[first+2:], syms[first+1:second]) syms[first+0] = rel syms[first+1] = plt // Make sure alignment doesn't introduce a gap. // Setting the alignment explicitly prevents // symalign from basing it on the size and // getting it wrong. rel.Align = int32(ctxt.Arch.RegSize) plt.Align = int32(ctxt.Arch.RegSize) } } return syms, maxAlign } // Add buildid to beginning of text segment, on non-ELF systems. // Non-ELF binary formats are not always flexible enough to // give us a place to put the Go build ID. On those systems, we put it // at the very beginning of the text segment. // This ``header'' is read by cmd/go. func (ctxt *Link) textbuildid() { if ctxt.IsELF || ctxt.BuildMode == BuildModePlugin || *flagBuildid == "" { return } s := ctxt.Syms.Lookup("go.buildid", 0) s.Attr |= sym.AttrReachable // The \xff is invalid UTF-8, meant to make it less likely // to find one of these accidentally. data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" s.Type = sym.STEXT s.P = []byte(data) s.Size = int64(len(s.P)) ctxt.Textp = append(ctxt.Textp, nil) copy(ctxt.Textp[1:], ctxt.Textp) ctxt.Textp[0] = s } // assign addresses to text func (ctxt *Link) textaddress() { addsection(ctxt.Arch, &Segtext, ".text", 05) // Assign PCs in text segment. // Could parallelize, by assigning to text // and then letting threads copy down, but probably not worth it. sect := Segtext.Sections[0] sect.Align = int32(Funcalign) text := ctxt.Syms.Lookup("runtime.text", 0) text.Sect = sect if ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin { etext := ctxt.Syms.Lookup("runtime.etext", 0) etext.Sect = sect ctxt.Textp = append(ctxt.Textp, etext, nil) copy(ctxt.Textp[1:], ctxt.Textp) ctxt.Textp[0] = text } va := uint64(*FlagTextAddr) n := 1 sect.Vaddr = va ntramps := 0 for _, s := range ctxt.Textp { sect, n, va = assignAddress(ctxt, sect, n, s, va, false) trampoline(ctxt, s) // resolve jumps, may add trampolines if jump too far // lay down trampolines after each function for ; ntramps < len(ctxt.tramps); ntramps++ { tramp := ctxt.tramps[ntramps] sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true) } } sect.Length = va - sect.Vaddr ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect // merge tramps into Textp, keeping Textp in address order if ntramps != 0 { newtextp := make([]*sym.Symbol, 0, len(ctxt.Textp)+ntramps) i := 0 for _, s := range ctxt.Textp { for ; i < ntramps && ctxt.tramps[i].Value < s.Value; i++ { newtextp = append(newtextp, ctxt.tramps[i]) } newtextp = append(newtextp, s) } newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) ctxt.Textp = newtextp } } // assigns address for a text symbol, returns (possibly new) section, its number, and the address // Note: once we have trampoline insertion support for external linking, this function // will not need to create new text sections, and so no need to return sect and n. func assignAddress(ctxt *Link, sect *sym.Section, n int, s *sym.Symbol, va uint64, isTramp bool) (*sym.Section, int, uint64) { s.Sect = sect if s.Attr.SubSymbol() { return sect, n, va } if s.Align != 0 { va = uint64(Rnd(int64(va), int64(s.Align))) } else { va = uint64(Rnd(int64(va), int64(Funcalign))) } s.Value = 0 for sub := s; sub != nil; sub = sub.Sub { sub.Value += int64(va) } funcsize := uint64(MINFUNC) // spacing required for findfunctab if s.Size > MINFUNC { funcsize = uint64(s.Size) } // On ppc64x a text section should not be larger than 2^26 bytes due to the size of // call target offset field in the bl instruction. Splitting into smaller text // sections smaller than this limit allows the GNU linker to modify the long calls // appropriately. The limit allows for the space needed for tables inserted by the linker. // If this function doesn't fit in the current text section, then create a new one. // Only break at outermost syms. if ctxt.Arch.InFamily(sys.PPC64) && s.Outer == nil && ctxt.IsELF && ctxt.LinkMode == LinkExternal && va-sect.Vaddr+funcsize+maxSizeTrampolinesPPC64(s, isTramp) > 0x1c00000 { // Set the length for the previous text section sect.Length = va - sect.Vaddr // Create new section, set the starting Vaddr sect = addsection(ctxt.Arch, &Segtext, ".text", 05) sect.Vaddr = va s.Sect = sect // Create a symbol for the start of the secondary text sections ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect n++ } va += funcsize return sect, n, va } // assign addresses func (ctxt *Link) address() { va := uint64(*FlagTextAddr) Segtext.Rwx = 05 Segtext.Vaddr = va Segtext.Fileoff = uint64(HEADR) for _, s := range Segtext.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segtext.Length = va - uint64(*FlagTextAddr) Segtext.Filelen = Segtext.Length if ctxt.HeadType == objabi.Hnacl { va += 32 // room for the "halt sled" } if len(Segrodata.Sections) > 0 { // align to page boundary so as not to mix // rodata and executable text. // // Note: gold or GNU ld will reduce the size of the executable // file by arranging for the relro segment to end at a page // boundary, and overlap the end of the text segment with the // start of the relro segment in the file. The PT_LOAD segments // will be such that the last page of the text segment will be // mapped twice, once r-x and once starting out rw- and, after // relocation processing, changed to r--. // // Ideally the last page of the text segment would not be // writable even for this short period. va = uint64(Rnd(int64(va), int64(*FlagRound))) Segrodata.Rwx = 04 Segrodata.Vaddr = va Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff Segrodata.Filelen = 0 for _, s := range Segrodata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrodata.Length = va - Segrodata.Vaddr Segrodata.Filelen = Segrodata.Length } if len(Segrelrodata.Sections) > 0 { // align to page boundary so as not to mix // rodata, rel-ro data, and executable text. va = uint64(Rnd(int64(va), int64(*FlagRound))) Segrelrodata.Rwx = 06 Segrelrodata.Vaddr = va Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff Segrelrodata.Filelen = 0 for _, s := range Segrelrodata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrelrodata.Length = va - Segrelrodata.Vaddr Segrelrodata.Filelen = Segrelrodata.Length } va = uint64(Rnd(int64(va), int64(*FlagRound))) Segdata.Rwx = 06 Segdata.Vaddr = va Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff Segdata.Filelen = 0 if ctxt.HeadType == objabi.Hwindows { Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN)) } if ctxt.HeadType == objabi.Hplan9 { Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen } var data *sym.Section var noptr *sym.Section var bss *sym.Section var noptrbss *sym.Section for i, s := range Segdata.Sections { if ctxt.IsELF && s.Name == ".tbss" { continue } vlen := int64(s.Length) if i+1 < len(Segdata.Sections) && !(ctxt.IsELF && Segdata.Sections[i+1].Name == ".tbss") { vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) Segdata.Length = va - Segdata.Vaddr if s.Name == ".data" { data = s } if s.Name == ".noptrdata" { noptr = s } if s.Name == ".bss" { bss = s } if s.Name == ".noptrbss" { noptrbss = s } } Segdata.Filelen = bss.Vaddr - Segdata.Vaddr va = uint64(Rnd(int64(va), int64(*FlagRound))) Segdwarf.Rwx = 06 Segdwarf.Vaddr = va Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound))) Segdwarf.Filelen = 0 if ctxt.HeadType == objabi.Hwindows { Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN))) } for i, s := range Segdwarf.Sections { vlen := int64(s.Length) if i+1 < len(Segdwarf.Sections) { vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) if ctxt.HeadType == objabi.Hwindows { va = uint64(Rnd(int64(va), PEFILEALIGN)) } Segdwarf.Length = va - Segdwarf.Vaddr } Segdwarf.Filelen = va - Segdwarf.Vaddr var ( text = Segtext.Sections[0] rodata = ctxt.Syms.Lookup("runtime.rodata", 0).Sect itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect symtab = ctxt.Syms.Lookup("runtime.symtab", 0).Sect pclntab = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect types = ctxt.Syms.Lookup("runtime.types", 0).Sect ) lasttext := text // Could be multiple .text sections for _, sect := range Segtext.Sections { if sect.Name == ".text" { lasttext = sect } } for _, s := range datap { if s.Sect != nil { s.Value += int64(s.Sect.Vaddr) } for sub := s.Sub; sub != nil; sub = sub.Sub { sub.Value += s.Value } } for _, s := range dwarfp { if s.Sect != nil { s.Value += int64(s.Sect.Vaddr) } for sub := s.Sub; sub != nil; sub = sub.Sub { sub.Value += s.Value } } if ctxt.BuildMode == BuildModeShared { s := ctxt.Syms.Lookup("go.link.abihashbytes", 0) sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0) s.Sect = sectSym.Sect s.Value = int64(sectSym.Sect.Vaddr + 16) } ctxt.xdefine("runtime.text", sym.STEXT, int64(text.Vaddr)) ctxt.xdefine("runtime.etext", sym.STEXT, int64(lasttext.Vaddr+lasttext.Length)) // If there are multiple text sections, create runtime.text.n for // their section Vaddr, using n for index n := 1 for _, sect := range Segtext.Sections[1:] { if sect.Name != ".text" { break } symname := fmt.Sprintf("runtime.text.%d", n) ctxt.xdefine(symname, sym.STEXT, int64(sect.Vaddr)) n++ } ctxt.xdefine("runtime.rodata", sym.SRODATA, int64(rodata.Vaddr)) ctxt.xdefine("runtime.erodata", sym.SRODATA, int64(rodata.Vaddr+rodata.Length)) ctxt.xdefine("runtime.types", sym.SRODATA, int64(types.Vaddr)) ctxt.xdefine("runtime.etypes", sym.SRODATA, int64(types.Vaddr+types.Length)) ctxt.xdefine("runtime.itablink", sym.SRODATA, int64(itablink.Vaddr)) ctxt.xdefine("runtime.eitablink", sym.SRODATA, int64(itablink.Vaddr+itablink.Length)) s := ctxt.Syms.Lookup("runtime.gcdata", 0) s.Attr |= sym.AttrLocal ctxt.xdefine("runtime.egcdata", sym.SRODATA, Symaddr(s)+s.Size) ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = s.Sect s = ctxt.Syms.Lookup("runtime.gcbss", 0) s.Attr |= sym.AttrLocal ctxt.xdefine("runtime.egcbss", sym.SRODATA, Symaddr(s)+s.Size) ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = s.Sect ctxt.xdefine("runtime.symtab", sym.SRODATA, int64(symtab.Vaddr)) ctxt.xdefine("runtime.esymtab", sym.SRODATA, int64(symtab.Vaddr+symtab.Length)) ctxt.xdefine("runtime.pclntab", sym.SRODATA, int64(pclntab.Vaddr)) ctxt.xdefine("runtime.epclntab", sym.SRODATA, int64(pclntab.Vaddr+pclntab.Length)) ctxt.xdefine("runtime.noptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr)) ctxt.xdefine("runtime.enoptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) ctxt.xdefine("runtime.bss", sym.SBSS, int64(bss.Vaddr)) ctxt.xdefine("runtime.ebss", sym.SBSS, int64(bss.Vaddr+bss.Length)) ctxt.xdefine("runtime.data", sym.SDATA, int64(data.Vaddr)) ctxt.xdefine("runtime.edata", sym.SDATA, int64(data.Vaddr+data.Length)) ctxt.xdefine("runtime.noptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr)) ctxt.xdefine("runtime.enoptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) ctxt.xdefine("runtime.end", sym.SBSS, int64(Segdata.Vaddr+Segdata.Length)) } // add a trampoline with symbol s (to be laid down after the current function) func (ctxt *Link) AddTramp(s *sym.Symbol) { s.Type = sym.STEXT s.Attr |= sym.AttrReachable s.Attr |= sym.AttrOnList ctxt.tramps = append(ctxt.tramps, s) if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { ctxt.Logf("trampoline %s inserted\n", s) } }