// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/compile/internal/types" "cmd/internal/src" "fmt" "math" "sort" "strings" ) // A Value represents a value in the SSA representation of the program. // The ID and Type fields must not be modified. The remainder may be modified // if they preserve the value of the Value (e.g. changing a (mul 2 x) to an (add x x)). type Value struct { // A unique identifier for the value. For performance we allocate these IDs // densely starting at 1. There is no guarantee that there won't be occasional holes, though. ID ID // The operation that computes this value. See op.go. Op Op // The type of this value. Normally this will be a Go type, but there // are a few other pseudo-types, see type.go. Type *types.Type // Auxiliary info for this value. The type of this information depends on the opcode and type. // AuxInt is used for integer values, Aux is used for other values. // Floats are stored in AuxInt using math.Float64bits(f). AuxInt int64 Aux interface{} // Arguments of this value Args []*Value // Containing basic block Block *Block // Source position Pos src.XPos // Use count. Each appearance in Value.Args and Block.Control counts once. Uses int32 // Storage for the first three args argstorage [3]*Value } // Examples: // Opcode aux args // OpAdd nil 2 // OpConst string 0 string constant // OpConst int64 0 int64 constant // OpAddcq int64 1 amd64 op: v = arg[0] + constant // short form print. Just v#. func (v *Value) String() string { if v == nil { return "nil" // should never happen, but not panicking helps with debugging } return fmt.Sprintf("v%d", v.ID) } func (v *Value) AuxInt8() int8 { if opcodeTable[v.Op].auxType != auxInt8 { v.Fatalf("op %s doesn't have an int8 aux field", v.Op) } return int8(v.AuxInt) } func (v *Value) AuxInt16() int16 { if opcodeTable[v.Op].auxType != auxInt16 { v.Fatalf("op %s doesn't have an int16 aux field", v.Op) } return int16(v.AuxInt) } func (v *Value) AuxInt32() int32 { if opcodeTable[v.Op].auxType != auxInt32 { v.Fatalf("op %s doesn't have an int32 aux field", v.Op) } return int32(v.AuxInt) } func (v *Value) AuxFloat() float64 { if opcodeTable[v.Op].auxType != auxFloat32 && opcodeTable[v.Op].auxType != auxFloat64 { v.Fatalf("op %s doesn't have a float aux field", v.Op) } return math.Float64frombits(uint64(v.AuxInt)) } func (v *Value) AuxValAndOff() ValAndOff { if opcodeTable[v.Op].auxType != auxSymValAndOff { v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op) } return ValAndOff(v.AuxInt) } // long form print. v# = opcode <type> [aux] args [: reg] (names) func (v *Value) LongString() string { s := fmt.Sprintf("v%d = %s", v.ID, v.Op) s += " <" + v.Type.String() + ">" s += v.auxString() for _, a := range v.Args { s += fmt.Sprintf(" %v", a) } r := v.Block.Func.RegAlloc if int(v.ID) < len(r) && r[v.ID] != nil { s += " : " + r[v.ID].String() } var names []string for name, values := range v.Block.Func.NamedValues { for _, value := range values { if value == v { names = append(names, name.String()) break // drop duplicates. } } } if len(names) != 0 { sort.Strings(names) // Otherwise a source of variation in debugging output. s += " (" + strings.Join(names, ", ") + ")" } return s } func (v *Value) auxString() string { switch opcodeTable[v.Op].auxType { case auxBool: if v.AuxInt == 0 { return " [false]" } else { return " [true]" } case auxInt8: return fmt.Sprintf(" [%d]", v.AuxInt8()) case auxInt16: return fmt.Sprintf(" [%d]", v.AuxInt16()) case auxInt32: return fmt.Sprintf(" [%d]", v.AuxInt32()) case auxInt64, auxInt128: return fmt.Sprintf(" [%d]", v.AuxInt) case auxFloat32, auxFloat64: return fmt.Sprintf(" [%g]", v.AuxFloat()) case auxString: return fmt.Sprintf(" {%q}", v.Aux) case auxSym, auxTyp: if v.Aux != nil { return fmt.Sprintf(" {%v}", v.Aux) } case auxSymOff, auxSymInt32, auxTypSize: s := "" if v.Aux != nil { s = fmt.Sprintf(" {%v}", v.Aux) } if v.AuxInt != 0 { s += fmt.Sprintf(" [%v]", v.AuxInt) } return s case auxSymValAndOff: s := "" if v.Aux != nil { s = fmt.Sprintf(" {%v}", v.Aux) } return s + fmt.Sprintf(" [%s]", v.AuxValAndOff()) } return "" } func (v *Value) AddArg(w *Value) { if v.Args == nil { v.resetArgs() // use argstorage } v.Args = append(v.Args, w) w.Uses++ } func (v *Value) AddArgs(a ...*Value) { if v.Args == nil { v.resetArgs() // use argstorage } v.Args = append(v.Args, a...) for _, x := range a { x.Uses++ } } func (v *Value) SetArg(i int, w *Value) { v.Args[i].Uses-- v.Args[i] = w w.Uses++ } func (v *Value) RemoveArg(i int) { v.Args[i].Uses-- copy(v.Args[i:], v.Args[i+1:]) v.Args[len(v.Args)-1] = nil // aid GC v.Args = v.Args[:len(v.Args)-1] } func (v *Value) SetArgs1(a *Value) { v.resetArgs() v.AddArg(a) } func (v *Value) SetArgs2(a *Value, b *Value) { v.resetArgs() v.AddArg(a) v.AddArg(b) } func (v *Value) resetArgs() { for _, a := range v.Args { a.Uses-- } v.argstorage[0] = nil v.argstorage[1] = nil v.argstorage[2] = nil v.Args = v.argstorage[:0] } func (v *Value) reset(op Op) { v.Op = op v.resetArgs() v.AuxInt = 0 v.Aux = nil } // copyInto makes a new value identical to v and adds it to the end of b. func (v *Value) copyInto(b *Block) *Value { c := b.NewValue0(v.Pos, v.Op, v.Type) // Lose the position, this causes line number churn otherwise. c.Aux = v.Aux c.AuxInt = v.AuxInt c.AddArgs(v.Args...) for _, a := range v.Args { if a.Type.IsMemory() { v.Fatalf("can't move a value with a memory arg %s", v.LongString()) } } return c } // copyIntoNoXPos makes a new value identical to v and adds it to the end of b. // The copied value receives no source code position to avoid confusing changes // in debugger information (the intended user is the register allocator). func (v *Value) copyIntoNoXPos(b *Block) *Value { return v.copyIntoWithXPos(b, src.NoXPos) } // copyIntoWithXPos makes a new value identical to v and adds it to the end of b. // The supplied position is used as the position of the new value. func (v *Value) copyIntoWithXPos(b *Block, pos src.XPos) *Value { c := b.NewValue0(pos, v.Op, v.Type) c.Aux = v.Aux c.AuxInt = v.AuxInt c.AddArgs(v.Args...) for _, a := range v.Args { if a.Type.IsMemory() { v.Fatalf("can't move a value with a memory arg %s", v.LongString()) } } return c } func (v *Value) Logf(msg string, args ...interface{}) { v.Block.Logf(msg, args...) } func (v *Value) Log() bool { return v.Block.Log() } func (v *Value) Fatalf(msg string, args ...interface{}) { v.Block.Func.fe.Fatalf(v.Pos, msg, args...) } // isGenericIntConst returns whether v is a generic integer constant. func (v *Value) isGenericIntConst() bool { return v != nil && (v.Op == OpConst64 || v.Op == OpConst32 || v.Op == OpConst16 || v.Op == OpConst8) } // Reg returns the register assigned to v, in cmd/internal/obj/$ARCH numbering. func (v *Value) Reg() int16 { reg := v.Block.Func.RegAlloc[v.ID] if reg == nil { v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).objNum } // Reg0 returns the register assigned to the first output of v, in cmd/internal/obj/$ARCH numbering. func (v *Value) Reg0() int16 { reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[0] if reg == nil { v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).objNum } // Reg1 returns the register assigned to the second output of v, in cmd/internal/obj/$ARCH numbering. func (v *Value) Reg1() int16 { reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[1] if reg == nil { v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).objNum } func (v *Value) RegName() string { reg := v.Block.Func.RegAlloc[v.ID] if reg == nil { v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).name } // MemoryArg returns the memory argument for the Value. // The returned value, if non-nil, will be memory-typed (or a tuple with a memory-typed second part). // Otherwise, nil is returned. func (v *Value) MemoryArg() *Value { if v.Op == OpPhi { v.Fatalf("MemoryArg on Phi") } na := len(v.Args) if na == 0 { return nil } if m := v.Args[na-1]; m.Type.IsMemory() { return m } return nil } // LackingPos indicates whether v is a value that is unlikely to have a correct // position assigned to it. Ignoring such values leads to more user-friendly positions // assigned to nearby values and the blocks containing them. func (v *Value) LackingPos() bool { // The exact definition of LackingPos is somewhat heuristically defined and may change // in the future, for example if some of these operations are generated more carefully // with respect to their source position. return v.Op == OpVarDef || v.Op == OpVarKill || v.Op == OpVarLive || v.Op == OpPhi || (v.Op == OpFwdRef || v.Op == OpCopy) && v.Type == types.TypeMem }