// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import "container/heap" const ( ScorePhi = iota // towards top of block ScoreNilCheck ScoreReadTuple ScoreVarDef ScoreMemory ScoreDefault ScoreFlags ScoreControl // towards bottom of block ) type ValHeap struct { a []*Value score []int8 } func (h ValHeap) Len() int { return len(h.a) } func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] } func (h *ValHeap) Push(x interface{}) { // Push and Pop use pointer receivers because they modify the slice's length, // not just its contents. v := x.(*Value) h.a = append(h.a, v) } func (h *ValHeap) Pop() interface{} { old := h.a n := len(old) x := old[n-1] h.a = old[0 : n-1] return x } func (h ValHeap) Less(i, j int) bool { x := h.a[i] y := h.a[j] sx := h.score[x.ID] sy := h.score[y.ID] if c := sx - sy; c != 0 { return c > 0 // higher score comes later. } if x.Pos != y.Pos { // Favor in-order line stepping return x.Pos.After(y.Pos) } if x.Op != OpPhi { if c := len(x.Args) - len(y.Args); c != 0 { return c < 0 // smaller args comes later } } return x.ID > y.ID } // Schedule the Values in each Block. After this phase returns, the // order of b.Values matters and is the order in which those values // will appear in the assembly output. For now it generates a // reasonable valid schedule using a priority queue. TODO(khr): // schedule smarter. func schedule(f *Func) { // For each value, the number of times it is used in the block // by values that have not been scheduled yet. uses := make([]int32, f.NumValues()) // reusable priority queue priq := new(ValHeap) // "priority" for a value score := make([]int8, f.NumValues()) // scheduling order. We queue values in this list in reverse order. var order []*Value // maps mem values to the next live memory value nextMem := make([]*Value, f.NumValues()) // additional pretend arguments for each Value. Used to enforce load/store ordering. additionalArgs := make([][]*Value, f.NumValues()) for _, b := range f.Blocks { // Compute score. Larger numbers are scheduled closer to the end of the block. for _, v := range b.Values { switch { case v.Op == OpAMD64LoweredGetClosurePtr || v.Op == OpPPC64LoweredGetClosurePtr || v.Op == OpARMLoweredGetClosurePtr || v.Op == OpARM64LoweredGetClosurePtr || v.Op == Op386LoweredGetClosurePtr || v.Op == OpMIPS64LoweredGetClosurePtr || v.Op == OpS390XLoweredGetClosurePtr || v.Op == OpMIPSLoweredGetClosurePtr: // We also score GetLoweredClosurePtr as early as possible to ensure that the // context register is not stomped. GetLoweredClosurePtr should only appear // in the entry block where there are no phi functions, so there is no // conflict or ambiguity here. if b != f.Entry { f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String()) } score[v.ID] = ScorePhi case v.Op == OpAMD64LoweredNilCheck || v.Op == OpPPC64LoweredNilCheck || v.Op == OpARMLoweredNilCheck || v.Op == OpARM64LoweredNilCheck || v.Op == Op386LoweredNilCheck || v.Op == OpMIPS64LoweredNilCheck || v.Op == OpS390XLoweredNilCheck || v.Op == OpMIPSLoweredNilCheck: // Nil checks must come before loads from the same address. score[v.ID] = ScoreNilCheck case v.Op == OpPhi: // We want all the phis first. score[v.ID] = ScorePhi case v.Op == OpVarDef: // We want all the vardefs next. score[v.ID] = ScoreVarDef case v.Type.IsMemory(): // Schedule stores as early as possible. This tends to // reduce register pressure. It also helps make sure // VARDEF ops are scheduled before the corresponding LEA. score[v.ID] = ScoreMemory case v.Op == OpSelect0 || v.Op == OpSelect1: // Schedule the pseudo-op of reading part of a tuple // immediately after the tuple-generating op, since // this value is already live. This also removes its // false dependency on the other part of the tuple. // Also ensures tuple is never spilled. score[v.ID] = ScoreReadTuple case v.Type.IsFlags() || v.Type.IsTuple(): // Schedule flag register generation as late as possible. // This makes sure that we only have one live flags // value at a time. score[v.ID] = ScoreFlags default: score[v.ID] = ScoreDefault } } } for _, b := range f.Blocks { // Find store chain for block. // Store chains for different blocks overwrite each other, so // the calculated store chain is good only for this block. for _, v := range b.Values { if v.Op != OpPhi && v.Type.IsMemory() { for _, w := range v.Args { if w.Type.IsMemory() { nextMem[w.ID] = v } } } } // Compute uses. for _, v := range b.Values { if v.Op == OpPhi { // If a value is used by a phi, it does not induce // a scheduling edge because that use is from the // previous iteration. continue } for _, w := range v.Args { if w.Block == b { uses[w.ID]++ } // Any load must come before the following store. if !v.Type.IsMemory() && w.Type.IsMemory() { // v is a load. s := nextMem[w.ID] if s == nil || s.Block != b { continue } additionalArgs[s.ID] = append(additionalArgs[s.ID], v) uses[v.ID]++ } } } if b.Control != nil && b.Control.Op != OpPhi { // Force the control value to be scheduled at the end, // unless it is a phi value (which must be first). score[b.Control.ID] = ScoreControl // Schedule values dependent on the control value at the end. // This reduces the number of register spills. We don't find // all values that depend on the control, just values with a // direct dependency. This is cheaper and in testing there // was no difference in the number of spills. for _, v := range b.Values { if v.Op != OpPhi { for _, a := range v.Args { if a == b.Control { score[v.ID] = ScoreControl } } } } } // To put things into a priority queue // The values that should come last are least. priq.score = score priq.a = priq.a[:0] // Initialize priority queue with schedulable values. for _, v := range b.Values { if uses[v.ID] == 0 { heap.Push(priq, v) } } // Schedule highest priority value, update use counts, repeat. order = order[:0] tuples := make(map[ID][]*Value) for { // Find highest priority schedulable value. // Note that schedule is assembled backwards. if priq.Len() == 0 { break } v := heap.Pop(priq).(*Value) // Add it to the schedule. // Do not emit tuple-reading ops until we're ready to emit the tuple-generating op. //TODO: maybe remove ReadTuple score above, if it does not help on performance switch { case v.Op == OpSelect0: if tuples[v.Args[0].ID] == nil { tuples[v.Args[0].ID] = make([]*Value, 2) } tuples[v.Args[0].ID][0] = v case v.Op == OpSelect1: if tuples[v.Args[0].ID] == nil { tuples[v.Args[0].ID] = make([]*Value, 2) } tuples[v.Args[0].ID][1] = v case v.Type.IsTuple() && tuples[v.ID] != nil: if tuples[v.ID][1] != nil { order = append(order, tuples[v.ID][1]) } if tuples[v.ID][0] != nil { order = append(order, tuples[v.ID][0]) } delete(tuples, v.ID) fallthrough default: order = append(order, v) } // Update use counts of arguments. for _, w := range v.Args { if w.Block != b { continue } uses[w.ID]-- if uses[w.ID] == 0 { // All uses scheduled, w is now schedulable. heap.Push(priq, w) } } for _, w := range additionalArgs[v.ID] { uses[w.ID]-- if uses[w.ID] == 0 { // All uses scheduled, w is now schedulable. heap.Push(priq, w) } } } if len(order) != len(b.Values) { f.Fatalf("schedule does not include all values") } for i := 0; i < len(b.Values); i++ { b.Values[i] = order[len(b.Values)-1-i] } } f.scheduled = true } // storeOrder orders values with respect to stores. That is, // if v transitively depends on store s, v is ordered after s, // otherwise v is ordered before s. // Specifically, values are ordered like // store1 // NilCheck that depends on store1 // other values that depends on store1 // store2 // NilCheck that depends on store2 // other values that depends on store2 // ... // The order of non-store and non-NilCheck values are undefined // (not necessarily dependency order). This should be cheaper // than a full scheduling as done above. // Note that simple dependency order won't work: there is no // dependency between NilChecks and values like IsNonNil. // Auxiliary data structures are passed in as arguments, so // that they can be allocated in the caller and be reused. // This function takes care of reset them. func storeOrder(values []*Value, sset *sparseSet, storeNumber []int32) []*Value { if len(values) == 0 { return values } f := values[0].Block.Func // find all stores var stores []*Value // members of values that are store values hasNilCheck := false sset.clear() // sset is the set of stores that are used in other values for _, v := range values { if v.Type.IsMemory() { stores = append(stores, v) if v.Op == OpInitMem || v.Op == OpPhi { continue } sset.add(v.MemoryArg().ID) // record that v's memory arg is used } if v.Op == OpNilCheck { hasNilCheck = true } } if len(stores) == 0 || !hasNilCheck && f.pass.name == "nilcheckelim" { // there is no store, the order does not matter return values } // find last store, which is the one that is not used by other stores var last *Value for _, v := range stores { if !sset.contains(v.ID) { if last != nil { f.Fatalf("two stores live simultaneously: %v and %v", v, last) } last = v } } // We assign a store number to each value. Store number is the // index of the latest store that this value transitively depends. // The i-th store in the current block gets store number 3*i. A nil // check that depends on the i-th store gets store number 3*i+1. // Other values that depends on the i-th store gets store number 3*i+2. // Special case: 0 -- unassigned, 1 or 2 -- the latest store it depends // is in the previous block (or no store at all, e.g. value is Const). // First we assign the number to all stores by walking back the store chain, // then assign the number to other values in DFS order. count := make([]int32, 3*(len(stores)+1)) sset.clear() // reuse sparse set to ensure that a value is pushed to stack only once for n, w := len(stores), last; n > 0; n-- { storeNumber[w.ID] = int32(3 * n) count[3*n]++ sset.add(w.ID) if w.Op == OpInitMem || w.Op == OpPhi { if n != 1 { f.Fatalf("store order is wrong: there are stores before %v", w) } break } w = w.MemoryArg() } var stack []*Value for _, v := range values { if sset.contains(v.ID) { // in sset means v is a store, or already pushed to stack, or already assigned a store number continue } stack = append(stack, v) sset.add(v.ID) for len(stack) > 0 { w := stack[len(stack)-1] if storeNumber[w.ID] != 0 { stack = stack[:len(stack)-1] continue } if w.Op == OpPhi { // Phi value doesn't depend on store in the current block. // Do this early to avoid dependency cycle. storeNumber[w.ID] = 2 count[2]++ stack = stack[:len(stack)-1] continue } max := int32(0) // latest store dependency argsdone := true for _, a := range w.Args { if a.Block != w.Block { continue } if !sset.contains(a.ID) { stack = append(stack, a) sset.add(a.ID) argsdone = false break } if storeNumber[a.ID]/3 > max { max = storeNumber[a.ID] / 3 } } if !argsdone { continue } n := 3*max + 2 if w.Op == OpNilCheck { n = 3*max + 1 } storeNumber[w.ID] = n count[n]++ stack = stack[:len(stack)-1] } } // convert count to prefix sum of counts: count'[i] = sum_{j<=i} count[i] for i := range count { if i == 0 { continue } count[i] += count[i-1] } if count[len(count)-1] != int32(len(values)) { f.Fatalf("storeOrder: value is missing, total count = %d, values = %v", count[len(count)-1], values) } // place values in count-indexed bins, which are in the desired store order order := make([]*Value, len(values)) for _, v := range values { s := storeNumber[v.ID] order[count[s-1]] = v count[s-1]++ } return order }