// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/compile/internal/types" "fmt" ) // an edgeMem records a backedge, together with the memory // phi functions at the target of the backedge that must // be updated when a rescheduling check replaces the backedge. type edgeMem struct { e Edge m *Value // phi for memory at dest of e } // a rewriteTarget is a value-argindex pair indicating // where a rewrite is applied. Note that this is for values, // not for block controls, because block controls are not targets // for the rewrites performed in inserting rescheduling checks. type rewriteTarget struct { v *Value i int } type rewrite struct { before, after *Value // before is the expected value before rewrite, after is the new value installed. rewrites []rewriteTarget // all the targets for this rewrite. } func (r *rewrite) String() string { s := "\n\tbefore=" + r.before.String() + ", after=" + r.after.String() for _, rw := range r.rewrites { s += ", (i=" + fmt.Sprint(rw.i) + ", v=" + rw.v.LongString() + ")" } s += "\n" return s } // insertLoopReschedChecks inserts rescheduling checks on loop backedges. func insertLoopReschedChecks(f *Func) { // TODO: when split information is recorded in export data, insert checks only on backedges that can be reached on a split-call-free path. // Loop reschedule checks compare the stack pointer with // the per-g stack bound. If the pointer appears invalid, // that means a reschedule check is needed. // // Steps: // 1. locate backedges. // 2. Record memory definitions at block end so that // the SSA graph for mem can be properly modified. // 3. Ensure that phi functions that will-be-needed for mem // are present in the graph, initially with trivial inputs. // 4. Record all to-be-modified uses of mem; // apply modifications (split into two steps to simplify and // avoided nagging order-dependences). // 5. Rewrite backedges to include reschedule check, // and modify destination phi function appropriately with new // definitions for mem. if f.NoSplit { // nosplit functions don't reschedule. return } backedges := backedges(f) if len(backedges) == 0 { // no backedges means no rescheduling checks. return } lastMems := findLastMems(f) idom := f.Idom() po := f.postorder() // The ordering in the dominator tree matters; it's important that // the walk of the dominator tree also be a preorder (i.e., a node is // visited only after all its non-backedge predecessors have been visited). sdom := newSparseOrderedTree(f, idom, po) if f.pass.debug > 1 { fmt.Printf("before %s = %s\n", f.Name, sdom.treestructure(f.Entry)) } tofixBackedges := []edgeMem{} for _, e := range backedges { // TODO: could filter here by calls in loops, if declared and inferred nosplit are recorded in export data. tofixBackedges = append(tofixBackedges, edgeMem{e, nil}) } // It's possible that there is no memory state (no global/pointer loads/stores or calls) if lastMems[f.Entry.ID] == nil { lastMems[f.Entry.ID] = f.Entry.NewValue0(f.Entry.Pos, OpInitMem, types.TypeMem) } memDefsAtBlockEnds := make([]*Value, f.NumBlocks()) // For each block, the mem def seen at its bottom. Could be from earlier block. // Propagate last mem definitions forward through successor blocks. for i := len(po) - 1; i >= 0; i-- { b := po[i] mem := lastMems[b.ID] for j := 0; mem == nil; j++ { // if there's no def, then there's no phi, so the visible mem is identical in all predecessors. // loop because there might be backedges that haven't been visited yet. mem = memDefsAtBlockEnds[b.Preds[j].b.ID] } memDefsAtBlockEnds[b.ID] = mem if f.pass.debug > 2 { fmt.Printf("memDefsAtBlockEnds[%s] = %s\n", b, mem) } } // Maps from block to newly-inserted phi function in block. newmemphis := make(map[*Block]rewrite) // Insert phi functions as necessary for future changes to flow graph. for i, emc := range tofixBackedges { e := emc.e h := e.b // find the phi function for the memory input at "h", if there is one. var headerMemPhi *Value // look for header mem phi for _, v := range h.Values { if v.Op == OpPhi && v.Type.IsMemory() { headerMemPhi = v } } if headerMemPhi == nil { // if the header is nil, make a trivial phi from the dominator mem0 := memDefsAtBlockEnds[idom[h.ID].ID] headerMemPhi = newPhiFor(h, mem0) newmemphis[h] = rewrite{before: mem0, after: headerMemPhi} addDFphis(mem0, h, h, f, memDefsAtBlockEnds, newmemphis, sdom) } tofixBackedges[i].m = headerMemPhi } if f.pass.debug > 0 { for b, r := range newmemphis { fmt.Printf("before b=%s, rewrite=%s\n", b, r.String()) } } // dfPhiTargets notes inputs to phis in dominance frontiers that should not // be rewritten as part of the dominated children of some outer rewrite. dfPhiTargets := make(map[rewriteTarget]bool) rewriteNewPhis(f.Entry, f.Entry, f, memDefsAtBlockEnds, newmemphis, dfPhiTargets, sdom) if f.pass.debug > 0 { for b, r := range newmemphis { fmt.Printf("after b=%s, rewrite=%s\n", b, r.String()) } } // Apply collected rewrites. for _, r := range newmemphis { for _, rw := range r.rewrites { rw.v.SetArg(rw.i, r.after) } } // Rewrite backedges to include reschedule checks. for _, emc := range tofixBackedges { e := emc.e headerMemPhi := emc.m h := e.b i := e.i p := h.Preds[i] bb := p.b mem0 := headerMemPhi.Args[i] // bb e->p h, // Because we're going to insert a rare-call, make sure the // looping edge still looks likely. likely := BranchLikely if p.i != 0 { likely = BranchUnlikely } bb.Likely = likely // rewrite edge to include reschedule check // existing edges: // // bb.Succs[p.i] == Edge{h, i} // h.Preds[i] == p == Edge{bb,p.i} // // new block(s): // test: // if sp < g.limit { goto sched } // goto join // sched: // mem1 := call resched (mem0) // goto join // join: // mem2 := phi(mem0, mem1) // goto h // // and correct arg i of headerMemPhi and headerCtrPhi // // EXCEPT: join block containing only phi functions is bad // for the register allocator. Therefore, there is no // join, and branches targeting join must instead target // the header, and the other phi functions within header are // adjusted for the additional input. test := f.NewBlock(BlockIf) sched := f.NewBlock(BlockPlain) test.Pos = bb.Pos sched.Pos = bb.Pos // if sp < g.limit { goto sched } // goto header cfgtypes := &f.Config.Types pt := cfgtypes.Uintptr g := test.NewValue1(bb.Pos, OpGetG, pt, mem0) sp := test.NewValue0(bb.Pos, OpSP, pt) cmpOp := OpLess64U if pt.Size() == 4 { cmpOp = OpLess32U } limaddr := test.NewValue1I(bb.Pos, OpOffPtr, pt, 2*pt.Size(), g) lim := test.NewValue2(bb.Pos, OpLoad, pt, limaddr, mem0) cmp := test.NewValue2(bb.Pos, cmpOp, cfgtypes.Bool, sp, lim) test.SetControl(cmp) // if true, goto sched test.AddEdgeTo(sched) // if false, rewrite edge to header. // do NOT remove+add, because that will perturb all the other phi functions // as well as messing up other edges to the header. test.Succs = append(test.Succs, Edge{h, i}) h.Preds[i] = Edge{test, 1} headerMemPhi.SetArg(i, mem0) test.Likely = BranchUnlikely // sched: // mem1 := call resched (mem0) // goto header resched := f.fe.Syslook("goschedguarded") mem1 := sched.NewValue1A(bb.Pos, OpStaticCall, types.TypeMem, resched, mem0) sched.AddEdgeTo(h) headerMemPhi.AddArg(mem1) bb.Succs[p.i] = Edge{test, 0} test.Preds = append(test.Preds, Edge{bb, p.i}) // Must correct all the other phi functions in the header for new incoming edge. // Except for mem phis, it will be the same value seen on the original // backedge at index i. for _, v := range h.Values { if v.Op == OpPhi && v != headerMemPhi { v.AddArg(v.Args[i]) } } } f.invalidateCFG() if f.pass.debug > 1 { sdom = newSparseTree(f, f.Idom()) fmt.Printf("after %s = %s\n", f.Name, sdom.treestructure(f.Entry)) } } // newPhiFor inserts a new Phi function into b, // with all inputs set to v. func newPhiFor(b *Block, v *Value) *Value { phiV := b.NewValue0(b.Pos, OpPhi, v.Type) for range b.Preds { phiV.AddArg(v) } return phiV } // rewriteNewPhis updates newphis[h] to record all places where the new phi function inserted // in block h will replace a previous definition. Block b is the block currently being processed; // if b has its own phi definition then it takes the place of h. // defsForUses provides information about other definitions of the variable that are present // (and if nil, indicates that the variable is no longer live) // sdom must yield a preorder of the flow graph if recursively walked, root-to-children. // The result of newSparseOrderedTree with order supplied by a dfs-postorder satisfies this // requirement. func rewriteNewPhis(h, b *Block, f *Func, defsForUses []*Value, newphis map[*Block]rewrite, dfPhiTargets map[rewriteTarget]bool, sdom SparseTree) { // If b is a block with a new phi, then a new rewrite applies below it in the dominator tree. if _, ok := newphis[b]; ok { h = b } change := newphis[h] x := change.before y := change.after // Apply rewrites to this block if x != nil { // don't waste time on the common case of no definition. p := &change.rewrites for _, v := range b.Values { if v == y { // don't rewrite self -- phi inputs are handled below. continue } for i, w := range v.Args { if w != x { continue } tgt := rewriteTarget{v, i} // It's possible dominated control flow will rewrite this instead. // Visiting in preorder (a property of how sdom was constructed) // ensures that these are seen in the proper order. if dfPhiTargets[tgt] { continue } *p = append(*p, tgt) if f.pass.debug > 1 { fmt.Printf("added block target for h=%v, b=%v, x=%v, y=%v, tgt.v=%s, tgt.i=%d\n", h, b, x, y, v, i) } } } // Rewrite appropriate inputs of phis reached in successors // in dominance frontier, self, and dominated. // If the variable def reaching uses in b is itself defined in b, then the new phi function // does not reach the successors of b. (This assumes a bit about the structure of the // phi use-def graph, but it's true for memory.) if dfu := defsForUses[b.ID]; dfu != nil && dfu.Block != b { for _, e := range b.Succs { s := e.b for _, v := range s.Values { if v.Op == OpPhi && v.Args[e.i] == x { tgt := rewriteTarget{v, e.i} *p = append(*p, tgt) dfPhiTargets[tgt] = true if f.pass.debug > 1 { fmt.Printf("added phi target for h=%v, b=%v, s=%v, x=%v, y=%v, tgt.v=%s, tgt.i=%d\n", h, b, s, x, y, v.LongString(), e.i) } break } } } } newphis[h] = change } for c := sdom[b.ID].child; c != nil; c = sdom[c.ID].sibling { rewriteNewPhis(h, c, f, defsForUses, newphis, dfPhiTargets, sdom) // TODO: convert to explicit stack from recursion. } } // addDFphis creates new trivial phis that are necessary to correctly reflect (within SSA) // a new definition for variable "x" inserted at h (usually but not necessarily a phi). // These new phis can only occur at the dominance frontier of h; block s is in the dominance // frontier of h if h does not strictly dominate s and if s is a successor of a block b where // either b = h or h strictly dominates b. // These newly created phis are themselves new definitions that may require addition of their // own trivial phi functions in their own dominance frontier, and this is handled recursively. func addDFphis(x *Value, h, b *Block, f *Func, defForUses []*Value, newphis map[*Block]rewrite, sdom SparseTree) { oldv := defForUses[b.ID] if oldv != x { // either a new definition replacing x, or nil if it is proven that there are no uses reachable from b return } idom := f.Idom() outer: for _, e := range b.Succs { s := e.b // check phi functions in the dominance frontier if sdom.isAncestor(h, s) { continue // h dominates s, successor of b, therefore s is not in the frontier. } if _, ok := newphis[s]; ok { continue // successor s of b already has a new phi function, so there is no need to add another. } if x != nil { for _, v := range s.Values { if v.Op == OpPhi && v.Args[e.i] == x { continue outer // successor s of b has an old phi function, so there is no need to add another. } } } old := defForUses[idom[s.ID].ID] // new phi function is correct-but-redundant, combining value "old" on all inputs. headerPhi := newPhiFor(s, old) // the new phi will replace "old" in block s and all blocks dominated by s. newphis[s] = rewrite{before: old, after: headerPhi} // record new phi, to have inputs labeled "old" rewritten to "headerPhi" addDFphis(old, s, s, f, defForUses, newphis, sdom) // the new definition may also create new phi functions. } for c := sdom[b.ID].child; c != nil; c = sdom[c.ID].sibling { addDFphis(x, h, c, f, defForUses, newphis, sdom) // TODO: convert to explicit stack from recursion. } } // findLastMems maps block ids to last memory-output op in a block, if any func findLastMems(f *Func) []*Value { var stores []*Value lastMems := make([]*Value, f.NumBlocks()) storeUse := f.newSparseSet(f.NumValues()) defer f.retSparseSet(storeUse) for _, b := range f.Blocks { // Find all the stores in this block. Categorize their uses: // storeUse contains stores which are used by a subsequent store. storeUse.clear() stores = stores[:0] var memPhi *Value for _, v := range b.Values { if v.Op == OpPhi { if v.Type.IsMemory() { memPhi = v } continue } if v.Type.IsMemory() { stores = append(stores, v) for _, a := range v.Args { if a.Block == b && a.Type.IsMemory() { storeUse.add(a.ID) } } } } if len(stores) == 0 { lastMems[b.ID] = memPhi continue } // find last store in the block var last *Value for _, v := range stores { if storeUse.contains(v.ID) { continue } if last != nil { b.Fatalf("two final stores - simultaneous live stores %s %s", last, v) } last = v } if last == nil { b.Fatalf("no last store found - cycle?") } lastMems[b.ID] = last } return lastMems } type backedgesState struct { b *Block i int } // backedges returns a slice of successor edges that are back // edges. For reducible loops, edge.b is the header. func backedges(f *Func) []Edge { edges := []Edge{} mark := make([]markKind, f.NumBlocks()) stack := []backedgesState{} mark[f.Entry.ID] = notExplored stack = append(stack, backedgesState{f.Entry, 0}) for len(stack) > 0 { l := len(stack) x := stack[l-1] if x.i < len(x.b.Succs) { e := x.b.Succs[x.i] stack[l-1].i++ s := e.b if mark[s.ID] == notFound { mark[s.ID] = notExplored stack = append(stack, backedgesState{s, 0}) } else if mark[s.ID] == notExplored { edges = append(edges, e) } } else { mark[x.b.ID] = done stack = stack[0 : l-1] } } return edges }