// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/compile/internal/types" "cmd/internal/src" "crypto/sha1" "fmt" "io" "math" "os" "strings" ) type writeSyncer interface { io.Writer Sync() error } // A Func represents a Go func declaration (or function literal) and its body. // This package compiles each Func independently. // Funcs are single-use; a new Func must be created for every compiled function. type Func struct { Config *Config // architecture information Cache *Cache // re-usable cache fe Frontend // frontend state associated with this Func, callbacks into compiler frontend pass *pass // current pass information (name, options, etc.) Name string // e.g. bytes·Compare Type *types.Type // type signature of the function. Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID) Entry *Block // the entry basic block bid idAlloc // block ID allocator vid idAlloc // value ID allocator // Given an environment variable used for debug hash match, // what file (if any) receives the yes/no logging? logfiles map[string]writeSyncer HTMLWriter *HTMLWriter // html writer, for debugging DebugTest bool // default true unless $GOSSAHASH != ""; as a debugging aid, make new code conditional on this and use GOSSAHASH to binary search for failing cases scheduled bool // Values in Blocks are in final order NoSplit bool // true if function is marked as nosplit. Used by schedule check pass. // when register allocation is done, maps value ids to locations RegAlloc []Location // map from LocalSlot to set of Values that we want to store in that slot. NamedValues map[LocalSlot][]*Value // Names is a copy of NamedValues.Keys. We keep a separate list // of keys to make iteration order deterministic. Names []LocalSlot freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil. freeBlocks *Block // free Blocks linked by succstorage[0].b. All other fields except ID are 0/nil. cachedPostorder []*Block // cached postorder traversal cachedIdom []*Block // cached immediate dominators cachedSdom SparseTree // cached dominator tree cachedLoopnest *loopnest // cached loop nest information auxmap auxmap // map from aux values to opaque ids used by CSE constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type } // NewFunc returns a new, empty function object. // Caller must set f.Config and f.Cache before using f. func NewFunc(fe Frontend) *Func { return &Func{fe: fe, NamedValues: make(map[LocalSlot][]*Value)} } // NumBlocks returns an integer larger than the id of any Block in the Func. func (f *Func) NumBlocks() int { return f.bid.num() } // NumValues returns an integer larger than the id of any Value in the Func. func (f *Func) NumValues() int { return f.vid.num() } // newSparseSet returns a sparse set that can store at least up to n integers. func (f *Func) newSparseSet(n int) *sparseSet { for i, scr := range f.Cache.scrSparse { if scr != nil && scr.cap() >= n { f.Cache.scrSparse[i] = nil scr.clear() return scr } } return newSparseSet(n) } // retSparseSet returns a sparse set to the config's cache of sparse sets to be reused by f.newSparseSet. func (f *Func) retSparseSet(ss *sparseSet) { for i, scr := range f.Cache.scrSparse { if scr == nil { f.Cache.scrSparse[i] = ss return } } f.Cache.scrSparse = append(f.Cache.scrSparse, ss) } // newValue allocates a new Value with the given fields and places it at the end of b.Values. func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value { var v *Value if f.freeValues != nil { v = f.freeValues f.freeValues = v.argstorage[0] v.argstorage[0] = nil } else { ID := f.vid.get() if int(ID) < len(f.Cache.values) { v = &f.Cache.values[ID] v.ID = ID } else { v = &Value{ID: ID} } } v.Op = op v.Type = t v.Block = b v.Pos = pos b.Values = append(b.Values, v) return v } // newValueNoBlock allocates a new Value with the given fields. // The returned value is not placed in any block. Once the caller // decides on a block b, it must set b.Block and append // the returned value to b.Values. func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value { var v *Value if f.freeValues != nil { v = f.freeValues f.freeValues = v.argstorage[0] v.argstorage[0] = nil } else { ID := f.vid.get() if int(ID) < len(f.Cache.values) { v = &f.Cache.values[ID] v.ID = ID } else { v = &Value{ID: ID} } } v.Op = op v.Type = t v.Block = nil // caller must fix this. v.Pos = pos return v } // logPassStat writes a string key and int value as a warning in a // tab-separated format easily handled by spreadsheets or awk. // file names, lines, and function names are included to provide enough (?) // context to allow item-by-item comparisons across runs. // For example: // awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log func (f *Func) LogStat(key string, args ...interface{}) { value := "" for _, a := range args { value += fmt.Sprintf("\t%v", a) } n := "missing_pass" if f.pass != nil { n = strings.Replace(f.pass.name, " ", "_", -1) } f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name) } // freeValue frees a value. It must no longer be referenced or have any args. func (f *Func) freeValue(v *Value) { if v.Block == nil { f.Fatalf("trying to free an already freed value") } if v.Uses != 0 { f.Fatalf("value %s still has %d uses", v, v.Uses) } if len(v.Args) != 0 { f.Fatalf("value %s still has %d args", v, len(v.Args)) } // Clear everything but ID (which we reuse). id := v.ID // Values with zero arguments and OpOffPtr values might be cached, so remove them there. nArgs := opcodeTable[v.Op].argLen if nArgs == 0 || v.Op == OpOffPtr { vv := f.constants[v.AuxInt] for i, cv := range vv { if v == cv { vv[i] = vv[len(vv)-1] vv[len(vv)-1] = nil f.constants[v.AuxInt] = vv[0 : len(vv)-1] break } } } *v = Value{} v.ID = id v.argstorage[0] = f.freeValues f.freeValues = v } // newBlock allocates a new Block of the given kind and places it at the end of f.Blocks. func (f *Func) NewBlock(kind BlockKind) *Block { var b *Block if f.freeBlocks != nil { b = f.freeBlocks f.freeBlocks = b.succstorage[0].b b.succstorage[0].b = nil } else { ID := f.bid.get() if int(ID) < len(f.Cache.blocks) { b = &f.Cache.blocks[ID] b.ID = ID } else { b = &Block{ID: ID} } } b.Kind = kind b.Func = f b.Preds = b.predstorage[:0] b.Succs = b.succstorage[:0] b.Values = b.valstorage[:0] f.Blocks = append(f.Blocks, b) f.invalidateCFG() return b } func (f *Func) freeBlock(b *Block) { if b.Func == nil { f.Fatalf("trying to free an already freed block") } // Clear everything but ID (which we reuse). id := b.ID *b = Block{} b.ID = id b.succstorage[0].b = f.freeBlocks f.freeBlocks = b } // NewValue0 returns a new value in the block with no arguments and zero aux values. func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = v.argstorage[:0] return v } // NewValue returns a new value in the block with no arguments and an auxint value. func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = v.argstorage[:0] return v } // NewValue returns a new value in the block with no arguments and an aux value. func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux interface{}) *Value { if _, ok := aux.(int64); ok { // Disallow int64 aux values. They should be in the auxint field instead. // Maybe we want to allow this at some point, but for now we disallow it // to prevent errors like using NewValue1A instead of NewValue1I. b.Fatalf("aux field has int64 type op=%s type=%s aux=%v", op, t, aux) } v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:0] return v } // NewValue returns a new value in the block with no arguments and both an auxint and aux values. func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux interface{}) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Aux = aux v.Args = v.argstorage[:0] return v } // NewValue1 returns a new value in the block with one argument and zero aux values. func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1I returns a new value in the block with one argument and an auxint value. func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1A returns a new value in the block with one argument and an aux value. func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux interface{}, arg *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1IA returns a new value in the block with one argument and both an auxint and aux values. func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux interface{}, arg *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Aux = aux v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue2 returns a new value in the block with two arguments and zero aux values. func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = v.argstorage[:2] v.argstorage[0] = arg0 v.argstorage[1] = arg1 arg0.Uses++ arg1.Uses++ return v } // NewValue2I returns a new value in the block with two arguments and an auxint value. func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = v.argstorage[:2] v.argstorage[0] = arg0 v.argstorage[1] = arg1 arg0.Uses++ arg1.Uses++ return v } // NewValue3 returns a new value in the block with three arguments and zero aux values. func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = v.argstorage[:3] v.argstorage[0] = arg0 v.argstorage[1] = arg1 v.argstorage[2] = arg2 arg0.Uses++ arg1.Uses++ arg2.Uses++ return v } // NewValue3I returns a new value in the block with three arguments and an auxint value. func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = v.argstorage[:3] v.argstorage[0] = arg0 v.argstorage[1] = arg1 v.argstorage[2] = arg2 arg0.Uses++ arg1.Uses++ arg2.Uses++ return v } // NewValue3A returns a new value in the block with three argument and an aux value. func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:3] v.argstorage[0] = arg0 v.argstorage[1] = arg1 v.argstorage[2] = arg2 arg0.Uses++ arg1.Uses++ arg2.Uses++ return v } // NewValue4 returns a new value in the block with four arguments and zero aux values. func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = []*Value{arg0, arg1, arg2, arg3} arg0.Uses++ arg1.Uses++ arg2.Uses++ arg3.Uses++ return v } // constVal returns a constant value for c. func (f *Func) constVal(pos src.XPos, op Op, t *types.Type, c int64, setAuxInt bool) *Value { // TODO remove unused pos parameter, both here and in *func.ConstXXX callers. if f.constants == nil { f.constants = make(map[int64][]*Value) } vv := f.constants[c] for _, v := range vv { if v.Op == op && v.Type.Compare(t) == types.CMPeq { if setAuxInt && v.AuxInt != c { panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c)) } return v } } var v *Value if setAuxInt { v = f.Entry.NewValue0I(src.NoXPos, op, t, c) } else { v = f.Entry.NewValue0(src.NoXPos, op, t) } f.constants[c] = append(vv, v) return v } // These magic auxint values let us easily cache non-numeric constants // using the same constants map while making collisions unlikely. // These values are unlikely to occur in regular code and // are easy to grep for in case of bugs. const ( constSliceMagic = 1122334455 constInterfaceMagic = 2233445566 constNilMagic = 3344556677 constEmptyStringMagic = 4455667788 ) // ConstInt returns an int constant representing its argument. func (f *Func) ConstBool(pos src.XPos, t *types.Type, c bool) *Value { i := int64(0) if c { i = 1 } return f.constVal(pos, OpConstBool, t, i, true) } func (f *Func) ConstInt8(pos src.XPos, t *types.Type, c int8) *Value { return f.constVal(pos, OpConst8, t, int64(c), true) } func (f *Func) ConstInt16(pos src.XPos, t *types.Type, c int16) *Value { return f.constVal(pos, OpConst16, t, int64(c), true) } func (f *Func) ConstInt32(pos src.XPos, t *types.Type, c int32) *Value { return f.constVal(pos, OpConst32, t, int64(c), true) } func (f *Func) ConstInt64(pos src.XPos, t *types.Type, c int64) *Value { return f.constVal(pos, OpConst64, t, c, true) } func (f *Func) ConstFloat32(pos src.XPos, t *types.Type, c float64) *Value { return f.constVal(pos, OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true) } func (f *Func) ConstFloat64(pos src.XPos, t *types.Type, c float64) *Value { return f.constVal(pos, OpConst64F, t, int64(math.Float64bits(c)), true) } func (f *Func) ConstSlice(pos src.XPos, t *types.Type) *Value { return f.constVal(pos, OpConstSlice, t, constSliceMagic, false) } func (f *Func) ConstInterface(pos src.XPos, t *types.Type) *Value { return f.constVal(pos, OpConstInterface, t, constInterfaceMagic, false) } func (f *Func) ConstNil(pos src.XPos, t *types.Type) *Value { return f.constVal(pos, OpConstNil, t, constNilMagic, false) } func (f *Func) ConstEmptyString(pos src.XPos, t *types.Type) *Value { v := f.constVal(pos, OpConstString, t, constEmptyStringMagic, false) v.Aux = "" return v } func (f *Func) ConstOffPtrSP(pos src.XPos, t *types.Type, c int64, sp *Value) *Value { v := f.constVal(pos, OpOffPtr, t, c, true) if len(v.Args) == 0 { v.AddArg(sp) } return v } func (f *Func) Frontend() Frontend { return f.fe } func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) } func (f *Func) Logf(msg string, args ...interface{}) { f.fe.Logf(msg, args...) } func (f *Func) Log() bool { return f.fe.Log() } func (f *Func) Fatalf(msg string, args ...interface{}) { f.fe.Fatalf(f.Entry.Pos, msg, args...) } // postorder returns the reachable blocks in f in a postorder traversal. func (f *Func) postorder() []*Block { if f.cachedPostorder == nil { f.cachedPostorder = postorder(f) } return f.cachedPostorder } func (f *Func) Postorder() []*Block { return f.postorder() } // Idom returns a map from block ID to the immediate dominator of that block. // f.Entry.ID maps to nil. Unreachable blocks map to nil as well. func (f *Func) Idom() []*Block { if f.cachedIdom == nil { f.cachedIdom = dominators(f) } return f.cachedIdom } // sdom returns a sparse tree representing the dominator relationships // among the blocks of f. func (f *Func) sdom() SparseTree { if f.cachedSdom == nil { f.cachedSdom = newSparseTree(f, f.Idom()) } return f.cachedSdom } // loopnest returns the loop nest information for f. func (f *Func) loopnest() *loopnest { if f.cachedLoopnest == nil { f.cachedLoopnest = loopnestfor(f) } return f.cachedLoopnest } // invalidateCFG tells f that its CFG has changed. func (f *Func) invalidateCFG() { f.cachedPostorder = nil f.cachedIdom = nil f.cachedSdom = nil f.cachedLoopnest = nil } // DebugHashMatch returns true if environment variable evname // 1) is empty (this is a special more-quickly implemented case of 3) // 2) is "y" or "Y" // 3) is a suffix of the sha1 hash of name // 4) is a suffix of the environment variable // fmt.Sprintf("%s%d", evname, n) // provided that all such variables are nonempty for 0 <= i <= n // Otherwise it returns false. // When true is returned the message // "%s triggered %s\n", evname, name // is printed on the file named in environment variable // GSHS_LOGFILE // or standard out if that is empty or there is an error // opening the file. func (f *Func) DebugHashMatch(evname, name string) bool { evhash := os.Getenv(evname) switch evhash { case "": return true // default behavior with no EV is "on" case "y", "Y": f.logDebugHashMatch(evname, name) return true case "n", "N": return false } // Check the hash of the name against a partial input hash. // We use this feature to do a binary search to // find a function that is incorrectly compiled. hstr := "" for _, b := range sha1.Sum([]byte(name)) { hstr += fmt.Sprintf("%08b", b) } if strings.HasSuffix(hstr, evhash) { f.logDebugHashMatch(evname, name) return true } // Iteratively try additional hashes to allow tests for multi-point // failure. for i := 0; true; i++ { ev := fmt.Sprintf("%s%d", evname, i) evv := os.Getenv(ev) if evv == "" { break } if strings.HasSuffix(hstr, evv) { f.logDebugHashMatch(ev, name) return true } } return false } func (f *Func) logDebugHashMatch(evname, name string) { if f.logfiles == nil { f.logfiles = make(map[string]writeSyncer) } file := f.logfiles[evname] if file == nil { file = os.Stdout if tmpfile := os.Getenv("GSHS_LOGFILE"); tmpfile != "" { var err error file, err = os.Create(tmpfile) if err != nil { f.Fatalf("could not open hash-testing logfile %s", tmpfile) } } f.logfiles[evname] = file } fmt.Fprintf(file, "%s triggered %s\n", evname, name) file.Sync() } func DebugNameMatch(evname, name string) bool { return os.Getenv(evname) == name }