// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // “Abstract” syntax representation. package gc import ( "cmd/compile/internal/ssa" "cmd/compile/internal/syntax" "cmd/compile/internal/types" "cmd/internal/obj" "cmd/internal/src" ) // A Node is a single node in the syntax tree. // Actually the syntax tree is a syntax DAG, because there is only one // node with Op=ONAME for a given instance of a variable x. // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared. type Node struct { // Tree structure. // Generic recursive walks should follow these fields. Left *Node Right *Node Ninit Nodes Nbody Nodes List Nodes Rlist Nodes // most nodes Type *types.Type Orig *Node // original form, for printing, and tracking copies of ONAMEs // func Func *Func // ONAME, OTYPE, OPACK, OLABEL, some OLITERAL Name *Name Sym *types.Sym // various E interface{} // Opt or Val, see methods below // Various. Usually an offset into a struct. For example: // - ONAME nodes that refer to local variables use it to identify their stack frame position. // - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address. // - OSTRUCTKEY uses it to store the named field's offset. // - Named OLITERALs use it to to store their ambient iota value. // Possibly still more uses. If you find any, document them. Xoffset int64 Pos src.XPos flags bitset32 Esc uint16 // EscXXX Op Op Etype types.EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS } // IsAutoTmp indicates if n was created by the compiler as a temporary, // based on the setting of the .AutoTemp flag in n's Name. func (n *Node) IsAutoTmp() bool { if n == nil || n.Op != ONAME { return false } return n.Name.AutoTemp() } const ( nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed _, _ // second nodeClass bit _, _ // third nodeClass bit nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits _, _ // second nodeWalkdef bit nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits _, _ // second nodeTypecheck bit nodeInitorder, _ // tracks state during init1; two bits _, _ // second nodeInitorder bit _, nodeHasBreak _, nodeIsClosureVar _, nodeIsOutputParamHeapAddr _, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only _, nodeAssigned // is the variable ever assigned to _, nodeAddrtaken // address taken, even if not moved to heap _, nodeImplicit _, nodeIsddd // is the argument variadic _, nodeDiag // already printed error about this _, nodeColas // OAS resulting from := _, nodeNonNil // guaranteed to be non-nil _, nodeNoescape // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360) _, nodeBounded // bounds check unnecessary _, nodeAddable // addressable _, nodeHasCall // expression contains a function call _, nodeLikely // if statement condition likely _, nodeHasVal // node.E contains a Val _, nodeHasOpt // node.E contains an Opt _, nodeEmbedded // ODCLFIELD embedded type _, nodeInlFormal // OPAUTO created by inliner, derived from callee formal _, nodeInlLocal // OPAUTO created by inliner, derived from callee local ) func (n *Node) Class() Class { return Class(n.flags.get3(nodeClass)) } func (n *Node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) } func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) } func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) } func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 } func (n *Node) IsClosureVar() bool { return n.flags&nodeIsClosureVar != 0 } func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 } func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 } func (n *Node) Assigned() bool { return n.flags&nodeAssigned != 0 } func (n *Node) Addrtaken() bool { return n.flags&nodeAddrtaken != 0 } func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 } func (n *Node) Isddd() bool { return n.flags&nodeIsddd != 0 } func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 } func (n *Node) Colas() bool { return n.flags&nodeColas != 0 } func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 } func (n *Node) Noescape() bool { return n.flags&nodeNoescape != 0 } func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 } func (n *Node) Addable() bool { return n.flags&nodeAddable != 0 } func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 } func (n *Node) Likely() bool { return n.flags&nodeLikely != 0 } func (n *Node) HasVal() bool { return n.flags&nodeHasVal != 0 } func (n *Node) HasOpt() bool { return n.flags&nodeHasOpt != 0 } func (n *Node) Embedded() bool { return n.flags&nodeEmbedded != 0 } func (n *Node) InlFormal() bool { return n.flags&nodeInlFormal != 0 } func (n *Node) InlLocal() bool { return n.flags&nodeInlLocal != 0 } func (n *Node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) } func (n *Node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) } func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) } func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) } func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) } func (n *Node) SetIsClosureVar(b bool) { n.flags.set(nodeIsClosureVar, b) } func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) } func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) } func (n *Node) SetAssigned(b bool) { n.flags.set(nodeAssigned, b) } func (n *Node) SetAddrtaken(b bool) { n.flags.set(nodeAddrtaken, b) } func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) } func (n *Node) SetIsddd(b bool) { n.flags.set(nodeIsddd, b) } func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) } func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) } func (n *Node) SetNonNil(b bool) { n.flags.set(nodeNonNil, b) } func (n *Node) SetNoescape(b bool) { n.flags.set(nodeNoescape, b) } func (n *Node) SetBounded(b bool) { n.flags.set(nodeBounded, b) } func (n *Node) SetAddable(b bool) { n.flags.set(nodeAddable, b) } func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) } func (n *Node) SetLikely(b bool) { n.flags.set(nodeLikely, b) } func (n *Node) SetHasVal(b bool) { n.flags.set(nodeHasVal, b) } func (n *Node) SetHasOpt(b bool) { n.flags.set(nodeHasOpt, b) } func (n *Node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) } func (n *Node) SetInlFormal(b bool) { n.flags.set(nodeInlFormal, b) } func (n *Node) SetInlLocal(b bool) { n.flags.set(nodeInlLocal, b) } // Val returns the Val for the node. func (n *Node) Val() Val { if !n.HasVal() { return Val{} } return Val{n.E} } // SetVal sets the Val for the node, which must not have been used with SetOpt. func (n *Node) SetVal(v Val) { if n.HasOpt() { Debug['h'] = 1 Dump("have Opt", n) Fatalf("have Opt") } n.SetHasVal(true) n.E = v.U } // Opt returns the optimizer data for the node. func (n *Node) Opt() interface{} { if !n.HasOpt() { return nil } return n.E } // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. func (n *Node) SetOpt(x interface{}) { if x == nil && n.HasVal() { return } if n.HasVal() { Debug['h'] = 1 Dump("have Val", n) Fatalf("have Val") } n.SetHasOpt(true) n.E = x } func (n *Node) Iota() int64 { return n.Xoffset } func (n *Node) SetIota(x int64) { n.Xoffset = x } // mayBeShared reports whether n may occur in multiple places in the AST. // Extra care must be taken when mutating such a node. func (n *Node) mayBeShared() bool { switch n.Op { case ONAME, OLITERAL, OTYPE: return true } return false } // isMethodExpression reports whether n represents a method expression T.M. func (n *Node) isMethodExpression() bool { return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME } // funcname returns the name of the function n. func (n *Node) funcname() string { if n == nil || n.Func == nil || n.Func.Nname == nil { return "<nil>" } return n.Func.Nname.Sym.Name } // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL). type Name struct { Pack *Node // real package for import . names Pkg *types.Pkg // pkg for OPACK nodes Defn *Node // initializing assignment Curfn *Node // function for local variables Param *Param // additional fields for ONAME, OTYPE Decldepth int32 // declaration loop depth, increased for every loop or label Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. Funcdepth int32 used bool // for variable declared and not used error flags bitset8 } const ( nameCaptured = 1 << iota // is the variable captured by a closure nameReadonly nameByval // is the variable captured by value or by reference nameNeedzero // if it contains pointers, needs to be zeroed on function entry nameKeepalive // mark value live across unknown assembly call nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap) ) func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 } func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 } func (n *Name) Byval() bool { return n.flags&nameByval != 0 } func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 } func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 } func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 } func (n *Name) Used() bool { return n.used } func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) } func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) } func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) } func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) } func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) } func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) } func (n *Name) SetUsed(b bool) { n.used = b } type Param struct { Ntype *Node Heapaddr *Node // temp holding heap address of param // ONAME PAUTOHEAP Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only) // ONAME PPARAM Field *types.Field // TFIELD in arg struct // ONAME closure linkage // Consider: // // func f() { // x := 1 // x1 // func() { // use(x) // x2 // func() { // use(x) // x3 // --- parser is here --- // }() // }() // } // // There is an original declaration of x and then a chain of mentions of x // leading into the current function. Each time x is mentioned in a new closure, // we create a variable representing x for use in that specific closure, // since the way you get to x is different in each closure. // // Let's number the specific variables as shown in the code: // x1 is the original x, x2 is when mentioned in the closure, // and x3 is when mentioned in the closure in the closure. // // We keep these linked (assume N > 1): // // - x1.Defn = original declaration statement for x (like most variables) // - x1.Innermost = current innermost closure x (in this case x3), or nil for none // - x1.IsClosureVar() = false // // - xN.Defn = x1, N > 1 // - xN.IsClosureVar() = true, N > 1 // - x2.Outer = nil // - xN.Outer = x(N-1), N > 2 // // // When we look up x in the symbol table, we always get x1. // Then we can use x1.Innermost (if not nil) to get the x // for the innermost known closure function, // but the first reference in a closure will find either no x1.Innermost // or an x1.Innermost with .Funcdepth < Funcdepth. // In that case, a new xN must be created, linked in with: // // xN.Defn = x1 // xN.Outer = x1.Innermost // x1.Innermost = xN // // When we finish the function, we'll process its closure variables // and find xN and pop it off the list using: // // x1 := xN.Defn // x1.Innermost = xN.Outer // // We leave xN.Innermost set so that we can still get to the original // variable quickly. Not shown here, but once we're // done parsing a function and no longer need xN.Outer for the // lexical x reference links as described above, closurebody // recomputes xN.Outer as the semantic x reference link tree, // even filling in x in intermediate closures that might not // have mentioned it along the way to inner closures that did. // See closurebody for details. // // During the eventual compilation, then, for closure variables we have: // // xN.Defn = original variable // xN.Outer = variable captured in next outward scope // to make closure where xN appears // // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn // and x.Innermost/Outer means x.Name.Param.Innermost/Outer. Innermost *Node Outer *Node // OTYPE // // TODO: Should Func pragmas also be stored on the Name? Pragma syntax.Pragma Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE) } // Functions // // A simple function declaration is represented as an ODCLFUNC node f // and an ONAME node n. They're linked to one another through // f.Func.Nname == n and n.Name.Defn == f. When functions are // referenced by name in an expression, the function's ONAME node is // used directly. // // Function names have n.Class() == PFUNC. This distinguishes them // from variables of function type. // // Confusingly, n.Func and f.Func both exist, but commonly point to // different Funcs. (Exception: an OCALLPART's Func does point to its // ODCLFUNC's Func.) // // A method declaration is represented like functions, except n.Sym // will be the qualified method name (e.g., "T.m") and // f.Func.Shortname is the bare method name (e.g., "m"). // // Method expressions are represented as ONAME/PFUNC nodes like // function names, but their Left and Right fields still point to the // type and method, respectively. They can be distinguished from // normal functions with isMethodExpression. Also, unlike function // name nodes, method expression nodes exist for each method // expression. The declaration ONAME can be accessed with // x.Type.Nname(), where x is the method expression ONAME node. // // Method values are represented by ODOTMETH/ODOTINTER when called // immediately, and OCALLPART otherwise. They are like method // expressions, except that for ODOTMETH/ODOTINTER the method name is // stored in Sym instead of Right. // // Closures are represented by OCLOSURE node c. They link back and // forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure // == f and f.Func.Closure == c. // // Function bodies are stored in f.Nbody, and inline function bodies // are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma. // // Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They // also use Dcl instead of Inldcl. // Func holds Node fields used only with function-like nodes. type Func struct { Shortname *types.Sym Enter Nodes // for example, allocate and initialize memory for escaping parameters Exit Nodes Cvars Nodes // closure params Dcl []*Node // autodcl for this func/closure Inldcl Nodes // copy of dcl for use in inlining // Parents records the parent scope of each scope within a // function. The root scope (0) has no parent, so the i'th // scope's parent is stored at Parents[i-1]. Parents []ScopeID // Marks records scope boundary changes. Marks []Mark Closgen int Outerfunc *Node // outer function (for closure) FieldTrack map[*types.Sym]struct{} DebugInfo *ssa.FuncDebug Ntype *Node // signature Top int // top context (Ecall, Eproc, etc) Closure *Node // OCLOSURE <-> ODCLFUNC Nname *Node lsym *obj.LSym Inl Nodes // copy of the body for use in inlining InlCost int32 Depth int32 Label int32 // largest auto-generated label in this function Endlineno src.XPos WBPos src.XPos // position of first write barrier; see SetWBPos Pragma syntax.Pragma // go:xxx function annotations flags bitset16 // nwbrCalls records the LSyms of functions called by this // function for go:nowritebarrierrec analysis. Only filled in // if nowritebarrierrecCheck != nil. nwbrCalls *[]nowritebarrierrecCallSym } // A Mark represents a scope boundary. type Mark struct { // Pos is the position of the token that marks the scope // change. Pos src.XPos // Scope identifies the innermost scope to the right of Pos. Scope ScopeID } // A ScopeID represents a lexical scope within a function. type ScopeID int32 const ( funcDupok = 1 << iota // duplicate definitions ok funcWrapper // is method wrapper funcNeedctxt // function uses context register (has closure variables) funcReflectMethod // function calls reflect.Type.Method or MethodByName funcIsHiddenClosure funcNoFramePointer // Must not use a frame pointer for this function funcHasDefer // contains a defer statement funcNilCheckDisabled // disable nil checks when compiling this function funcInlinabilityChecked // inliner has already determined whether the function is inlinable funcExportInline // include inline body in export data ) func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 } func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 } func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 } func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 } func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 } func (f *Func) NoFramePointer() bool { return f.flags&funcNoFramePointer != 0 } func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 } func (f *Func) NilCheckDisabled() bool { return f.flags&funcNilCheckDisabled != 0 } func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 } func (f *Func) ExportInline() bool { return f.flags&funcExportInline != 0 } func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) } func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) } func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) } func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) } func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) } func (f *Func) SetNoFramePointer(b bool) { f.flags.set(funcNoFramePointer, b) } func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) } func (f *Func) SetNilCheckDisabled(b bool) { f.flags.set(funcNilCheckDisabled, b) } func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) } func (f *Func) SetExportInline(b bool) { f.flags.set(funcExportInline, b) } func (f *Func) setWBPos(pos src.XPos) { if Debug_wb != 0 { Warnl(pos, "write barrier") } if !f.WBPos.IsKnown() { f.WBPos = pos } } //go:generate stringer -type=Op -trimprefix=O type Op uint8 // Node ops. const ( OXXX Op = iota // names ONAME // var, const or func name ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } OTYPE // type name OPACK // import OLITERAL // literal // expressions OADD // Left + Right OSUB // Left - Right OOR // Left | Right OXOR // Left ^ Right OADDSTR // +{List} (string addition, list elements are strings) OADDR // &Left OANDAND // Left && Right OAPPEND // append(List); after walk, Left may contain elem type descriptor OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte) OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune) OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string) OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral) OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string) OAS // Left = Right or (if Colas=true) Left := Right OAS2 // List = Rlist (x, y, z = a, b, c) OAS2FUNC // List = Rlist (x, y = f()) OAS2RECV // List = Rlist (x, ok = <-c) OAS2MAPR // List = Rlist (x, ok = m["foo"]) OAS2DOTTYPE // List = Rlist (x, ok = I.(int)) OASOP // Left Etype= Right (x += y) OCALL // Left(List) (function call, method call or type conversion) OCALLFUNC // Left(List) (function call f(args)) OCALLMETH // Left(List) (direct method call x.Method(args)) OCALLINTER // Left(List) (interface method call x.Method(args)) OCALLPART // Left.Right (method expression x.Method, not called) OCAP // cap(Left) OCLOSE // close(Left) OCLOSURE // func Type { Body } (func literal) OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y) OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc) OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) OMAPLIT // Type{List} (composite literal, Type is map) OSTRUCTLIT // Type{List} (composite literal, Type is struct) OARRAYLIT // Type{List} (composite literal, Type is array) OSLICELIT // Type{List} (composite literal, Type is slice) OPTRLIT // &Left (left is composite literal) OCONV // Type(Left) (type conversion) OCONVIFACE // Type(Left) (type conversion, to interface) OCONVNOP // Type(Left) (type conversion, no effect) OCOPY // copy(Left, Right) ODCL // var Left (declares Left of type Left.Type) // Used during parsing but don't last. ODCLFUNC // func f() or func (r) f() ODCLFIELD // struct field, interface field, or func/method argument/return value. ODCLCONST // const pi = 3.14 ODCLTYPE // type Int int or type Int = int ODELETE // delete(Left, Right) ODOT // Left.Sym (Left is of struct type) ODOTPTR // Left.Sym (Left is of pointer to struct type) ODOTMETH // Left.Sym (Left is non-interface, Right is method name) ODOTINTER // Left.Sym (Left is interface, Right is method name) OXDOT // Left.Sym (before rewrite to one of the preceding) ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor OEQ // Left == Right ONE // Left != Right OLT // Left < Right OLE // Left <= Right OGE // Left >= Right OGT // Left > Right OIND // *Left OINDEX // Left[Right] (index of array or slice) OINDEXMAP // Left[Right] (index of map) OKEY // Left:Right (key:value in struct/array/map literal) OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking) OLEN // len(Left) OMAKE // make(List) (before type checking converts to one of the following) OMAKECHAN // make(Type, Left) (type is chan) OMAKEMAP // make(Type, Left) (type is map) OMAKESLICE // make(Type, Left, Right) (type is slice) OMUL // Left * Right ODIV // Left / Right OMOD // Left % Right OLSH // Left << Right ORSH // Left >> Right OAND // Left & Right OANDNOT // Left &^ Right ONEW // new(Left) ONOT // !Left OCOM // ^Left OPLUS // +Left OMINUS // -Left OOROR // Left || Right OPANIC // panic(Left) OPRINT // print(List) OPRINTN // println(List) OPAREN // (Left) OSEND // Left <- Right OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice) OSLICEARR // Left[List[0] : List[1]] (Left is array) OSLICESTR // Left[List[0] : List[1]] (Left is string) OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice) OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array) ORECOVER // recover() ORECV // <-Left ORUNESTR // Type(Left) (Type is string, Left is rune) OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV) OIOTA // iota OREAL // real(Left) OIMAG // imag(Left) OCOMPLEX // complex(Left, Right) OALIGNOF // unsafe.Alignof(Left) OOFFSETOF // unsafe.Offsetof(Left) OSIZEOF // unsafe.Sizeof(Left) // statements OBLOCK // { List } (block of code) OBREAK // break OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default) OXCASE // case List: Nbody (select case before processing; List==nil means default) OCONTINUE // continue ODEFER // defer Left (Left must be call) OEMPTY // no-op (empty statement) OFALL // fallthrough OFOR // for Ninit; Left; Right { Nbody } OFORUNTIL // for Ninit; Left; Right { Nbody } ; test applied after executing body, not before OGOTO // goto Left OIF // if Ninit; Left { Nbody } else { Rlist } OLABEL // Left: OPROC // go Left (Left must be call) ORANGE // for List = range Right { Nbody } ORETURN // return List OSELECT // select { List } (List is list of OXCASE or OCASE) OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE) OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH) // types OTCHAN // chan int OTMAP // map[string]int OTSTRUCT // struct{} OTINTER // interface{} OTFUNC // func() OTARRAY // []int, [8]int, [N]int or [...]int // misc ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. ODDDARG // func f(args ...int), introduced by escape analysis. OINLCALL // intermediary representation of an inlined call. OEFACE // itable and data words of an empty-interface value. OITAB // itable word of an interface value. OIDATA // data word of an interface value in Left OSPTR // base pointer of a slice or string. OCLOSUREVAR // variable reference at beginning of closure function OCFUNC // reference to c function pointer (not go func value) OCHECKNIL // emit code to ensure pointer/interface not nil OVARKILL // variable is dead OVARLIVE // variable is alive OINDREGSP // offset plus indirect of REGSP, such as 8(SP). // arch-specific opcodes ORETJMP // return to other function OGETG // runtime.getg() (read g pointer) OEND ) // Nodes is a pointer to a slice of *Node. // For fields that are not used in most nodes, this is used instead of // a slice to save space. type Nodes struct{ slice *[]*Node } // Slice returns the entries in Nodes as a slice. // Changes to the slice entries (as in s[i] = n) will be reflected in // the Nodes. func (n Nodes) Slice() []*Node { if n.slice == nil { return nil } return *n.slice } // Len returns the number of entries in Nodes. func (n Nodes) Len() int { if n.slice == nil { return 0 } return len(*n.slice) } // Index returns the i'th element of Nodes. // It panics if n does not have at least i+1 elements. func (n Nodes) Index(i int) *Node { return (*n.slice)[i] } // First returns the first element of Nodes (same as n.Index(0)). // It panics if n has no elements. func (n Nodes) First() *Node { return (*n.slice)[0] } // Second returns the second element of Nodes (same as n.Index(1)). // It panics if n has fewer than two elements. func (n Nodes) Second() *Node { return (*n.slice)[1] } // Set sets n to a slice. // This takes ownership of the slice. func (n *Nodes) Set(s []*Node) { if len(s) == 0 { n.slice = nil } else { // Copy s and take address of t rather than s to avoid // allocation in the case where len(s) == 0 (which is // over 3x more common, dynamically, for make.bash). t := s n.slice = &t } } // Set1 sets n to a slice containing a single node. func (n *Nodes) Set1(n1 *Node) { n.slice = &[]*Node{n1} } // Set2 sets n to a slice containing two nodes. func (n *Nodes) Set2(n1, n2 *Node) { n.slice = &[]*Node{n1, n2} } // Set3 sets n to a slice containing three nodes. func (n *Nodes) Set3(n1, n2, n3 *Node) { n.slice = &[]*Node{n1, n2, n3} } // MoveNodes sets n to the contents of n2, then clears n2. func (n *Nodes) MoveNodes(n2 *Nodes) { n.slice = n2.slice n2.slice = nil } // SetIndex sets the i'th element of Nodes to node. // It panics if n does not have at least i+1 elements. func (n Nodes) SetIndex(i int, node *Node) { (*n.slice)[i] = node } // SetFirst sets the first element of Nodes to node. // It panics if n does not have at least one elements. func (n Nodes) SetFirst(node *Node) { (*n.slice)[0] = node } // SetSecond sets the second element of Nodes to node. // It panics if n does not have at least two elements. func (n Nodes) SetSecond(node *Node) { (*n.slice)[1] = node } // Addr returns the address of the i'th element of Nodes. // It panics if n does not have at least i+1 elements. func (n Nodes) Addr(i int) **Node { return &(*n.slice)[i] } // Append appends entries to Nodes. func (n *Nodes) Append(a ...*Node) { if len(a) == 0 { return } if n.slice == nil { s := make([]*Node, len(a)) copy(s, a) n.slice = &s return } *n.slice = append(*n.slice, a...) } // Prepend prepends entries to Nodes. // If a slice is passed in, this will take ownership of it. func (n *Nodes) Prepend(a ...*Node) { if len(a) == 0 { return } if n.slice == nil { n.slice = &a } else { *n.slice = append(a, *n.slice...) } } // AppendNodes appends the contents of *n2 to n, then clears n2. func (n *Nodes) AppendNodes(n2 *Nodes) { switch { case n2.slice == nil: case n.slice == nil: n.slice = n2.slice default: *n.slice = append(*n.slice, *n2.slice...) } n2.slice = nil } // inspect invokes f on each node in an AST in depth-first order. // If f(n) returns false, inspect skips visiting n's children. func inspect(n *Node, f func(*Node) bool) { if n == nil || !f(n) { return } inspectList(n.Ninit, f) inspect(n.Left, f) inspect(n.Right, f) inspectList(n.List, f) inspectList(n.Nbody, f) inspectList(n.Rlist, f) } func inspectList(l Nodes, f func(*Node) bool) { for _, n := range l.Slice() { inspect(n, f) } } // nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is // a ready-to-use empty queue. type nodeQueue struct { ring []*Node head, tail int } // empty returns true if q contains no Nodes. func (q *nodeQueue) empty() bool { return q.head == q.tail } // pushRight appends n to the right of the queue. func (q *nodeQueue) pushRight(n *Node) { if len(q.ring) == 0 { q.ring = make([]*Node, 16) } else if q.head+len(q.ring) == q.tail { // Grow the ring. nring := make([]*Node, len(q.ring)*2) // Copy the old elements. part := q.ring[q.head%len(q.ring):] if q.tail-q.head <= len(part) { part = part[:q.tail-q.head] copy(nring, part) } else { pos := copy(nring, part) copy(nring[pos:], q.ring[:q.tail%len(q.ring)]) } q.ring, q.head, q.tail = nring, 0, q.tail-q.head } q.ring[q.tail%len(q.ring)] = n q.tail++ } // popLeft pops a node from the left of the queue. It panics if q is // empty. func (q *nodeQueue) popLeft() *Node { if q.empty() { panic("dequeue empty") } n := q.ring[q.head%len(q.ring)] q.head++ return n }