// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "cmd/compile/internal/types" "cmd/internal/objabi" "cmd/internal/src" "crypto/md5" "encoding/binary" "fmt" "os" "runtime/debug" "sort" "strconv" "strings" "sync" "unicode" "unicode/utf8" ) type Error struct { pos src.XPos msg string } var errors []Error var ( largeStackFramesMu sync.Mutex // protects largeStackFrames largeStackFrames []src.XPos // positions of functions whose stack frames are too large (rare) ) func errorexit() { flusherrors() if outfile != "" { os.Remove(outfile) } os.Exit(2) } func adderrorname(n *Node) { if n.Op != ODOT { return } old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left) if len(errors) > 0 && errors[len(errors)-1].pos.Line() == n.Pos.Line() && errors[len(errors)-1].msg == old { errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n) } } func adderr(pos src.XPos, format string, args ...interface{}) { errors = append(errors, Error{ pos: pos, msg: fmt.Sprintf("%v: %s\n", linestr(pos), fmt.Sprintf(format, args...)), }) } // byPos sorts errors by source position. type byPos []Error func (x byPos) Len() int { return len(x) } func (x byPos) Less(i, j int) bool { return x[i].pos.Before(x[j].pos) } func (x byPos) Swap(i, j int) { x[i], x[j] = x[j], x[i] } // flusherrors sorts errors seen so far by line number, prints them to stdout, // and empties the errors array. func flusherrors() { Ctxt.Bso.Flush() if len(errors) == 0 { return } sort.Stable(byPos(errors)) for i := 0; i < len(errors); i++ { if i == 0 || errors[i].msg != errors[i-1].msg { fmt.Printf("%s", errors[i].msg) } } errors = errors[:0] } func hcrash() { if Debug['h'] != 0 { flusherrors() if outfile != "" { os.Remove(outfile) } var x *int *x = 0 } } func linestr(pos src.XPos) string { return Ctxt.OutermostPos(pos).Format(Debug['C'] == 0, Debug['L'] == 1) } // lasterror keeps track of the most recently issued error. // It is used to avoid multiple error messages on the same // line. var lasterror struct { syntax src.XPos // source position of last syntax error other src.XPos // source position of last non-syntax error msg string // error message of last non-syntax error } // sameline reports whether two positions a, b are on the same line. func sameline(a, b src.XPos) bool { p := Ctxt.PosTable.Pos(a) q := Ctxt.PosTable.Pos(b) return p.Base() == q.Base() && p.Line() == q.Line() } func yyerrorl(pos src.XPos, format string, args ...interface{}) { msg := fmt.Sprintf(format, args...) if strings.HasPrefix(msg, "syntax error") { nsyntaxerrors++ // only one syntax error per line, no matter what error if sameline(lasterror.syntax, pos) { return } lasterror.syntax = pos } else { // only one of multiple equal non-syntax errors per line // (flusherrors shows only one of them, so we filter them // here as best as we can (they may not appear in order) // so that we don't count them here and exit early, and // then have nothing to show for.) if sameline(lasterror.other, pos) && lasterror.msg == msg { return } lasterror.other = pos lasterror.msg = msg } adderr(pos, "%s", msg) hcrash() nerrors++ if nsavederrors+nerrors >= 10 && Debug['e'] == 0 { flusherrors() fmt.Printf("%v: too many errors\n", linestr(pos)) errorexit() } } func yyerror(format string, args ...interface{}) { yyerrorl(lineno, format, args...) } func Warn(fmt_ string, args ...interface{}) { adderr(lineno, fmt_, args...) hcrash() } func Warnl(line src.XPos, fmt_ string, args ...interface{}) { adderr(line, fmt_, args...) if Debug['m'] != 0 { flusherrors() } } func Fatalf(fmt_ string, args ...interface{}) { flusherrors() if Debug_panic != 0 || nsavederrors+nerrors == 0 { fmt.Printf("%v: internal compiler error: ", linestr(lineno)) fmt.Printf(fmt_, args...) fmt.Printf("\n") // If this is a released compiler version, ask for a bug report. if strings.HasPrefix(objabi.Version, "go") { fmt.Printf("\n") fmt.Printf("Please file a bug report including a short program that triggers the error.\n") fmt.Printf("https://golang.org/issue/new\n") } else { // Not a release; dump a stack trace, too. fmt.Println() os.Stdout.Write(debug.Stack()) fmt.Println() } } hcrash() errorexit() } func setlineno(n *Node) src.XPos { lno := lineno if n != nil { switch n.Op { case ONAME, OPACK: break case OLITERAL, OTYPE: if n.Sym != nil { break } fallthrough default: lineno = n.Pos if !lineno.IsKnown() { if Debug['K'] != 0 { Warn("setlineno: unknown position (line 0)") } lineno = lno } } } return lno } func lookup(name string) *types.Sym { return localpkg.Lookup(name) } // lookupN looks up the symbol starting with prefix and ending with // the decimal n. If prefix is too long, lookupN panics. func lookupN(prefix string, n int) *types.Sym { var buf [20]byte // plenty long enough for all current users copy(buf[:], prefix) b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10) return localpkg.LookupBytes(b) } // autolabel generates a new Name node for use with // an automatically generated label. // prefix is a short mnemonic (e.g. ".s" for switch) // to help with debugging. // It should begin with "." to avoid conflicts with // user labels. func autolabel(prefix string) *Node { if prefix[0] != '.' { Fatalf("autolabel prefix must start with '.', have %q", prefix) } fn := Curfn if Curfn == nil { Fatalf("autolabel outside function") } n := fn.Func.Label fn.Func.Label++ return newname(lookupN(prefix, int(n))) } func restrictlookup(name string, pkg *types.Pkg) *types.Sym { if !exportname(name) && pkg != localpkg { yyerror("cannot refer to unexported name %s.%s", pkg.Name, name) } return pkg.Lookup(name) } // find all the exported symbols in package opkg // and make them available in the current package func importdot(opkg *types.Pkg, pack *Node) { n := 0 for _, s := range opkg.Syms { if s.Def == nil { continue } if !exportname(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot continue } s1 := lookup(s.Name) if s1.Def != nil { pkgerror := fmt.Sprintf("during import %q", opkg.Path) redeclare(s1, pkgerror) continue } s1.Def = s.Def s1.Block = s.Block if asNode(s1.Def).Name == nil { Dump("s1def", asNode(s1.Def)) Fatalf("missing Name") } asNode(s1.Def).Name.Pack = pack s1.Origpkg = opkg n++ } if n == 0 { // can't possibly be used - there were no symbols yyerrorl(pack.Pos, "imported and not used: %q", opkg.Path) } } func nod(op Op, nleft, nright *Node) *Node { return nodl(lineno, op, nleft, nright) } func nodl(pos src.XPos, op Op, nleft, nright *Node) *Node { var n *Node switch op { case OCLOSURE, ODCLFUNC: var x struct { Node Func } n = &x.Node n.Func = &x.Func case ONAME: Fatalf("use newname instead") case OLABEL, OPACK: var x struct { Node Name } n = &x.Node n.Name = &x.Name default: n = new(Node) } n.Op = op n.Left = nleft n.Right = nright n.Pos = pos n.Xoffset = BADWIDTH n.Orig = n return n } // newname returns a new ONAME Node associated with symbol s. func newname(s *types.Sym) *Node { n := newnamel(lineno, s) n.Name.Curfn = Curfn return n } // newname returns a new ONAME Node associated with symbol s at position pos. // The caller is responsible for setting n.Name.Curfn. func newnamel(pos src.XPos, s *types.Sym) *Node { if s == nil { Fatalf("newnamel nil") } var x struct { Node Name Param } n := &x.Node n.Name = &x.Name n.Name.Param = &x.Param n.Op = ONAME n.Pos = pos n.Orig = n n.Sym = s n.SetAddable(true) return n } // nodSym makes a Node with Op op and with the Left field set to left // and the Sym field set to sym. This is for ODOT and friends. func nodSym(op Op, left *Node, sym *types.Sym) *Node { n := nod(op, left, nil) n.Sym = sym return n } func saveorignode(n *Node) { if n.Orig != nil { return } norig := nod(n.Op, nil, nil) *norig = *n n.Orig = norig } // methcmp sorts by symbol, then by package path for unexported symbols. type methcmp []*types.Field func (x methcmp) Len() int { return len(x) } func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x methcmp) Less(i, j int) bool { a := x[i] b := x[j] if a.Sym == nil && b.Sym == nil { return false } if a.Sym == nil { return true } if b.Sym == nil { return false } if a.Sym.Name != b.Sym.Name { return a.Sym.Name < b.Sym.Name } if !exportname(a.Sym.Name) { if a.Sym.Pkg.Path != b.Sym.Pkg.Path { return a.Sym.Pkg.Path < b.Sym.Pkg.Path } } return false } func nodintconst(v int64) *Node { c := nod(OLITERAL, nil, nil) c.SetAddable(true) c.SetVal(Val{new(Mpint)}) c.Val().U.(*Mpint).SetInt64(v) c.Type = types.Types[TIDEAL] return c } func nodfltconst(v *Mpflt) *Node { c := nod(OLITERAL, nil, nil) c.SetAddable(true) c.SetVal(Val{newMpflt()}) c.Val().U.(*Mpflt).Set(v) c.Type = types.Types[TIDEAL] return c } func nodconst(n *Node, t *types.Type, v int64) { *n = Node{} n.Op = OLITERAL n.SetAddable(true) n.SetVal(Val{new(Mpint)}) n.Val().U.(*Mpint).SetInt64(v) n.Type = t if t.IsFloat() { Fatalf("nodconst: bad type %v", t) } } func nodnil() *Node { c := nodintconst(0) c.SetVal(Val{new(NilVal)}) c.Type = types.Types[TNIL] return c } func nodbool(b bool) *Node { c := nodintconst(0) c.SetVal(Val{b}) c.Type = types.Idealbool return c } func nodstr(s string) *Node { return nodlit(Val{s}) } // treecopy recursively copies n, with the exception of // ONAME, OLITERAL, OTYPE, and non-iota ONONAME leaves. // Copies of iota ONONAME nodes are assigned the current // value of iota_. If pos.IsKnown(), it sets the source // position of newly allocated nodes to pos. func treecopy(n *Node, pos src.XPos) *Node { if n == nil { return nil } switch n.Op { default: m := *n m.Orig = &m m.Left = treecopy(n.Left, pos) m.Right = treecopy(n.Right, pos) m.List.Set(listtreecopy(n.List.Slice(), pos)) if pos.IsKnown() { m.Pos = pos } if m.Name != nil && n.Op != ODCLFIELD { Dump("treecopy", n) Fatalf("treecopy Name") } return &m case OPACK: // OPACK nodes are never valid in const value declarations, // but allow them like any other declared symbol to avoid // crashing (golang.org/issue/11361). fallthrough case ONAME, ONONAME, OLITERAL, OTYPE: return n } } // isnil reports whether n represents the universal untyped zero value "nil". func isnil(n *Node) bool { // Check n.Orig because constant propagation may produce typed nil constants, // which don't exist in the Go spec. return Isconst(n.Orig, CTNIL) } func isptrto(t *types.Type, et types.EType) bool { if t == nil { return false } if !t.IsPtr() { return false } t = t.Elem() if t == nil { return false } if t.Etype != et { return false } return true } func isblank(n *Node) bool { if n == nil { return false } return n.Sym.IsBlank() } // methtype returns the underlying type, if any, // that owns methods with receiver parameter t. // The result is either a named type or an anonymous struct. func methtype(t *types.Type) *types.Type { if t == nil { return nil } // Strip away pointer if it's there. if t.IsPtr() { if t.Sym != nil { return nil } t = t.Elem() if t == nil { return nil } } // Must be a named type or anonymous struct. if t.Sym == nil && !t.IsStruct() { return nil } // Check types. if issimple[t.Etype] { return t } switch t.Etype { case TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRING, TSTRUCT: return t } return nil } // eqtype reports whether t1 and t2 are identical, following the spec rules. // // Any cyclic type must go through a named type, and if one is // named, it is only identical to the other if they are the same // pointer (t1 == t2), so there's no chance of chasing cycles // ad infinitum, so no need for a depth counter. func eqtype(t1, t2 *types.Type) bool { return eqtype1(t1, t2, true, nil) } // eqtypeIgnoreTags is like eqtype but it ignores struct tags for struct identity. func eqtypeIgnoreTags(t1, t2 *types.Type) bool { return eqtype1(t1, t2, false, nil) } type typePair struct { t1 *types.Type t2 *types.Type } func eqtype1(t1, t2 *types.Type, cmpTags bool, assumedEqual map[typePair]struct{}) bool { if t1 == t2 { return true } if t1 == nil || t2 == nil || t1.Etype != t2.Etype || t1.Broke() || t2.Broke() { return false } if t1.Sym != nil || t2.Sym != nil { // Special case: we keep byte/uint8 and rune/int32 // separate for error messages. Treat them as equal. switch t1.Etype { case TUINT8: return (t1 == types.Types[TUINT8] || t1 == types.Bytetype) && (t2 == types.Types[TUINT8] || t2 == types.Bytetype) case TINT32: return (t1 == types.Types[TINT32] || t1 == types.Runetype) && (t2 == types.Types[TINT32] || t2 == types.Runetype) default: return false } } if assumedEqual == nil { assumedEqual = make(map[typePair]struct{}) } else if _, ok := assumedEqual[typePair{t1, t2}]; ok { return true } assumedEqual[typePair{t1, t2}] = struct{}{} switch t1.Etype { case TINTER: if t1.NumFields() != t2.NumFields() { return false } for i, f1 := range t1.FieldSlice() { f2 := t2.Field(i) if f1.Sym != f2.Sym || !eqtype1(f1.Type, f2.Type, cmpTags, assumedEqual) { return false } } return true case TSTRUCT: if t1.NumFields() != t2.NumFields() { return false } for i, f1 := range t1.FieldSlice() { f2 := t2.Field(i) if f1.Sym != f2.Sym || f1.Embedded != f2.Embedded || !eqtype1(f1.Type, f2.Type, cmpTags, assumedEqual) { return false } if cmpTags && f1.Note != f2.Note { return false } } return true case TFUNC: // Check parameters and result parameters for type equality. // We intentionally ignore receiver parameters for type // equality, because they're never relevant. for _, f := range types.ParamsResults { // Loop over fields in structs, ignoring argument names. fs1, fs2 := f(t1).FieldSlice(), f(t2).FieldSlice() if len(fs1) != len(fs2) { return false } for i, f1 := range fs1 { f2 := fs2[i] if f1.Isddd() != f2.Isddd() || !eqtype1(f1.Type, f2.Type, cmpTags, assumedEqual) { return false } } } return true case TARRAY: if t1.NumElem() != t2.NumElem() { return false } case TCHAN: if t1.ChanDir() != t2.ChanDir() { return false } case TMAP: if !eqtype1(t1.Key(), t2.Key(), cmpTags, assumedEqual) { return false } return eqtype1(t1.Val(), t2.Val(), cmpTags, assumedEqual) } return eqtype1(t1.Elem(), t2.Elem(), cmpTags, assumedEqual) } // Are t1 and t2 equal struct types when field names are ignored? // For deciding whether the result struct from g can be copied // directly when compiling f(g()). func eqtypenoname(t1 *types.Type, t2 *types.Type) bool { if t1 == nil || t2 == nil || !t1.IsStruct() || !t2.IsStruct() { return false } if t1.NumFields() != t2.NumFields() { return false } for i, f1 := range t1.FieldSlice() { f2 := t2.Field(i) if !eqtype(f1.Type, f2.Type) { return false } } return true } // Is type src assignment compatible to type dst? // If so, return op code to use in conversion. // If not, return 0. func assignop(src *types.Type, dst *types.Type, why *string) Op { if why != nil { *why = "" } // TODO(rsc,lvd): This behaves poorly in the presence of inlining. // https://golang.org/issue/2795 if safemode && !inimport && src != nil && src.Etype == TUNSAFEPTR { yyerror("cannot use unsafe.Pointer") errorexit() } if src == dst { return OCONVNOP } if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil { return 0 } // 1. src type is identical to dst. if eqtype(src, dst) { return OCONVNOP } // 2. src and dst have identical underlying types // and either src or dst is not a named type or // both are empty interface types. // For assignable but different non-empty interface types, // we want to recompute the itab. Recomputing the itab ensures // that itabs are unique (thus an interface with a compile-time // type I has an itab with interface type I). if eqtype(src.Orig, dst.Orig) { if src.IsEmptyInterface() { // Conversion between two empty interfaces // requires no code. return OCONVNOP } if (src.Sym == nil || dst.Sym == nil) && !src.IsInterface() { // Conversion between two types, at least one unnamed, // needs no conversion. The exception is nonempty interfaces // which need to have their itab updated. return OCONVNOP } } // 3. dst is an interface type and src implements dst. if dst.IsInterface() && src.Etype != TNIL { var missing, have *types.Field var ptr int if implements(src, dst, &missing, &have, &ptr) { return OCONVIFACE } // we'll have complained about this method anyway, suppress spurious messages. if have != nil && have.Sym == missing.Sym && (have.Type.Broke() || missing.Type.Broke()) { return OCONVIFACE } if why != nil { if isptrto(src, TINTER) { *why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src) } else if have != nil && have.Sym == missing.Sym && have.Nointerface() { *why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym) } else if have != nil && have.Sym == missing.Sym { *why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+ "\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type) } else if ptr != 0 { *why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym) } else if have != nil { *why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+ "\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type) } else { *why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym) } } return 0 } if isptrto(dst, TINTER) { if why != nil { *why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst) } return 0 } if src.IsInterface() && dst.Etype != TBLANK { var missing, have *types.Field var ptr int if why != nil && implements(dst, src, &missing, &have, &ptr) { *why = ": need type assertion" } return 0 } // 4. src is a bidirectional channel value, dst is a channel type, // src and dst have identical element types, and // either src or dst is not a named type. if src.IsChan() && src.ChanDir() == types.Cboth && dst.IsChan() { if eqtype(src.Elem(), dst.Elem()) && (src.Sym == nil || dst.Sym == nil) { return OCONVNOP } } // 5. src is the predeclared identifier nil and dst is a nillable type. if src.Etype == TNIL { switch dst.Etype { case TPTR32, TPTR64, TFUNC, TMAP, TCHAN, TINTER, TSLICE: return OCONVNOP } } // 6. rule about untyped constants - already converted by defaultlit. // 7. Any typed value can be assigned to the blank identifier. if dst.Etype == TBLANK { return OCONVNOP } return 0 } // Can we convert a value of type src to a value of type dst? // If so, return op code to use in conversion (maybe OCONVNOP). // If not, return 0. func convertop(src *types.Type, dst *types.Type, why *string) Op { if why != nil { *why = "" } if src == dst { return OCONVNOP } if src == nil || dst == nil { return 0 } // Conversions from regular to go:notinheap are not allowed // (unless it's unsafe.Pointer). This is a runtime-specific // rule. if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap() && !src.Elem().NotInHeap() { if why != nil { *why = fmt.Sprintf(":\n\t%v is go:notinheap, but %v is not", dst.Elem(), src.Elem()) } return 0 } // 1. src can be assigned to dst. op := assignop(src, dst, why) if op != 0 { return op } // The rules for interfaces are no different in conversions // than assignments. If interfaces are involved, stop now // with the good message from assignop. // Otherwise clear the error. if src.IsInterface() || dst.IsInterface() { return 0 } if why != nil { *why = "" } // 2. Ignoring struct tags, src and dst have identical underlying types. if eqtypeIgnoreTags(src.Orig, dst.Orig) { return OCONVNOP } // 3. src and dst are unnamed pointer types and, ignoring struct tags, // their base types have identical underlying types. if src.IsPtr() && dst.IsPtr() && src.Sym == nil && dst.Sym == nil { if eqtypeIgnoreTags(src.Elem().Orig, dst.Elem().Orig) { return OCONVNOP } } // 4. src and dst are both integer or floating point types. if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) { if simtype[src.Etype] == simtype[dst.Etype] { return OCONVNOP } return OCONV } // 5. src and dst are both complex types. if src.IsComplex() && dst.IsComplex() { if simtype[src.Etype] == simtype[dst.Etype] { return OCONVNOP } return OCONV } // 6. src is an integer or has type []byte or []rune // and dst is a string type. if src.IsInteger() && dst.IsString() { return ORUNESTR } if src.IsSlice() && dst.IsString() { if src.Elem().Etype == types.Bytetype.Etype { return OARRAYBYTESTR } if src.Elem().Etype == types.Runetype.Etype { return OARRAYRUNESTR } } // 7. src is a string and dst is []byte or []rune. // String to slice. if src.IsString() && dst.IsSlice() { if dst.Elem().Etype == types.Bytetype.Etype { return OSTRARRAYBYTE } if dst.Elem().Etype == types.Runetype.Etype { return OSTRARRAYRUNE } } // 8. src is a pointer or uintptr and dst is unsafe.Pointer. if (src.IsPtr() || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR { return OCONVNOP } // 9. src is unsafe.Pointer and dst is a pointer or uintptr. if src.Etype == TUNSAFEPTR && (dst.IsPtr() || dst.Etype == TUINTPTR) { return OCONVNOP } // src is map and dst is a pointer to corresponding hmap. // This rule is needed for the implementation detail that // go gc maps are implemented as a pointer to a hmap struct. if src.Etype == TMAP && dst.IsPtr() && src.MapType().Hmap == dst.Elem() { return OCONVNOP } return 0 } func assignconv(n *Node, t *types.Type, context string) *Node { return assignconvfn(n, t, func() string { return context }) } // Convert node n for assignment to type t. func assignconvfn(n *Node, t *types.Type, context func() string) *Node { if n == nil || n.Type == nil || n.Type.Broke() { return n } if t.Etype == TBLANK && n.Type.Etype == TNIL { yyerror("use of untyped nil") } old := n od := old.Diag() old.SetDiag(true) // silence errors about n; we'll issue one below n = defaultlit(n, t) old.SetDiag(od) if t.Etype == TBLANK { return n } // Convert ideal bool from comparison to plain bool // if the next step is non-bool (like interface{}). if n.Type == types.Idealbool && !t.IsBoolean() { if n.Op == ONAME || n.Op == OLITERAL { r := nod(OCONVNOP, n, nil) r.Type = types.Types[TBOOL] r.SetTypecheck(1) r.SetImplicit(true) n = r } } if eqtype(n.Type, t) { return n } var why string op := assignop(n.Type, t, &why) if op == 0 { if !old.Diag() { yyerror("cannot use %L as type %v in %s%s", n, t, context(), why) } op = OCONV } r := nod(op, n, nil) r.Type = t r.SetTypecheck(1) r.SetImplicit(true) r.Orig = n.Orig return r } // IsMethod reports whether n is a method. // n must be a function or a method. func (n *Node) IsMethod() bool { return n.Type.Recv() != nil } // SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max]. // n must be a slice expression. max is nil if n is a simple slice expression. func (n *Node) SliceBounds() (low, high, max *Node) { if n.List.Len() == 0 { return nil, nil, nil } switch n.Op { case OSLICE, OSLICEARR, OSLICESTR: s := n.List.Slice() return s[0], s[1], nil case OSLICE3, OSLICE3ARR: s := n.List.Slice() return s[0], s[1], s[2] } Fatalf("SliceBounds op %v: %v", n.Op, n) return nil, nil, nil } // SetSliceBounds sets n's slice bounds, where n is a slice expression. // n must be a slice expression. If max is non-nil, n must be a full slice expression. func (n *Node) SetSliceBounds(low, high, max *Node) { switch n.Op { case OSLICE, OSLICEARR, OSLICESTR: if max != nil { Fatalf("SetSliceBounds %v given three bounds", n.Op) } s := n.List.Slice() if s == nil { if low == nil && high == nil { return } n.List.Set2(low, high) return } s[0] = low s[1] = high return case OSLICE3, OSLICE3ARR: s := n.List.Slice() if s == nil { if low == nil && high == nil && max == nil { return } n.List.Set3(low, high, max) return } s[0] = low s[1] = high s[2] = max return } Fatalf("SetSliceBounds op %v: %v", n.Op, n) } // IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR). // o must be a slicing op. func (o Op) IsSlice3() bool { switch o { case OSLICE, OSLICEARR, OSLICESTR: return false case OSLICE3, OSLICE3ARR: return true } Fatalf("IsSlice3 op %v", o) return false } // labeledControl returns the control flow Node (for, switch, select) // associated with the label n, if any. func (n *Node) labeledControl() *Node { if n.Op != OLABEL { Fatalf("labeledControl %v", n.Op) } ctl := n.Name.Defn if ctl == nil { return nil } switch ctl.Op { case OFOR, OFORUNTIL, OSWITCH, OSELECT: return ctl } return nil } func syslook(name string) *Node { s := Runtimepkg.Lookup(name) if s == nil || s.Def == nil { Fatalf("syslook: can't find runtime.%s", name) } return asNode(s.Def) } // typehash computes a hash value for type t to use in type switch statements. func typehash(t *types.Type) uint32 { p := t.LongString() // Using MD5 is overkill, but reduces accidental collisions. h := md5.Sum([]byte(p)) return binary.LittleEndian.Uint32(h[:4]) } func frame(context int) { if context != 0 { fmt.Printf("--- external frame ---\n") for _, n := range externdcl { printframenode(n) } return } if Curfn != nil { fmt.Printf("--- %v frame ---\n", Curfn.Func.Nname.Sym) for _, ln := range Curfn.Func.Dcl { printframenode(ln) } } } func printframenode(n *Node) { w := int64(-1) if n.Type != nil { w = n.Type.Width } switch n.Op { case ONAME: fmt.Printf("%v %v G%d %v width=%d\n", n.Op, n.Sym, n.Name.Vargen, n.Type, w) case OTYPE: fmt.Printf("%v %v width=%d\n", n.Op, n.Type, w) } } // updateHasCall checks whether expression n contains any function // calls and sets the n.HasCall flag if so. func updateHasCall(n *Node) { if n == nil { return } n.SetHasCall(calcHasCall(n)) } func calcHasCall(n *Node) bool { if n.Ninit.Len() != 0 { // TODO(mdempsky): This seems overly conservative. return true } switch n.Op { case OLITERAL, ONAME, OTYPE: if n.HasCall() { Fatalf("OLITERAL/ONAME/OTYPE should never have calls: %+v", n) } return false case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER: return true case OANDAND, OOROR: // hard with instrumented code if instrumenting { return true } case OINDEX, OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR, OIND, ODOTPTR, ODOTTYPE, ODIV, OMOD: // These ops might panic, make sure they are done // before we start marshaling args for a call. See issue 16760. return true // When using soft-float, these ops might be rewritten to function calls // so we ensure they are evaluated first. case OADD, OSUB, OMINUS: if thearch.SoftFloat && (isFloat[n.Type.Etype] || isComplex[n.Type.Etype]) { return true } case OLT, OEQ, ONE, OLE, OGE, OGT: if thearch.SoftFloat && (isFloat[n.Left.Type.Etype] || isComplex[n.Left.Type.Etype]) { return true } case OCONV: if thearch.SoftFloat && ((isFloat[n.Type.Etype] || isComplex[n.Type.Etype]) || (isFloat[n.Left.Type.Etype] || isComplex[n.Left.Type.Etype])) { return true } } if n.Left != nil && n.Left.HasCall() { return true } if n.Right != nil && n.Right.HasCall() { return true } return false } func badtype(op Op, tl *types.Type, tr *types.Type) { fmt_ := "" if tl != nil { fmt_ += fmt.Sprintf("\n\t%v", tl) } if tr != nil { fmt_ += fmt.Sprintf("\n\t%v", tr) } // common mistake: *struct and *interface. if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() { if tl.Elem().IsStruct() && tr.Elem().IsInterface() { fmt_ += "\n\t(*struct vs *interface)" } else if tl.Elem().IsInterface() && tr.Elem().IsStruct() { fmt_ += "\n\t(*interface vs *struct)" } } s := fmt_ yyerror("illegal types for operand: %v%s", op, s) } // brcom returns !(op). // For example, brcom(==) is !=. func brcom(op Op) Op { switch op { case OEQ: return ONE case ONE: return OEQ case OLT: return OGE case OGT: return OLE case OLE: return OGT case OGE: return OLT } Fatalf("brcom: no com for %v\n", op) return op } // brrev returns reverse(op). // For example, Brrev(<) is >. func brrev(op Op) Op { switch op { case OEQ: return OEQ case ONE: return ONE case OLT: return OGT case OGT: return OLT case OLE: return OGE case OGE: return OLE } Fatalf("brrev: no rev for %v\n", op) return op } // return side effect-free n, appending side effects to init. // result is assignable if n is. func safeexpr(n *Node, init *Nodes) *Node { if n == nil { return nil } if n.Ninit.Len() != 0 { walkstmtlist(n.Ninit.Slice()) init.AppendNodes(&n.Ninit) } switch n.Op { case ONAME, OLITERAL: return n case ODOT, OLEN, OCAP: l := safeexpr(n.Left, init) if l == n.Left { return n } r := nod(OXXX, nil, nil) *r = *n r.Left = l r = typecheck(r, Erv) r = walkexpr(r, init) return r case ODOTPTR, OIND: l := safeexpr(n.Left, init) if l == n.Left { return n } a := nod(OXXX, nil, nil) *a = *n a.Left = l a = walkexpr(a, init) return a case OINDEX, OINDEXMAP: l := safeexpr(n.Left, init) r := safeexpr(n.Right, init) if l == n.Left && r == n.Right { return n } a := nod(OXXX, nil, nil) *a = *n a.Left = l a.Right = r a = walkexpr(a, init) return a case OSTRUCTLIT, OARRAYLIT, OSLICELIT: if isStaticCompositeLiteral(n) { return n } } // make a copy; must not be used as an lvalue if islvalue(n) { Fatalf("missing lvalue case in safeexpr: %v", n) } return cheapexpr(n, init) } func copyexpr(n *Node, t *types.Type, init *Nodes) *Node { l := temp(t) a := nod(OAS, l, n) a = typecheck(a, Etop) a = walkexpr(a, init) init.Append(a) return l } // return side-effect free and cheap n, appending side effects to init. // result may not be assignable. func cheapexpr(n *Node, init *Nodes) *Node { switch n.Op { case ONAME, OLITERAL: return n } return copyexpr(n, n.Type, init) } // Code to resolve elided DOTs in embedded types. // A Dlist stores a pointer to a TFIELD Type embedded within // a TSTRUCT or TINTER Type. type Dlist struct { field *types.Field } // dotlist is used by adddot1 to record the path of embedded fields // used to access a target field or method. // Must be non-nil so that dotpath returns a non-nil slice even if d is zero. var dotlist = make([]Dlist, 10) // lookdot0 returns the number of fields or methods named s associated // with Type t. If exactly one exists, it will be returned in *save // (if save is not nil). func lookdot0(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) int { u := t if u.IsPtr() { u = u.Elem() } c := 0 if u.IsStruct() || u.IsInterface() { for _, f := range u.Fields().Slice() { if f.Sym == s || (ignorecase && f.Type.Etype == TFUNC && f.Type.Recv() != nil && strings.EqualFold(f.Sym.Name, s.Name)) { if save != nil { *save = f } c++ } } } u = methtype(t) if u != nil { for _, f := range u.Methods().Slice() { if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) { if save != nil { *save = f } c++ } } } return c } // adddot1 returns the number of fields or methods named s at depth d in Type t. // If exactly one exists, it will be returned in *save (if save is not nil), // and dotlist will contain the path of embedded fields traversed to find it, // in reverse order. If none exist, more will indicate whether t contains any // embedded fields at depth d, so callers can decide whether to retry at // a greater depth. func adddot1(s *types.Sym, t *types.Type, d int, save **types.Field, ignorecase bool) (c int, more bool) { if t.Recur() { return } t.SetRecur(true) defer t.SetRecur(false) var u *types.Type d-- if d < 0 { // We've reached our target depth. If t has any fields/methods // named s, then we're done. Otherwise, we still need to check // below for embedded fields. c = lookdot0(s, t, save, ignorecase) if c != 0 { return c, false } } u = t if u.IsPtr() { u = u.Elem() } if !u.IsStruct() && !u.IsInterface() { return c, false } for _, f := range u.Fields().Slice() { if f.Embedded == 0 || f.Sym == nil { continue } if d < 0 { // Found an embedded field at target depth. return c, true } a, more1 := adddot1(s, f.Type, d, save, ignorecase) if a != 0 && c == 0 { dotlist[d].field = f } c += a if more1 { more = true } } return c, more } // dotpath computes the unique shortest explicit selector path to fully qualify // a selection expression x.f, where x is of type t and f is the symbol s. // If no such path exists, dotpath returns nil. // If there are multiple shortest paths to the same depth, ambig is true. func dotpath(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) (path []Dlist, ambig bool) { // The embedding of types within structs imposes a tree structure onto // types: structs parent the types they embed, and types parent their // fields or methods. Our goal here is to find the shortest path to // a field or method named s in the subtree rooted at t. To accomplish // that, we iteratively perform depth-first searches of increasing depth // until we either find the named field/method or exhaust the tree. for d := 0; ; d++ { if d > len(dotlist) { dotlist = append(dotlist, Dlist{}) } if c, more := adddot1(s, t, d, save, ignorecase); c == 1 { return dotlist[:d], false } else if c > 1 { return nil, true } else if !more { return nil, false } } } // in T.field // find missing fields that // will give shortest unique addressing. // modify the tree with missing type names. func adddot(n *Node) *Node { n.Left = typecheck(n.Left, Etype|Erv) if n.Left.Diag() { n.SetDiag(true) } t := n.Left.Type if t == nil { return n } if n.Left.Op == OTYPE { return n } s := n.Sym if s == nil { return n } switch path, ambig := dotpath(s, t, nil, false); { case path != nil: // rebuild elided dots for c := len(path) - 1; c >= 0; c-- { n.Left = nodSym(ODOT, n.Left, path[c].field.Sym) n.Left.SetImplicit(true) } case ambig: yyerror("ambiguous selector %v", n) n.Left = nil } return n } // code to help generate trampoline // functions for methods on embedded // subtypes. // these are approx the same as // the corresponding adddot routines // except that they expect to be called // with unique tasks and they return // the actual methods. type Symlink struct { field *types.Field followptr bool } var slist []Symlink func expand0(t *types.Type, followptr bool) { u := t if u.IsPtr() { followptr = true u = u.Elem() } if u.IsInterface() { for _, f := range u.Fields().Slice() { if f.Sym.Uniq() { continue } f.Sym.SetUniq(true) slist = append(slist, Symlink{field: f, followptr: followptr}) } return } u = methtype(t) if u != nil { for _, f := range u.Methods().Slice() { if f.Sym.Uniq() { continue } f.Sym.SetUniq(true) slist = append(slist, Symlink{field: f, followptr: followptr}) } } } func expand1(t *types.Type, top, followptr bool) { if t.Recur() { return } t.SetRecur(true) if !top { expand0(t, followptr) } u := t if u.IsPtr() { followptr = true u = u.Elem() } if u.IsStruct() || u.IsInterface() { for _, f := range u.Fields().Slice() { if f.Embedded == 0 { continue } if f.Sym == nil { continue } expand1(f.Type, false, followptr) } } t.SetRecur(false) } func expandmeth(t *types.Type) { if t == nil || t.AllMethods().Len() != 0 { return } // mark top-level method symbols // so that expand1 doesn't consider them. for _, f := range t.Methods().Slice() { f.Sym.SetUniq(true) } // generate all reachable methods slist = slist[:0] expand1(t, true, false) // check each method to be uniquely reachable var ms []*types.Field for i, sl := range slist { slist[i].field = nil sl.field.Sym.SetUniq(false) var f *types.Field if path, _ := dotpath(sl.field.Sym, t, &f, false); path == nil { continue } // dotpath may have dug out arbitrary fields, we only want methods. if f.Type.Etype != TFUNC || f.Type.Recv() == nil { continue } // add it to the base type method list f = f.Copy() f.Embedded = 1 // needs a trampoline if sl.followptr { f.Embedded = 2 } ms = append(ms, f) } for _, f := range t.Methods().Slice() { f.Sym.SetUniq(false) } ms = append(ms, t.Methods().Slice()...) t.AllMethods().Set(ms) } // Given funarg struct list, return list of ODCLFIELD Node fn args. func structargs(tl *types.Type, mustname bool) []*Node { var args []*Node gen := 0 for _, t := range tl.Fields().Slice() { var n *Node if mustname && (t.Sym == nil || t.Sym.Name == "_") { // invent a name so that we can refer to it in the trampoline buf := fmt.Sprintf(".anon%d", gen) gen++ n = newname(lookup(buf)) } else if t.Sym != nil { n = newname(t.Sym) } a := nod(ODCLFIELD, n, typenod(t.Type)) a.SetIsddd(t.Isddd()) if n != nil { n.SetIsddd(t.Isddd()) } args = append(args, a) } return args } // Generate a wrapper function to convert from // a receiver of type T to a receiver of type U. // That is, // // func (t T) M() { // ... // } // // already exists; this function generates // // func (u U) M() { // u.M() // } // // where the types T and U are such that u.M() is valid // and calls the T.M method. // The resulting function is for use in method tables. // // rcvr - U // method - M func (t T)(), a TFIELD type struct // newnam - the eventual mangled name of this function func genwrapper(rcvr *types.Type, method *types.Field, newnam *types.Sym, iface bool) { if false && Debug['r'] != 0 { fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam) } // Only generate (*T).M wrappers for T.M in T's own package. if rcvr.IsPtr() && rcvr.Elem() == method.Type.Recv().Type && rcvr.Elem().Sym != nil && rcvr.Elem().Sym.Pkg != localpkg { return } lineno = autogeneratedPos dclcontext = PEXTERN types.Markdcl() this := namedfield(".this", rcvr) this.Left.Name.Param.Ntype = this.Right in := structargs(method.Type.Params(), true) out := structargs(method.Type.Results(), false) t := nod(OTFUNC, nil, nil) l := []*Node{this} if iface && rcvr.Width < int64(Widthptr) { // Building method for interface table and receiver // is smaller than the single pointer-sized word // that the interface call will pass in. // Add a dummy padding argument after the // receiver to make up the difference. tpad := types.NewArray(types.Types[TUINT8], int64(Widthptr)-rcvr.Width) pad := namedfield(".pad", tpad) l = append(l, pad) } t.List.Set(append(l, in...)) t.Rlist.Set(out) fn := dclfunc(newnam, t) fn.Func.SetDupok(true) fn.Func.Nname.Sym.SetExported(true) // prevent export; see closure.go // arg list var args []*Node isddd := false for _, n := range in { args = append(args, n.Left) isddd = n.Left.Isddd() } methodrcvr := method.Type.Recv().Type // generate nil pointer check for better error if rcvr.IsPtr() && rcvr.Elem() == methodrcvr { // generating wrapper from *T to T. n := nod(OIF, nil, nil) n.Left = nod(OEQ, this.Left, nodnil()) call := nod(OCALL, syslook("panicwrap"), nil) n.Nbody.Set1(call) fn.Nbody.Append(n) } dot := adddot(nodSym(OXDOT, this.Left, method.Sym)) // generate call // It's not possible to use a tail call when dynamic linking on ppc64le. The // bad scenario is when a local call is made to the wrapper: the wrapper will // call the implementation, which might be in a different module and so set // the TOC to the appropriate value for that module. But if it returns // directly to the wrapper's caller, nothing will reset it to the correct // value for that function. if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(thearch.LinkArch.Name == "ppc64le" && Ctxt.Flag_dynlink) { // generate tail call: adjust pointer receiver and jump to embedded method. dot = dot.Left // skip final .M // TODO(mdempsky): Remove dependency on dotlist. if !dotlist[0].field.Type.IsPtr() { dot = nod(OADDR, dot, nil) } as := nod(OAS, this.Left, nod(OCONVNOP, dot, nil)) as.Right.Type = rcvr fn.Nbody.Append(as) fn.Nbody.Append(nodSym(ORETJMP, nil, methodsym(method.Sym, methodrcvr, false))) // When tail-calling, we can't use a frame pointer. fn.Func.SetNoFramePointer(true) } else { fn.Func.SetWrapper(true) // ignore frame for panic+recover matching call := nod(OCALL, dot, nil) call.List.Set(args) call.SetIsddd(isddd) if method.Type.NumResults() > 0 { n := nod(ORETURN, nil, nil) n.List.Set1(call) call = n } fn.Nbody.Append(call) } if false && Debug['r'] != 0 { dumplist("genwrapper body", fn.Nbody) } funcbody() Curfn = fn types.Popdcl() if debug_dclstack != 0 { testdclstack() } // wrappers where T is anonymous (struct or interface) can be duplicated. if rcvr.IsStruct() || rcvr.IsInterface() || rcvr.IsPtr() && rcvr.Elem().IsStruct() { fn.Func.SetDupok(true) } fn = typecheck(fn, Etop) typecheckslice(fn.Nbody.Slice(), Etop) inlcalls(fn) escAnalyze([]*Node{fn}, false) Curfn = nil funccompile(fn) } func hashmem(t *types.Type) *Node { sym := Runtimepkg.Lookup("memhash") n := newname(sym) n.SetClass(PFUNC) tfn := nod(OTFUNC, nil, nil) tfn.List.Append(anonfield(types.NewPtr(t))) tfn.List.Append(anonfield(types.Types[TUINTPTR])) tfn.List.Append(anonfield(types.Types[TUINTPTR])) tfn.Rlist.Append(anonfield(types.Types[TUINTPTR])) tfn = typecheck(tfn, Etype) n.Type = tfn.Type return n } func ifacelookdot(s *types.Sym, t *types.Type, ignorecase bool) (m *types.Field, followptr bool) { if t == nil { return nil, false } path, ambig := dotpath(s, t, &m, ignorecase) if path == nil { if ambig { yyerror("%v.%v is ambiguous", t, s) } return nil, false } for _, d := range path { if d.field.Type.IsPtr() { followptr = true break } } if m.Type.Etype != TFUNC || m.Type.Recv() == nil { yyerror("%v.%v is a field, not a method", t, s) return nil, followptr } return m, followptr } func implements(t, iface *types.Type, m, samename **types.Field, ptr *int) bool { t0 := t if t == nil { return false } // if this is too slow, // could sort these first // and then do one loop. if t.IsInterface() { Outer: for _, im := range iface.Fields().Slice() { for _, tm := range t.Fields().Slice() { if tm.Sym == im.Sym { if eqtype(tm.Type, im.Type) { continue Outer } *m = im *samename = tm *ptr = 0 return false } } *m = im *samename = nil *ptr = 0 return false } return true } t = methtype(t) if t != nil { expandmeth(t) } for _, im := range iface.Fields().Slice() { if im.Broke() { continue } tm, followptr := ifacelookdot(im.Sym, t, false) if tm == nil || tm.Nointerface() || !eqtype(tm.Type, im.Type) { if tm == nil { tm, followptr = ifacelookdot(im.Sym, t, true) } *m = im *samename = tm *ptr = 0 return false } // if pointer receiver in method, // the method does not exist for value types. rcvr := tm.Type.Recv().Type if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) { if false && Debug['r'] != 0 { yyerror("interface pointer mismatch") } *m = im *samename = nil *ptr = 1 return false } } // We're going to emit an OCONVIFACE. // Call itabname so that (t, iface) // gets added to itabs early, which allows // us to de-virtualize calls through this // type/interface pair later. See peekitabs in reflect.go if isdirectiface(t0) && !iface.IsEmptyInterface() { itabname(t0, iface) } return true } func listtreecopy(l []*Node, pos src.XPos) []*Node { var out []*Node for _, n := range l { out = append(out, treecopy(n, pos)) } return out } func liststmt(l []*Node) *Node { n := nod(OBLOCK, nil, nil) n.List.Set(l) if len(l) != 0 { n.Pos = l[0].Pos } return n } func (l Nodes) asblock() *Node { n := nod(OBLOCK, nil, nil) n.List = l if l.Len() != 0 { n.Pos = l.First().Pos } return n } func ngotype(n *Node) *types.Sym { if n.Type != nil { return typenamesym(n.Type) } return nil } // The result of addinit MUST be assigned back to n, e.g. // n.Left = addinit(n.Left, init) func addinit(n *Node, init []*Node) *Node { if len(init) == 0 { return n } if n.mayBeShared() { // Introduce OCONVNOP to hold init list. n = nod(OCONVNOP, n, nil) n.Type = n.Left.Type n.SetTypecheck(1) } n.Ninit.Prepend(init...) n.SetHasCall(true) return n } // The linker uses the magic symbol prefixes "go." and "type." // Avoid potential confusion between import paths and symbols // by rejecting these reserved imports for now. Also, people // "can do weird things in GOPATH and we'd prefer they didn't // do _that_ weird thing" (per rsc). See also #4257. var reservedimports = []string{ "go", "type", } func isbadimport(path string, allowSpace bool) bool { if strings.Contains(path, "\x00") { yyerror("import path contains NUL") return true } for _, ri := range reservedimports { if path == ri { yyerror("import path %q is reserved and cannot be used", path) return true } } for _, r := range path { if r == utf8.RuneError { yyerror("import path contains invalid UTF-8 sequence: %q", path) return true } if r < 0x20 || r == 0x7f { yyerror("import path contains control character: %q", path) return true } if r == '\\' { yyerror("import path contains backslash; use slash: %q", path) return true } if !allowSpace && unicode.IsSpace(r) { yyerror("import path contains space character: %q", path) return true } if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) { yyerror("import path contains invalid character '%c': %q", r, path) return true } } return false } func checknil(x *Node, init *Nodes) { x = walkexpr(x, nil) // caller has not done this yet if x.Type.IsInterface() { x = nod(OITAB, x, nil) x = typecheck(x, Erv) } n := nod(OCHECKNIL, x, nil) n.SetTypecheck(1) init.Append(n) } // Can this type be stored directly in an interface word? // Yes, if the representation is a single pointer. func isdirectiface(t *types.Type) bool { if t.Broke() { return false } switch t.Etype { case TPTR32, TPTR64, TCHAN, TMAP, TFUNC, TUNSAFEPTR: return true case TARRAY: // Array of 1 direct iface type can be direct. return t.NumElem() == 1 && isdirectiface(t.Elem()) case TSTRUCT: // Struct with 1 field of direct iface type can be direct. return t.NumFields() == 1 && isdirectiface(t.Field(0).Type) } return false } // itabType loads the _type field from a runtime.itab struct. func itabType(itab *Node) *Node { typ := nodSym(ODOTPTR, itab, nil) typ.Type = types.NewPtr(types.Types[TUINT8]) typ.SetTypecheck(1) typ.Xoffset = int64(Widthptr) // offset of _type in runtime.itab typ.SetBounded(true) // guaranteed not to fault return typ } // ifaceData loads the data field from an interface. // The concrete type must be known to have type t. // It follows the pointer if !isdirectiface(t). func ifaceData(n *Node, t *types.Type) *Node { ptr := nodSym(OIDATA, n, nil) if isdirectiface(t) { ptr.Type = t ptr.SetTypecheck(1) return ptr } ptr.Type = types.NewPtr(t) ptr.SetBounded(true) ptr.SetTypecheck(1) ind := nod(OIND, ptr, nil) ind.Type = t ind.SetTypecheck(1) return ind }