// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "fmt" "os" "path/filepath" "runtime" "strconv" "strings" "unicode/utf8" "cmd/compile/internal/syntax" "cmd/compile/internal/types" "cmd/internal/objabi" "cmd/internal/src" ) func parseFiles(filenames []string) uint { var noders []*noder // Limit the number of simultaneously open files. sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10) for _, filename := range filenames { p := &noder{err: make(chan syntax.Error)} noders = append(noders, p) go func(filename string) { sem <- struct{}{} defer func() { <-sem }() defer close(p.err) base := src.NewFileBase(filename, absFilename(filename)) f, err := os.Open(filename) if err != nil { p.error(syntax.Error{Pos: src.MakePos(base, 0, 0), Msg: err.Error()}) return } defer f.Close() p.file, _ = syntax.Parse(base, f, p.error, p.pragma, fileh, syntax.CheckBranches) // errors are tracked via p.error }(filename) } var lines uint for _, p := range noders { for e := range p.err { yyerrorpos(e.Pos, "%s", e.Msg) } p.node() lines += p.file.Lines p.file = nil // release memory if nsyntaxerrors != 0 { errorexit() } // Always run testdclstack here, even when debug_dclstack is not set, as a sanity measure. testdclstack() } return lines } func yyerrorpos(pos src.Pos, format string, args ...interface{}) { yyerrorl(Ctxt.PosTable.XPos(pos), format, args...) } var pathPrefix string func fileh(name string) string { return objabi.AbsFile("", name, pathPrefix) } func absFilename(name string) string { return objabi.AbsFile(Ctxt.Pathname, name, pathPrefix) } // noder transforms package syntax's AST into a Node tree. type noder struct { file *syntax.File linknames []linkname pragcgobuf string err chan syntax.Error scope ScopeID } func (p *noder) funchdr(n *Node) ScopeID { old := p.scope p.scope = 0 funchdr(n) return old } func (p *noder) funcbody(old ScopeID) { funcbody() p.scope = old } func (p *noder) openScope(pos src.Pos) { types.Markdcl() if trackScopes { Curfn.Func.Parents = append(Curfn.Func.Parents, p.scope) p.scope = ScopeID(len(Curfn.Func.Parents)) p.markScope(pos) } } func (p *noder) closeScope(pos src.Pos) { types.Popdcl() if trackScopes { p.scope = Curfn.Func.Parents[p.scope-1] p.markScope(pos) } } func (p *noder) markScope(pos src.Pos) { xpos := Ctxt.PosTable.XPos(pos) if i := len(Curfn.Func.Marks); i > 0 && Curfn.Func.Marks[i-1].Pos == xpos { Curfn.Func.Marks[i-1].Scope = p.scope } else { Curfn.Func.Marks = append(Curfn.Func.Marks, Mark{xpos, p.scope}) } } // closeAnotherScope is like closeScope, but it reuses the same mark // position as the last closeScope call. This is useful for "for" and // "if" statements, as their implicit blocks always end at the same // position as an explicit block. func (p *noder) closeAnotherScope() { types.Popdcl() if trackScopes { p.scope = Curfn.Func.Parents[p.scope-1] Curfn.Func.Marks[len(Curfn.Func.Marks)-1].Scope = p.scope } } // linkname records a //go:linkname directive. type linkname struct { pos src.Pos local string remote string } func (p *noder) node() { types.Block = 1 imported_unsafe = false p.lineno(p.file.PkgName) mkpackage(p.file.PkgName.Value) xtop = append(xtop, p.decls(p.file.DeclList)...) for _, n := range p.linknames { if imported_unsafe { lookup(n.local).Linkname = n.remote } else { yyerrorpos(n.pos, "//go:linkname only allowed in Go files that import \"unsafe\"") } } pragcgobuf += p.pragcgobuf lineno = src.NoXPos clearImports() } func (p *noder) decls(decls []syntax.Decl) (l []*Node) { var cs constState for _, decl := range decls { p.lineno(decl) switch decl := decl.(type) { case *syntax.ImportDecl: p.importDecl(decl) case *syntax.VarDecl: l = append(l, p.varDecl(decl)...) case *syntax.ConstDecl: l = append(l, p.constDecl(decl, &cs)...) case *syntax.TypeDecl: l = append(l, p.typeDecl(decl)) case *syntax.FuncDecl: l = append(l, p.funcDecl(decl)) default: panic("unhandled Decl") } } return } func (p *noder) importDecl(imp *syntax.ImportDecl) { val := p.basicLit(imp.Path) ipkg := importfile(&val) if ipkg == nil { if nerrors == 0 { Fatalf("phase error in import") } return } ipkg.Direct = true var my *types.Sym if imp.LocalPkgName != nil { my = p.name(imp.LocalPkgName) } else { my = lookup(ipkg.Name) } pack := p.nod(imp, OPACK, nil, nil) pack.Sym = my pack.Name.Pkg = ipkg switch my.Name { case ".": importdot(ipkg, pack) return case "init": yyerrorl(pack.Pos, "cannot import package as init - init must be a func") return case "_": return } if my.Def != nil { lineno = pack.Pos redeclare(my, "as imported package name") } my.Def = asTypesNode(pack) my.Lastlineno = pack.Pos my.Block = 1 // at top level } func (p *noder) varDecl(decl *syntax.VarDecl) []*Node { names := p.declNames(decl.NameList) typ := p.typeExprOrNil(decl.Type) var exprs []*Node if decl.Values != nil { exprs = p.exprList(decl.Values) } p.lineno(decl) return variter(names, typ, exprs) } // constState tracks state between constant specifiers within a // declaration group. This state is kept separate from noder so nested // constant declarations are handled correctly (e.g., issue 15550). type constState struct { group *syntax.Group typ *Node values []*Node iota int64 } func (p *noder) constDecl(decl *syntax.ConstDecl, cs *constState) []*Node { if decl.Group == nil || decl.Group != cs.group { *cs = constState{ group: decl.Group, } } names := p.declNames(decl.NameList) typ := p.typeExprOrNil(decl.Type) var values []*Node if decl.Values != nil { values = p.exprList(decl.Values) cs.typ, cs.values = typ, values } else { if typ != nil { yyerror("const declaration cannot have type without expression") } typ, values = cs.typ, cs.values } var nn []*Node for i, n := range names { if i >= len(values) { yyerror("missing value in const declaration") break } v := values[i] if decl.Values == nil { v = treecopy(v, n.Pos) } n.Op = OLITERAL declare(n, dclcontext) n.Name.Param.Ntype = typ n.Name.Defn = v n.SetIota(cs.iota) nn = append(nn, p.nod(decl, ODCLCONST, n, nil)) } if len(values) > len(names) { yyerror("extra expression in const declaration") } cs.iota++ return nn } func (p *noder) typeDecl(decl *syntax.TypeDecl) *Node { n := p.declName(decl.Name) n.Op = OTYPE declare(n, dclcontext) // decl.Type may be nil but in that case we got a syntax error during parsing typ := p.typeExprOrNil(decl.Type) param := n.Name.Param param.Ntype = typ param.Pragma = decl.Pragma param.Alias = decl.Alias if param.Alias && param.Pragma != 0 { yyerror("cannot specify directive with type alias") param.Pragma = 0 } return p.nod(decl, ODCLTYPE, n, nil) } func (p *noder) declNames(names []*syntax.Name) []*Node { var nodes []*Node for _, name := range names { nodes = append(nodes, p.declName(name)) } return nodes } func (p *noder) declName(name *syntax.Name) *Node { // TODO(mdempsky): Set lineno? return dclname(p.name(name)) } func (p *noder) funcDecl(fun *syntax.FuncDecl) *Node { name := p.name(fun.Name) t := p.signature(fun.Recv, fun.Type) f := p.nod(fun, ODCLFUNC, nil, nil) if fun.Recv == nil { if name.Name == "init" { name = renameinit() if t.List.Len() > 0 || t.Rlist.Len() > 0 { yyerrorl(f.Pos, "func init must have no arguments and no return values") } } if localpkg.Name == "main" && name.Name == "main" { if t.List.Len() > 0 || t.Rlist.Len() > 0 { yyerrorl(f.Pos, "func main must have no arguments and no return values") } } } else { f.Func.Shortname = name name = nblank.Sym // filled in by typecheckfunc } f.Func.Nname = newfuncname(name) f.Func.Nname.Name.Defn = f f.Func.Nname.Name.Param.Ntype = t pragma := fun.Pragma f.Func.Pragma = fun.Pragma f.SetNoescape(pragma&Noescape != 0) if pragma&Systemstack != 0 && pragma&Nosplit != 0 { yyerrorl(f.Pos, "go:nosplit and go:systemstack cannot be combined") } if fun.Recv == nil { declare(f.Func.Nname, PFUNC) } oldScope := p.funchdr(f) if fun.Body != nil { if f.Noescape() { yyerrorl(f.Pos, "can only use //go:noescape with external func implementations") } body := p.stmts(fun.Body.List) if body == nil { body = []*Node{p.nod(fun, OEMPTY, nil, nil)} } f.Nbody.Set(body) lineno = Ctxt.PosTable.XPos(fun.Body.Rbrace) f.Func.Endlineno = lineno } else { if pure_go || strings.HasPrefix(f.funcname(), "init.") { yyerrorl(f.Pos, "missing function body") } } p.funcbody(oldScope) return f } func (p *noder) signature(recv *syntax.Field, typ *syntax.FuncType) *Node { n := p.nod(typ, OTFUNC, nil, nil) if recv != nil { n.Left = p.param(recv, false, false) } n.List.Set(p.params(typ.ParamList, true)) n.Rlist.Set(p.params(typ.ResultList, false)) return n } func (p *noder) params(params []*syntax.Field, dddOk bool) []*Node { var nodes []*Node for i, param := range params { p.lineno(param) nodes = append(nodes, p.param(param, dddOk, i+1 == len(params))) } return nodes } func (p *noder) param(param *syntax.Field, dddOk, final bool) *Node { var name *Node if param.Name != nil { name = p.newname(param.Name) } typ := p.typeExpr(param.Type) n := p.nod(param, ODCLFIELD, name, typ) // rewrite ...T parameter if typ.Op == ODDD { if !dddOk { yyerror("cannot use ... in receiver or result parameter list") } else if !final { yyerror("can only use ... with final parameter in list") } typ.Op = OTARRAY typ.Right = typ.Left typ.Left = nil n.SetIsddd(true) if n.Left != nil { n.Left.SetIsddd(true) } } return n } func (p *noder) exprList(expr syntax.Expr) []*Node { if list, ok := expr.(*syntax.ListExpr); ok { return p.exprs(list.ElemList) } return []*Node{p.expr(expr)} } func (p *noder) exprs(exprs []syntax.Expr) []*Node { var nodes []*Node for _, expr := range exprs { nodes = append(nodes, p.expr(expr)) } return nodes } func (p *noder) expr(expr syntax.Expr) *Node { p.lineno(expr) switch expr := expr.(type) { case nil, *syntax.BadExpr: return nil case *syntax.Name: return p.mkname(expr) case *syntax.BasicLit: return p.setlineno(expr, nodlit(p.basicLit(expr))) case *syntax.CompositeLit: n := p.nod(expr, OCOMPLIT, nil, nil) if expr.Type != nil { n.Right = p.expr(expr.Type) } l := p.exprs(expr.ElemList) for i, e := range l { l[i] = p.wrapname(expr.ElemList[i], e) } n.List.Set(l) lineno = Ctxt.PosTable.XPos(expr.Rbrace) return n case *syntax.KeyValueExpr: return p.nod(expr, OKEY, p.expr(expr.Key), p.wrapname(expr.Value, p.expr(expr.Value))) case *syntax.FuncLit: return p.funcLit(expr) case *syntax.ParenExpr: return p.nod(expr, OPAREN, p.expr(expr.X), nil) case *syntax.SelectorExpr: // parser.new_dotname obj := p.expr(expr.X) if obj.Op == OPACK { obj.Name.SetUsed(true) return oldname(restrictlookup(expr.Sel.Value, obj.Name.Pkg)) } return p.setlineno(expr, nodSym(OXDOT, obj, p.name(expr.Sel))) case *syntax.IndexExpr: return p.nod(expr, OINDEX, p.expr(expr.X), p.expr(expr.Index)) case *syntax.SliceExpr: op := OSLICE if expr.Full { op = OSLICE3 } n := p.nod(expr, op, p.expr(expr.X), nil) var index [3]*Node for i, x := range expr.Index { if x != nil { index[i] = p.expr(x) } } n.SetSliceBounds(index[0], index[1], index[2]) return n case *syntax.AssertExpr: if expr.Type == nil { panic("unexpected AssertExpr") } // TODO(mdempsky): parser.pexpr uses p.expr(), but // seems like the type field should be parsed with // ntype? Shrug, doesn't matter here. return p.nod(expr, ODOTTYPE, p.expr(expr.X), p.expr(expr.Type)) case *syntax.Operation: if expr.Op == syntax.Add && expr.Y != nil { return p.sum(expr) } x := p.expr(expr.X) if expr.Y == nil { if expr.Op == syntax.And { x = unparen(x) // TODO(mdempsky): Needed? if x.Op == OCOMPLIT { // Special case for &T{...}: turn into (*T){...}. // TODO(mdempsky): Switch back to p.nod after we // get rid of gcCompat. x.Right = nod(OIND, x.Right, nil) x.Right.SetImplicit(true) return x } } return p.nod(expr, p.unOp(expr.Op), x, nil) } return p.nod(expr, p.binOp(expr.Op), x, p.expr(expr.Y)) case *syntax.CallExpr: n := p.nod(expr, OCALL, p.expr(expr.Fun), nil) n.List.Set(p.exprs(expr.ArgList)) n.SetIsddd(expr.HasDots) return n case *syntax.ArrayType: var len *Node if expr.Len != nil { len = p.expr(expr.Len) } else { len = p.nod(expr, ODDD, nil, nil) } return p.nod(expr, OTARRAY, len, p.typeExpr(expr.Elem)) case *syntax.SliceType: return p.nod(expr, OTARRAY, nil, p.typeExpr(expr.Elem)) case *syntax.DotsType: return p.nod(expr, ODDD, p.typeExpr(expr.Elem), nil) case *syntax.StructType: return p.structType(expr) case *syntax.InterfaceType: return p.interfaceType(expr) case *syntax.FuncType: return p.signature(nil, expr) case *syntax.MapType: return p.nod(expr, OTMAP, p.typeExpr(expr.Key), p.typeExpr(expr.Value)) case *syntax.ChanType: n := p.nod(expr, OTCHAN, p.typeExpr(expr.Elem), nil) n.Etype = types.EType(p.chanDir(expr.Dir)) return n case *syntax.TypeSwitchGuard: n := p.nod(expr, OTYPESW, nil, p.expr(expr.X)) if expr.Lhs != nil { n.Left = p.declName(expr.Lhs) if isblank(n.Left) { yyerror("invalid variable name %v in type switch", n.Left) } } return n } panic("unhandled Expr") } // sum efficiently handles very large summation expressions (such as // in issue #16394). In particular, it avoids left recursion and // collapses string literals. func (p *noder) sum(x syntax.Expr) *Node { // While we need to handle long sums with asymptotic // efficiency, the vast majority of sums are very small: ~95% // have only 2 or 3 operands, and ~99% of string literals are // never concatenated. adds := make([]*syntax.Operation, 0, 2) for { add, ok := x.(*syntax.Operation) if !ok || add.Op != syntax.Add || add.Y == nil { break } adds = append(adds, add) x = add.X } // nstr is the current rightmost string literal in the // summation (if any), and chunks holds its accumulated // substrings. // // Consider the expression x + "a" + "b" + "c" + y. When we // reach the string literal "a", we assign nstr to point to // its corresponding Node and initialize chunks to {"a"}. // Visiting the subsequent string literals "b" and "c", we // simply append their values to chunks. Finally, when we // reach the non-constant operand y, we'll join chunks to form // "abc" and reassign the "a" string literal's value. // // N.B., we need to be careful about named string constants // (indicated by Sym != nil) because 1) we can't modify their // value, as doing so would affect other uses of the string // constant, and 2) they may have types, which we need to // handle correctly. For now, we avoid these problems by // treating named string constants the same as non-constant // operands. var nstr *Node chunks := make([]string, 0, 1) n := p.expr(x) if Isconst(n, CTSTR) && n.Sym == nil { nstr = n chunks = append(chunks, nstr.Val().U.(string)) } for i := len(adds) - 1; i >= 0; i-- { add := adds[i] r := p.expr(add.Y) if Isconst(r, CTSTR) && r.Sym == nil { if nstr != nil { // Collapse r into nstr instead of adding to n. chunks = append(chunks, r.Val().U.(string)) continue } nstr = r chunks = append(chunks, nstr.Val().U.(string)) } else { if len(chunks) > 1 { nstr.SetVal(Val{U: strings.Join(chunks, "")}) } nstr = nil chunks = chunks[:0] } n = p.nod(add, OADD, n, r) } if len(chunks) > 1 { nstr.SetVal(Val{U: strings.Join(chunks, "")}) } return n } func (p *noder) typeExpr(typ syntax.Expr) *Node { // TODO(mdempsky): Be stricter? typecheck should handle errors anyway. return p.expr(typ) } func (p *noder) typeExprOrNil(typ syntax.Expr) *Node { if typ != nil { return p.expr(typ) } return nil } func (p *noder) chanDir(dir syntax.ChanDir) types.ChanDir { switch dir { case 0: return types.Cboth case syntax.SendOnly: return types.Csend case syntax.RecvOnly: return types.Crecv } panic("unhandled ChanDir") } func (p *noder) structType(expr *syntax.StructType) *Node { var l []*Node for i, field := range expr.FieldList { p.lineno(field) var n *Node if field.Name == nil { n = p.embedded(field.Type) } else { n = p.nod(field, ODCLFIELD, p.newname(field.Name), p.typeExpr(field.Type)) } if i < len(expr.TagList) && expr.TagList[i] != nil { n.SetVal(p.basicLit(expr.TagList[i])) } l = append(l, n) } p.lineno(expr) n := p.nod(expr, OTSTRUCT, nil, nil) n.List.Set(l) return n } func (p *noder) interfaceType(expr *syntax.InterfaceType) *Node { var l []*Node for _, method := range expr.MethodList { p.lineno(method) var n *Node if method.Name == nil { n = p.nod(method, ODCLFIELD, nil, oldname(p.packname(method.Type))) } else { mname := p.newname(method.Name) sig := p.typeExpr(method.Type) sig.Left = fakeRecv() n = p.nod(method, ODCLFIELD, mname, sig) ifacedcl(n) } l = append(l, n) } n := p.nod(expr, OTINTER, nil, nil) n.List.Set(l) return n } func (p *noder) packname(expr syntax.Expr) *types.Sym { switch expr := expr.(type) { case *syntax.Name: name := p.name(expr) if n := oldname(name); n.Name != nil && n.Name.Pack != nil { n.Name.Pack.Name.SetUsed(true) } return name case *syntax.SelectorExpr: name := p.name(expr.X.(*syntax.Name)) var pkg *types.Pkg if asNode(name.Def) == nil || asNode(name.Def).Op != OPACK { yyerror("%v is not a package", name) pkg = localpkg } else { asNode(name.Def).Name.SetUsed(true) pkg = asNode(name.Def).Name.Pkg } return restrictlookup(expr.Sel.Value, pkg) } panic(fmt.Sprintf("unexpected packname: %#v", expr)) } func (p *noder) embedded(typ syntax.Expr) *Node { op, isStar := typ.(*syntax.Operation) if isStar { if op.Op != syntax.Mul || op.Y != nil { panic("unexpected Operation") } typ = op.X } sym := p.packname(typ) n := nod(ODCLFIELD, newname(lookup(sym.Name)), oldname(sym)) n.SetEmbedded(true) if isStar { n.Right = p.nod(op, OIND, n.Right, nil) } return n } func (p *noder) stmts(stmts []syntax.Stmt) []*Node { return p.stmtsFall(stmts, false) } func (p *noder) stmtsFall(stmts []syntax.Stmt, fallOK bool) []*Node { var nodes []*Node for i, stmt := range stmts { s := p.stmtFall(stmt, fallOK && i+1 == len(stmts)) if s == nil { } else if s.Op == OBLOCK && s.Ninit.Len() == 0 { nodes = append(nodes, s.List.Slice()...) } else { nodes = append(nodes, s) } } return nodes } func (p *noder) stmt(stmt syntax.Stmt) *Node { return p.stmtFall(stmt, false) } func (p *noder) stmtFall(stmt syntax.Stmt, fallOK bool) *Node { p.lineno(stmt) switch stmt := stmt.(type) { case *syntax.EmptyStmt: return nil case *syntax.LabeledStmt: return p.labeledStmt(stmt, fallOK) case *syntax.BlockStmt: l := p.blockStmt(stmt) if len(l) == 0 { // TODO(mdempsky): Line number? return nod(OEMPTY, nil, nil) } return liststmt(l) case *syntax.ExprStmt: return p.wrapname(stmt, p.expr(stmt.X)) case *syntax.SendStmt: return p.nod(stmt, OSEND, p.expr(stmt.Chan), p.expr(stmt.Value)) case *syntax.DeclStmt: return liststmt(p.decls(stmt.DeclList)) case *syntax.AssignStmt: if stmt.Op != 0 && stmt.Op != syntax.Def { n := p.nod(stmt, OASOP, p.expr(stmt.Lhs), p.expr(stmt.Rhs)) n.SetImplicit(stmt.Rhs == syntax.ImplicitOne) n.Etype = types.EType(p.binOp(stmt.Op)) return n } n := p.nod(stmt, OAS, nil, nil) // assume common case rhs := p.exprList(stmt.Rhs) lhs := p.assignList(stmt.Lhs, n, stmt.Op == syntax.Def) if len(lhs) == 1 && len(rhs) == 1 { // common case n.Left = lhs[0] n.Right = rhs[0] } else { n.Op = OAS2 n.List.Set(lhs) n.Rlist.Set(rhs) } return n case *syntax.BranchStmt: var op Op switch stmt.Tok { case syntax.Break: op = OBREAK case syntax.Continue: op = OCONTINUE case syntax.Fallthrough: if !fallOK { yyerror("fallthrough statement out of place") } op = OFALL case syntax.Goto: op = OGOTO default: panic("unhandled BranchStmt") } n := p.nod(stmt, op, nil, nil) if stmt.Label != nil { n.Left = p.newname(stmt.Label) } return n case *syntax.CallStmt: var op Op switch stmt.Tok { case syntax.Defer: op = ODEFER case syntax.Go: op = OPROC default: panic("unhandled CallStmt") } return p.nod(stmt, op, p.expr(stmt.Call), nil) case *syntax.ReturnStmt: var results []*Node if stmt.Results != nil { results = p.exprList(stmt.Results) } n := p.nod(stmt, ORETURN, nil, nil) n.List.Set(results) if n.List.Len() == 0 && Curfn != nil { for _, ln := range Curfn.Func.Dcl { if ln.Class() == PPARAM { continue } if ln.Class() != PPARAMOUT { break } if asNode(ln.Sym.Def) != ln { yyerror("%s is shadowed during return", ln.Sym.Name) } } } return n case *syntax.IfStmt: return p.ifStmt(stmt) case *syntax.ForStmt: return p.forStmt(stmt) case *syntax.SwitchStmt: return p.switchStmt(stmt) case *syntax.SelectStmt: return p.selectStmt(stmt) } panic("unhandled Stmt") } func (p *noder) assignList(expr syntax.Expr, defn *Node, colas bool) []*Node { if !colas { return p.exprList(expr) } defn.SetColas(true) var exprs []syntax.Expr if list, ok := expr.(*syntax.ListExpr); ok { exprs = list.ElemList } else { exprs = []syntax.Expr{expr} } res := make([]*Node, len(exprs)) seen := make(map[*types.Sym]bool, len(exprs)) newOrErr := false for i, expr := range exprs { p.lineno(expr) res[i] = nblank name, ok := expr.(*syntax.Name) if !ok { yyerrorpos(expr.Pos(), "non-name %v on left side of :=", p.expr(expr)) newOrErr = true continue } sym := p.name(name) if sym.IsBlank() { continue } if seen[sym] { yyerrorpos(expr.Pos(), "%v repeated on left side of :=", sym) newOrErr = true continue } seen[sym] = true if sym.Block == types.Block { res[i] = oldname(sym) continue } newOrErr = true n := newname(sym) declare(n, dclcontext) n.Name.Defn = defn defn.Ninit.Append(nod(ODCL, n, nil)) res[i] = n } if !newOrErr { yyerrorl(defn.Pos, "no new variables on left side of :=") } return res } func (p *noder) blockStmt(stmt *syntax.BlockStmt) []*Node { p.openScope(stmt.Pos()) nodes := p.stmts(stmt.List) p.closeScope(stmt.Rbrace) return nodes } func (p *noder) ifStmt(stmt *syntax.IfStmt) *Node { p.openScope(stmt.Pos()) n := p.nod(stmt, OIF, nil, nil) if stmt.Init != nil { n.Ninit.Set1(p.stmt(stmt.Init)) } if stmt.Cond != nil { n.Left = p.expr(stmt.Cond) } n.Nbody.Set(p.blockStmt(stmt.Then)) if stmt.Else != nil { e := p.stmt(stmt.Else) if e.Op == OBLOCK && e.Ninit.Len() == 0 { n.Rlist.Set(e.List.Slice()) } else { n.Rlist.Set1(e) } } p.closeAnotherScope() return n } func (p *noder) forStmt(stmt *syntax.ForStmt) *Node { p.openScope(stmt.Pos()) var n *Node if r, ok := stmt.Init.(*syntax.RangeClause); ok { if stmt.Cond != nil || stmt.Post != nil { panic("unexpected RangeClause") } n = p.nod(r, ORANGE, nil, p.expr(r.X)) if r.Lhs != nil { n.List.Set(p.assignList(r.Lhs, n, r.Def)) } } else { n = p.nod(stmt, OFOR, nil, nil) if stmt.Init != nil { n.Ninit.Set1(p.stmt(stmt.Init)) } if stmt.Cond != nil { n.Left = p.expr(stmt.Cond) } if stmt.Post != nil { n.Right = p.stmt(stmt.Post) } } n.Nbody.Set(p.blockStmt(stmt.Body)) p.closeAnotherScope() return n } func (p *noder) switchStmt(stmt *syntax.SwitchStmt) *Node { p.openScope(stmt.Pos()) n := p.nod(stmt, OSWITCH, nil, nil) if stmt.Init != nil { n.Ninit.Set1(p.stmt(stmt.Init)) } if stmt.Tag != nil { n.Left = p.expr(stmt.Tag) } tswitch := n.Left if tswitch != nil && tswitch.Op != OTYPESW { tswitch = nil } n.List.Set(p.caseClauses(stmt.Body, tswitch, stmt.Rbrace)) p.closeScope(stmt.Rbrace) return n } func (p *noder) caseClauses(clauses []*syntax.CaseClause, tswitch *Node, rbrace src.Pos) []*Node { var nodes []*Node for i, clause := range clauses { p.lineno(clause) if i > 0 { p.closeScope(clause.Pos()) } p.openScope(clause.Pos()) n := p.nod(clause, OXCASE, nil, nil) if clause.Cases != nil { n.List.Set(p.exprList(clause.Cases)) } if tswitch != nil && tswitch.Left != nil { nn := newname(tswitch.Left.Sym) declare(nn, dclcontext) n.Rlist.Set1(nn) // keep track of the instances for reporting unused nn.Name.Defn = tswitch } // Trim trailing empty statements. We omit them from // the Node AST anyway, and it's easier to identify // out-of-place fallthrough statements without them. body := clause.Body for len(body) > 0 { if _, ok := body[len(body)-1].(*syntax.EmptyStmt); !ok { break } body = body[:len(body)-1] } n.Nbody.Set(p.stmtsFall(body, true)) if l := n.Nbody.Len(); l > 0 && n.Nbody.Index(l-1).Op == OFALL { if tswitch != nil { yyerror("cannot fallthrough in type switch") } if i+1 == len(clauses) { yyerror("cannot fallthrough final case in switch") } } nodes = append(nodes, n) } if len(clauses) > 0 { p.closeScope(rbrace) } return nodes } func (p *noder) selectStmt(stmt *syntax.SelectStmt) *Node { n := p.nod(stmt, OSELECT, nil, nil) n.List.Set(p.commClauses(stmt.Body, stmt.Rbrace)) return n } func (p *noder) commClauses(clauses []*syntax.CommClause, rbrace src.Pos) []*Node { var nodes []*Node for i, clause := range clauses { p.lineno(clause) if i > 0 { p.closeScope(clause.Pos()) } p.openScope(clause.Pos()) n := p.nod(clause, OXCASE, nil, nil) if clause.Comm != nil { n.List.Set1(p.stmt(clause.Comm)) } n.Nbody.Set(p.stmts(clause.Body)) nodes = append(nodes, n) } if len(clauses) > 0 { p.closeScope(rbrace) } return nodes } func (p *noder) labeledStmt(label *syntax.LabeledStmt, fallOK bool) *Node { lhs := p.nod(label, OLABEL, p.newname(label.Label), nil) var ls *Node if label.Stmt != nil { // TODO(mdempsky): Should always be present. ls = p.stmtFall(label.Stmt, fallOK) } lhs.Name.Defn = ls l := []*Node{lhs} if ls != nil { if ls.Op == OBLOCK && ls.Ninit.Len() == 0 { l = append(l, ls.List.Slice()...) } else { l = append(l, ls) } } return liststmt(l) } var unOps = [...]Op{ syntax.Recv: ORECV, syntax.Mul: OIND, syntax.And: OADDR, syntax.Not: ONOT, syntax.Xor: OCOM, syntax.Add: OPLUS, syntax.Sub: OMINUS, } func (p *noder) unOp(op syntax.Operator) Op { if uint64(op) >= uint64(len(unOps)) || unOps[op] == 0 { panic("invalid Operator") } return unOps[op] } var binOps = [...]Op{ syntax.OrOr: OOROR, syntax.AndAnd: OANDAND, syntax.Eql: OEQ, syntax.Neq: ONE, syntax.Lss: OLT, syntax.Leq: OLE, syntax.Gtr: OGT, syntax.Geq: OGE, syntax.Add: OADD, syntax.Sub: OSUB, syntax.Or: OOR, syntax.Xor: OXOR, syntax.Mul: OMUL, syntax.Div: ODIV, syntax.Rem: OMOD, syntax.And: OAND, syntax.AndNot: OANDNOT, syntax.Shl: OLSH, syntax.Shr: ORSH, } func (p *noder) binOp(op syntax.Operator) Op { if uint64(op) >= uint64(len(binOps)) || binOps[op] == 0 { panic("invalid Operator") } return binOps[op] } func (p *noder) basicLit(lit *syntax.BasicLit) Val { // TODO: Don't try to convert if we had syntax errors (conversions may fail). // Use dummy values so we can continue to compile. Eventually, use a // form of "unknown" literals that are ignored during type-checking so // we can continue type-checking w/o spurious follow-up errors. switch s := lit.Value; lit.Kind { case syntax.IntLit: x := new(Mpint) x.SetString(s) return Val{U: x} case syntax.FloatLit: x := newMpflt() x.SetString(s) return Val{U: x} case syntax.ImagLit: x := new(Mpcplx) x.Imag.SetString(strings.TrimSuffix(s, "i")) return Val{U: x} case syntax.RuneLit: var r rune if u, err := strconv.Unquote(s); err == nil && len(u) > 0 { // Package syntax already reported any errors. // Check for them again though because 0 is a // better fallback value for invalid rune // literals than 0xFFFD. if len(u) == 1 { r = rune(u[0]) } else { r, _ = utf8.DecodeRuneInString(u) } } x := new(Mpint) x.SetInt64(int64(r)) x.Rune = true return Val{U: x} case syntax.StringLit: if len(s) > 0 && s[0] == '`' { // strip carriage returns from raw string s = strings.Replace(s, "\r", "", -1) } // Ignore errors because package syntax already reported them. u, _ := strconv.Unquote(s) return Val{U: u} default: panic("unhandled BasicLit kind") } } func (p *noder) name(name *syntax.Name) *types.Sym { return lookup(name.Value) } func (p *noder) mkname(name *syntax.Name) *Node { // TODO(mdempsky): Set line number? return mkname(p.name(name)) } func (p *noder) newname(name *syntax.Name) *Node { // TODO(mdempsky): Set line number? return newname(p.name(name)) } func (p *noder) wrapname(n syntax.Node, x *Node) *Node { // These nodes do not carry line numbers. // Introduce a wrapper node to give them the correct line. switch x.Op { case OTYPE, OLITERAL: if x.Sym == nil { break } fallthrough case ONAME, ONONAME, OPACK: x = p.nod(n, OPAREN, x, nil) x.SetImplicit(true) } return x } func (p *noder) nod(orig syntax.Node, op Op, left, right *Node) *Node { return p.setlineno(orig, nod(op, left, right)) } func (p *noder) setlineno(src_ syntax.Node, dst *Node) *Node { pos := src_.Pos() if !pos.IsKnown() { // TODO(mdempsky): Shouldn't happen. Fix package syntax. return dst } dst.Pos = Ctxt.PosTable.XPos(pos) return dst } func (p *noder) lineno(n syntax.Node) { if n == nil { return } pos := n.Pos() if !pos.IsKnown() { // TODO(mdempsky): Shouldn't happen. Fix package syntax. return } lineno = Ctxt.PosTable.XPos(pos) } // error is called concurrently if files are parsed concurrently. func (p *noder) error(err error) { p.err <- err.(syntax.Error) } // pragmas that are allowed in the std lib, but don't have // a syntax.Pragma value (see lex.go) associated with them. var allowedStdPragmas = map[string]bool{ "go:cgo_export_static": true, "go:cgo_export_dynamic": true, "go:cgo_import_static": true, "go:cgo_import_dynamic": true, "go:cgo_ldflag": true, "go:cgo_dynamic_linker": true, "go:generate": true, } // pragma is called concurrently if files are parsed concurrently. func (p *noder) pragma(pos src.Pos, text string) syntax.Pragma { switch { case strings.HasPrefix(text, "line "): // line directives are handled by syntax package panic("unreachable") case strings.HasPrefix(text, "go:linkname "): f := strings.Fields(text) if len(f) != 3 { p.error(syntax.Error{Pos: pos, Msg: "usage: //go:linkname localname linkname"}) break } p.linknames = append(p.linknames, linkname{pos, f[1], f[2]}) case strings.HasPrefix(text, "go:cgo_import_dynamic "): // This is permitted for general use because Solaris // code relies on it in golang.org/x/sys/unix and others. fields := pragmaFields(text) if len(fields) >= 4 { lib := strings.Trim(fields[3], `"`) if lib != "" && !safeArg(lib) && !isCgoGeneratedFile(pos) { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("invalid library name %q in cgo_import_dynamic directive", lib)}) } p.pragcgobuf += p.pragcgo(pos, text) return pragmaValue("go:cgo_import_dynamic") } fallthrough case strings.HasPrefix(text, "go:cgo_"): // For security, we disallow //go:cgo_* directives other // than cgo_import_dynamic outside cgo-generated files. // Exception: they are allowed in the standard library, for runtime and syscall. if !isCgoGeneratedFile(pos) && !compiling_std { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in cgo-generated code", text)}) } p.pragcgobuf += p.pragcgo(pos, text) fallthrough // because of //go:cgo_unsafe_args default: verb := text if i := strings.Index(text, " "); i >= 0 { verb = verb[:i] } prag := pragmaValue(verb) const runtimePragmas = Systemstack | Nowritebarrier | Nowritebarrierrec | Yeswritebarrierrec if !compiling_runtime && prag&runtimePragmas != 0 { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in runtime", verb)}) } if prag == 0 && !allowedStdPragmas[verb] && compiling_std { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s is not allowed in the standard library", verb)}) } return prag } return 0 } // isCgoGeneratedFile reports whether pos is in a file // generated by cgo, which is to say a file with name // beginning with "_cgo_". Such files are allowed to // contain cgo directives, and for security reasons // (primarily misuse of linker flags), other files are not. // See golang.org/issue/23672. func isCgoGeneratedFile(pos src.Pos) bool { return strings.HasPrefix(filepath.Base(filepath.Clean(pos.AbsFilename())), "_cgo_") } // safeArg reports whether arg is a "safe" command-line argument, // meaning that when it appears in a command-line, it probably // doesn't have some special meaning other than its own name. // This is copied from SafeArg in cmd/go/internal/load/pkg.go. func safeArg(name string) bool { if name == "" { return false } c := name[0] return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || c == '.' || c == '_' || c == '/' || c >= utf8.RuneSelf } func mkname(sym *types.Sym) *Node { n := oldname(sym) if n.Name != nil && n.Name.Pack != nil { n.Name.Pack.Name.SetUsed(true) } return n } func unparen(x *Node) *Node { for x.Op == OPAREN { x = x.Left } return x }