// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime_test import ( "fmt" "os" "reflect" "runtime" "runtime/debug" "sync/atomic" "testing" "time" "unsafe" ) func TestGcSys(t *testing.T) { if os.Getenv("GOGC") == "off" { t.Skip("skipping test; GOGC=off in environment") } got := runTestProg(t, "testprog", "GCSys") want := "OK\n" if got != want { t.Fatalf("expected %q, but got %q", want, got) } } func TestGcDeepNesting(t *testing.T) { type T [2][2][2][2][2][2][2][2][2][2]*int a := new(T) // Prevent the compiler from applying escape analysis. // This makes sure new(T) is allocated on heap, not on the stack. t.Logf("%p", a) a[0][0][0][0][0][0][0][0][0][0] = new(int) *a[0][0][0][0][0][0][0][0][0][0] = 13 runtime.GC() if *a[0][0][0][0][0][0][0][0][0][0] != 13 { t.Fail() } } func TestGcHashmapIndirection(t *testing.T) { defer debug.SetGCPercent(debug.SetGCPercent(1)) runtime.GC() type T struct { a [256]int } m := make(map[T]T) for i := 0; i < 2000; i++ { var a T a.a[0] = i m[a] = T{} } } func TestGcArraySlice(t *testing.T) { type X struct { buf [1]byte nextbuf []byte next *X } var head *X for i := 0; i < 10; i++ { p := &X{} p.buf[0] = 42 p.next = head if head != nil { p.nextbuf = head.buf[:] } head = p runtime.GC() } for p := head; p != nil; p = p.next { if p.buf[0] != 42 { t.Fatal("corrupted heap") } } } func TestGcRescan(t *testing.T) { type X struct { c chan error nextx *X } type Y struct { X nexty *Y p *int } var head *Y for i := 0; i < 10; i++ { p := &Y{} p.c = make(chan error) if head != nil { p.nextx = &head.X } p.nexty = head p.p = new(int) *p.p = 42 head = p runtime.GC() } for p := head; p != nil; p = p.nexty { if *p.p != 42 { t.Fatal("corrupted heap") } } } func TestGcLastTime(t *testing.T) { ms := new(runtime.MemStats) t0 := time.Now().UnixNano() runtime.GC() t1 := time.Now().UnixNano() runtime.ReadMemStats(ms) last := int64(ms.LastGC) if t0 > last || last > t1 { t.Fatalf("bad last GC time: got %v, want [%v, %v]", last, t0, t1) } pause := ms.PauseNs[(ms.NumGC+255)%256] // Due to timer granularity, pause can actually be 0 on windows // or on virtualized environments. if pause == 0 { t.Logf("last GC pause was 0") } else if pause > 10e9 { t.Logf("bad last GC pause: got %v, want [0, 10e9]", pause) } } var hugeSink interface{} func TestHugeGCInfo(t *testing.T) { // The test ensures that compiler can chew these huge types even on weakest machines. // The types are not allocated at runtime. if hugeSink != nil { // 400MB on 32 bots, 4TB on 64-bits. const n = (400 << 20) + (unsafe.Sizeof(uintptr(0))-4)<<40 hugeSink = new([n]*byte) hugeSink = new([n]uintptr) hugeSink = new(struct { x float64 y [n]*byte z []string }) hugeSink = new(struct { x float64 y [n]uintptr z []string }) } } func TestPeriodicGC(t *testing.T) { // Make sure we're not in the middle of a GC. runtime.GC() var ms1, ms2 runtime.MemStats runtime.ReadMemStats(&ms1) // Make periodic GC run continuously. orig := *runtime.ForceGCPeriod *runtime.ForceGCPeriod = 0 // Let some periodic GCs happen. In a heavily loaded system, // it's possible these will be delayed, so this is designed to // succeed quickly if things are working, but to give it some // slack if things are slow. var numGCs uint32 const want = 2 for i := 0; i < 200 && numGCs < want; i++ { time.Sleep(5 * time.Millisecond) // Test that periodic GC actually happened. runtime.ReadMemStats(&ms2) numGCs = ms2.NumGC - ms1.NumGC } *runtime.ForceGCPeriod = orig if numGCs < want { t.Fatalf("no periodic GC: got %v GCs, want >= 2", numGCs) } } func BenchmarkSetTypePtr(b *testing.B) { benchSetType(b, new(*byte)) } func BenchmarkSetTypePtr8(b *testing.B) { benchSetType(b, new([8]*byte)) } func BenchmarkSetTypePtr16(b *testing.B) { benchSetType(b, new([16]*byte)) } func BenchmarkSetTypePtr32(b *testing.B) { benchSetType(b, new([32]*byte)) } func BenchmarkSetTypePtr64(b *testing.B) { benchSetType(b, new([64]*byte)) } func BenchmarkSetTypePtr126(b *testing.B) { benchSetType(b, new([126]*byte)) } func BenchmarkSetTypePtr128(b *testing.B) { benchSetType(b, new([128]*byte)) } func BenchmarkSetTypePtrSlice(b *testing.B) { benchSetType(b, make([]*byte, 1<<10)) } type Node1 struct { Value [1]uintptr Left, Right *byte } func BenchmarkSetTypeNode1(b *testing.B) { benchSetType(b, new(Node1)) } func BenchmarkSetTypeNode1Slice(b *testing.B) { benchSetType(b, make([]Node1, 32)) } type Node8 struct { Value [8]uintptr Left, Right *byte } func BenchmarkSetTypeNode8(b *testing.B) { benchSetType(b, new(Node8)) } func BenchmarkSetTypeNode8Slice(b *testing.B) { benchSetType(b, make([]Node8, 32)) } type Node64 struct { Value [64]uintptr Left, Right *byte } func BenchmarkSetTypeNode64(b *testing.B) { benchSetType(b, new(Node64)) } func BenchmarkSetTypeNode64Slice(b *testing.B) { benchSetType(b, make([]Node64, 32)) } type Node64Dead struct { Left, Right *byte Value [64]uintptr } func BenchmarkSetTypeNode64Dead(b *testing.B) { benchSetType(b, new(Node64Dead)) } func BenchmarkSetTypeNode64DeadSlice(b *testing.B) { benchSetType(b, make([]Node64Dead, 32)) } type Node124 struct { Value [124]uintptr Left, Right *byte } func BenchmarkSetTypeNode124(b *testing.B) { benchSetType(b, new(Node124)) } func BenchmarkSetTypeNode124Slice(b *testing.B) { benchSetType(b, make([]Node124, 32)) } type Node126 struct { Value [126]uintptr Left, Right *byte } func BenchmarkSetTypeNode126(b *testing.B) { benchSetType(b, new(Node126)) } func BenchmarkSetTypeNode126Slice(b *testing.B) { benchSetType(b, make([]Node126, 32)) } type Node128 struct { Value [128]uintptr Left, Right *byte } func BenchmarkSetTypeNode128(b *testing.B) { benchSetType(b, new(Node128)) } func BenchmarkSetTypeNode128Slice(b *testing.B) { benchSetType(b, make([]Node128, 32)) } type Node130 struct { Value [130]uintptr Left, Right *byte } func BenchmarkSetTypeNode130(b *testing.B) { benchSetType(b, new(Node130)) } func BenchmarkSetTypeNode130Slice(b *testing.B) { benchSetType(b, make([]Node130, 32)) } type Node1024 struct { Value [1024]uintptr Left, Right *byte } func BenchmarkSetTypeNode1024(b *testing.B) { benchSetType(b, new(Node1024)) } func BenchmarkSetTypeNode1024Slice(b *testing.B) { benchSetType(b, make([]Node1024, 32)) } func benchSetType(b *testing.B, x interface{}) { v := reflect.ValueOf(x) t := v.Type() switch t.Kind() { case reflect.Ptr: b.SetBytes(int64(t.Elem().Size())) case reflect.Slice: b.SetBytes(int64(t.Elem().Size()) * int64(v.Len())) } b.ResetTimer() runtime.BenchSetType(b.N, x) } func BenchmarkAllocation(b *testing.B) { type T struct { x, y *byte } ngo := runtime.GOMAXPROCS(0) work := make(chan bool, b.N+ngo) result := make(chan *T) for i := 0; i < b.N; i++ { work <- true } for i := 0; i < ngo; i++ { work <- false } for i := 0; i < ngo; i++ { go func() { var x *T for <-work { for i := 0; i < 1000; i++ { x = &T{} } } result <- x }() } for i := 0; i < ngo; i++ { <-result } } func TestPrintGC(t *testing.T) { if testing.Short() { t.Skip("Skipping in short mode") } defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2)) done := make(chan bool) go func() { for { select { case <-done: return default: runtime.GC() } } }() for i := 0; i < 1e4; i++ { func() { defer print("") }() } close(done) } func testTypeSwitch(x interface{}) error { switch y := x.(type) { case nil: // ok case error: return y } return nil } func testAssert(x interface{}) error { if y, ok := x.(error); ok { return y } return nil } func testAssertVar(x interface{}) error { var y, ok = x.(error) if ok { return y } return nil } var a bool //go:noinline func testIfaceEqual(x interface{}) { if x == "abc" { a = true } } func TestPageAccounting(t *testing.T) { // Grow the heap in small increments. This used to drop the // pages-in-use count below zero because of a rounding // mismatch (golang.org/issue/15022). const blockSize = 64 << 10 blocks := make([]*[blockSize]byte, (64<<20)/blockSize) for i := range blocks { blocks[i] = new([blockSize]byte) } // Check that the running page count matches reality. pagesInUse, counted := runtime.CountPagesInUse() if pagesInUse != counted { t.Fatalf("mheap_.pagesInUse is %d, but direct count is %d", pagesInUse, counted) } } func TestReadMemStats(t *testing.T) { base, slow := runtime.ReadMemStatsSlow() if base != slow { logDiff(t, "MemStats", reflect.ValueOf(base), reflect.ValueOf(slow)) t.Fatal("memstats mismatch") } } func logDiff(t *testing.T, prefix string, got, want reflect.Value) { typ := got.Type() switch typ.Kind() { case reflect.Array, reflect.Slice: if got.Len() != want.Len() { t.Logf("len(%s): got %v, want %v", prefix, got, want) return } for i := 0; i < got.Len(); i++ { logDiff(t, fmt.Sprintf("%s[%d]", prefix, i), got.Index(i), want.Index(i)) } case reflect.Struct: for i := 0; i < typ.NumField(); i++ { gf, wf := got.Field(i), want.Field(i) logDiff(t, prefix+"."+typ.Field(i).Name, gf, wf) } case reflect.Map: t.Fatal("not implemented: logDiff for map") default: if got.Interface() != want.Interface() { t.Logf("%s: got %v, want %v", prefix, got, want) } } } func BenchmarkReadMemStats(b *testing.B) { var ms runtime.MemStats const heapSize = 100 << 20 x := make([]*[1024]byte, heapSize/1024) for i := range x { x[i] = new([1024]byte) } hugeSink = x b.ResetTimer() for i := 0; i < b.N; i++ { runtime.ReadMemStats(&ms) } hugeSink = nil } func TestUserForcedGC(t *testing.T) { // Test that runtime.GC() triggers a GC even if GOGC=off. defer debug.SetGCPercent(debug.SetGCPercent(-1)) var ms1, ms2 runtime.MemStats runtime.ReadMemStats(&ms1) runtime.GC() runtime.ReadMemStats(&ms2) if ms1.NumGC == ms2.NumGC { t.Fatalf("runtime.GC() did not trigger GC") } if ms1.NumForcedGC == ms2.NumForcedGC { t.Fatalf("runtime.GC() was not accounted in NumForcedGC") } } func writeBarrierBenchmark(b *testing.B, f func()) { runtime.GC() var ms runtime.MemStats runtime.ReadMemStats(&ms) //b.Logf("heap size: %d MB", ms.HeapAlloc>>20) // Keep GC running continuously during the benchmark, which in // turn keeps the write barrier on continuously. var stop uint32 done := make(chan bool) go func() { for atomic.LoadUint32(&stop) == 0 { runtime.GC() } close(done) }() defer func() { atomic.StoreUint32(&stop, 1) <-done }() b.ResetTimer() f() b.StopTimer() } func BenchmarkWriteBarrier(b *testing.B) { if runtime.GOMAXPROCS(-1) < 2 { // We don't want GC to take our time. b.Skip("need GOMAXPROCS >= 2") } // Construct a large tree both so the GC runs for a while and // so we have a data structure to manipulate the pointers of. type node struct { l, r *node } var wbRoots []*node var mkTree func(level int) *node mkTree = func(level int) *node { if level == 0 { return nil } n := &node{mkTree(level - 1), mkTree(level - 1)} if level == 10 { // Seed GC with enough early pointers so it // doesn't accidentally switch to mark 2 when // it only has the top of the tree. wbRoots = append(wbRoots, n) } return n } const depth = 22 // 64 MB root := mkTree(22) writeBarrierBenchmark(b, func() { var stack [depth]*node tos := -1 // There are two write barriers per iteration, so i+=2. for i := 0; i < b.N; i += 2 { if tos == -1 { stack[0] = root tos = 0 } // Perform one step of reversing the tree. n := stack[tos] if n.l == nil { tos-- } else { n.l, n.r = n.r, n.l stack[tos] = n.l stack[tos+1] = n.r tos++ } if i%(1<<12) == 0 { // Avoid non-preemptible loops (see issue #10958). runtime.Gosched() } } }) runtime.KeepAlive(wbRoots) } func BenchmarkBulkWriteBarrier(b *testing.B) { if runtime.GOMAXPROCS(-1) < 2 { // We don't want GC to take our time. b.Skip("need GOMAXPROCS >= 2") } // Construct a large set of objects we can copy around. const heapSize = 64 << 20 type obj [16]*byte ptrs := make([]*obj, heapSize/unsafe.Sizeof(obj{})) for i := range ptrs { ptrs[i] = new(obj) } writeBarrierBenchmark(b, func() { const blockSize = 1024 var pos int for i := 0; i < b.N; i += blockSize { // Rotate block. block := ptrs[pos : pos+blockSize] first := block[0] copy(block, block[1:]) block[blockSize-1] = first pos += blockSize if pos+blockSize > len(ptrs) { pos = 0 } runtime.Gosched() } }) runtime.KeepAlive(ptrs) }